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Abstract

Affine Toda field theory with a pure imaginary coupling constant is a non-
hermitian theory. Therefore the solutions of the equation of motion are complex.
However, in 1 + 1 dimensions it has many soliton solutions with remarkable prop-
erties, such as real total energy/momentum and mass. Several authors calculated
quantum mass corrections of the solitons by claiming these solitons are stable. We
show that there exists a large class of classical solutions which develops singularity
after a finite lapse of time. Stability claims, in earlier literature, were made ignoring
these solutions. Therefore we believe that a formulation of quantum theory on a
firmer basis is necessary in general and for the quantum mass corrections of solitons,
in particular.
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1 Introduction

In this paper we will address the problem of the stability of solitons in the imaginary
coupling affine Toda field theory, which is obtained from the affine Toda field theory by
replacing the real coupling constant β by a purely imaginary one iβ, i =

√
−1. The affine

Toda field theory is one of the best understood field theories at the classical [1] and at the
quantum levels [2, 3, 4, 5, 6][7, 8], thanks to its integrability. It is the close connection be-
tween the affine Toda field theory and the conformal field theory in 2 dimensions, another
group of best understood quantum field theories, (integrable deformation of conformal
field theory [9, 10]) that led to the interesting but controversial “imaginary coupling”
affine Toda field theory.

This apparently tiny change β → iβ brings huge differences between the affine Toda
field theory and its imaginary coupling counterpart. Among them the following two
aspects are most prominent: The first is the emergence of soliton solutions and other
interesting exact solutions in the imaginary coupling theory, just as in the well known
sine-Gordon theory, which is the simplest example of the imaginary coupling affine Toda
field theories. In contrast, the affine Toda field theory is known to have no solitons. The
second is the lack of reality/hermiticity of the Lagrangian and action in all the imaginary
coupling theories except for the sine-Gordon theory.

Many interesting and beautiful results on solitons have been obtained by various au-
thors. By applying Hirota’s method, Hollowood [11] obtained various simple soliton solu-
tions in the a(1)

n theory. The total energies of these one soliton solutions are real, although
the solutions themselves and the energy densities are complex. The masses of the solitons
are found to be proportional to the masses of the fundamental particles of the corre-
sponding affine Toda field theory. This result was further developed by many authors
[12, 13, 14, 15, 16, 17]. A complete set of soliton solutions was obtained by invoking
representation theory of affine Lie algebras by Olive and collaborators [14, 16]. The mass
spectrum of the one soliton solutions is now known and it is related to the mass spectrum
of the fundamental particles in the real coupling theories in a very interesting way.

Hollowood [18] then set a new trend by calculating “quantum mass corrections” to the
solitons in a(1)

n theory. It was reported that the soliton mass ratios in the a(1)
n theories were

unchanged after one-loop corrections. Then “quantum mass corrections” to the solitons
in all the affine Toda theories were also investigated by Watts [19], Delius and Grisaru
[20] and MacKay and Watts [21]. They obtained similar but slightly differing results and
the relationship between the classical soliton masses and the quantum mass corrections
seemed to be more involved.

On the other hand, the lack of reality/hermiticity of the Lagrangian does not seem to
have attracted much attention. This is a rather strange situation, since the hermiticity or
reality is sacrosanct in any physical theory and especially in quantum physics, in which
non-hermitian Lagrangian or Hamiltonian implies non-unitarity and non-conservation of
probability. The classical theory is well defined mathematically, even if the Lagrangian
is non-hermitian. Although the physical interpretation of the solutions of the equation
of motion is dubious, the concept of solutions is solid. In contrast, to the best of our
knowledge, the quantum field theory or even quantum mechanics of non-hermitian systems
simply does not exist. Thus, at present, quantum affine Toda field theory with imaginary
coupling should be considered to be of heuristic nature. Therefore the clarification of the
hermiticity issue is essential for any serious treatments of the quantum solitons, especially
for those of quantum mass corrections. The lack of unitarity in quantum field theory is
usually related with the lack of stability of the solutions of the corresponding classical
field theory, which are the solitons in the present case.

In this context, certain stability arguments of soliton solutions connected with the
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“twisted reality” or “twisted hermiticity” relations were produced by Hollowood [18],
Evans [22] and Delius and Grisaru [20]. We will show that none of these arguments is
satisfactory. We also give various explicit solutions which develop singularity after a finite
lapse of time. Moreover, these singular solutions are far more abundant than the non-
singular ones. To be more precise, the moduli space of the singular 1-soliton solutions
is two dimensional whereas the non-singular 1-soliton solutions have one dimensional
moduli space. These results cast a big question mark on the works of quantum mass
corrections of solitons, in particular and on those of the soliton physics/mathematics in
the imaginary coupling affine Toda field theory in general. The problem of the hermiticity
and/or unitarity in the imaginary coupling affine Toda field theory deserves a far greater
attention than has been given, since the stake is very high.

This paper is organised as follows: in section 2 we briefly review the essentials of
affine Toda field theory in order to set the stage and to introduce notation. In section
3 derivation of the simple solitons are given and some of their salient properties are
recapitulated. In Section 4 various existing stability arguments of solitons are examined
and shown to have flaws. In Section 5 and 6 instability of “vacuum” and single soliton
solutions are shown by examining the time evolution of the explicit solutions. The moduli
space of generalised single-soliton solutions are also introduced in order to show that the
generic solutions are unstable. Section 7 is devoted to a brief summary. Appendix A gives
a simple example of 2× 2 matrix satisfying the “twisted reality condition” but failing to
have real eigenvalues. Appendix B gives another simple example of 2 × 2 symmetric
matrices which are not hermitian. It is shown that its eigenvectors are not guaranteed to
span the entire vector space.

2 Affine Toda field theory

Affine Toda field theory [1] is a massive scalar field theory with exponential interactions
in 1 + 1 dimensions described by the Lagrangian

L =
1

2
∂µφ

a∂µφa − V (φ), (2.1)

in which the potential is given by

V (φ) =
m2

β2

r∑
0

nje
βαj·φ. (2.2)

The field φ is an r-component scalar field, r is the rank of a compact semi-simple Lie
algebra g with αj; j = 1, . . . , r being its simple roots. The roots are normalised so that
long roots have length 2, α2

L = 2. An additional root, α0 = −
∑r

1 njαj is an integer linear
combination of the simple roots, is called the affine root; it corresponds to the extra spot
on an extended Dynkin diagram for ĝ and n0 = 1. When the term containing the extra
root is removed, the theory becomes conformally invariant (conformal Toda field theory).

The simplest affine Toda field theory, based on the simplest Lie algebra a(1)
1 , the algebra

of ŝu(2), is called sinh-Gordon theory, a cousin of the well known sine-Gordon theory. m
is a real parameter setting the mass scale of the theory and β is a real coupling constant,
which is relevant only in quantum theory.

Toda field theory is integrable at the classical level due to the presence of an infinite
number of conserved quantities. Many beautiful properties of Toda field theory, both at
the classical and quantum levels, have been uncovered in recent years. In particular, it is
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firmly believed that the integrability survives quantisation. The exact quantum S-matrices
are known [2, 3, 4, 5, 6],[7, 8] for all the Toda field theories based on non-simply laced
algebras as well as those based on simply laced algebras. The singularity structure of the
latter S-matrices, which in some cases contain poles up to 12-th order [4], is beautifully
explained in terms of the singularities of the corresponding Feynman diagrams [23], so
called Landau singularities.

The imaginary coupling affine Toda field theory is obtained simply by replacing β by
iβ (i =

√
−1) in the Lagrangian

LI =
1

2
∂µφ

a∂µφa − VI(φ), VI(φ) = −
m2

β2

r∑
0

nj
(
eiβαj·φ − 1

)
, (2.3)

and by reinterpreting the fields φ as complex. The Lagrangian is not hermitian except

for the a(1)
1 theory (r = 1, n1 = n0 = 1, α1 = −α0 =

√
2) with a real field. In the rest

of this paper, a
(1)
1 theory is excluded. The equation of motion obtained from the above

Lagrangian reads

∂2
µφ = −

m2

iβ

r∑
0

njαje
iβαj·φ. (2.4)

It is easy to see that it has no real solutions except for the trivial constant solutions
corresponding to the “minima” of the imaginary potential3:

2π

β

r∑
j=1

kjλj , kj : integer. (2.5)

Here {λj}, j = 1, . . . , r is the dual basis to the simple roots {αj}:

αj · λk = δjk. (2.6)

It should be noticed that the structure of the Lax pair, the existence of an infinite
set of conserved quantities in involution, the corner stone of the integrability, and etc.
etc are the same in the imaginary coupling theory as in the real coupling theory [18, 22].
However, their actual contents are markedly different. In the real coupling theory, the
conserved energy is positive definite, namely each term is positive. Thus if one follows the
time evolution of a regular initial data φ(x, 0), ∂tφ(x, 0) with finite energy, the field φ(x, t)
and its first derivatives are always finite everywhere, since any singularity would violate
the conservation of energy. In the imaginary coupling theory, the conservation of energy
still holds but the energy has negative as well as positive terms. The conservation of
energy fails to prevent the singularities in the time evolution. We show this phenomenon
by explicit examples in section 5 and 6. Other simple examples of singularities in the case
of non-positive definite energy caused by integrable boundary interactions were given in
Ref.[24].

In the rest of this paper we will discuss the a(1)
n theory only (r = n, nj = 1, j =

0, 1, . . . , n) for definiteness and simplicity. This also makes it easy to concentrate on
the fundamental and universal problems of (non) hermiticity and stability without being
bothered by the Lie algebra technicalities.

3Points in (2.5) simply correspond to the stationary points of the potential VI ,
∂VI
∂φ = 0. The second

derivative matrix ∂2VI
∂φa∂φb = m2

∑
njα

a
jα

b
j, which is equal to the classical (mass)2 matrix, is positive

definite. Since the potential is an analytic function of the field φ, it has neither a minimum nor a
maximum in any open domain. In other words the potential VI as a function of the complex field φ is
not bounded from below, another sign of instability.
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3 Solitons

In this section we recapitulate some of the results on the explicit soliton solutions which
are necessary for our purposes. Only the very fundamental features of the soliton solutions
are relevant here, so we follow the elementary method of Hollowood [11]. Like the sine-
Gordon solitons, these solitons interpolate various “vacua” or the “minima” of the complex
potential (2.5). We start from the following Hirota ansatz

φ(x, t) = −
1

iβ

n∑
j=0

αj log τj . (3.1)

In terms of τj the equation of motion can be decoupled into

τ̈jτj − τ̇
2
j − τ

′′
j τj + τ ′j

2
= m2(τj−1τj+1 − τ

2
j ). (3.2)

The label on τj is understood modulo n + 1, which reflects the periodicity of the a(1)
n

Dynkin diagram.
One soliton solution is obtained by assuming

τj = 1 + τ
(1)
j . (3.3)

By substituting (3.3) into (3.2) we get

τ̈
(1)
j − τ ′′j

(1) −m2(τ
(1)
j−1 + τ

(1)
j+1 − 2τ

(1)
j )

+ τ̈
(1)
j τ

(1)
j − (τ̇

(1)
j )2 − τ ′′j

(1)
τ

(1)
j + (τ ′

(1)
j )2 −m2(τ

(1)
j−1τ

(1)
j+1 − (τ

(1)
j )2) = 0. (3.4)

A characteristic feature of the Hirota method is that this equation is decomposed into
linear and quadratic parts:

τ̈
(1)
j − τ

′′
j

(1) −m2(τ (1)
j−1 + τ

(1)
j+1 − 2τ (1)

j ) = 0, (3.5)

τ̈
(1)
j τ

(1)
j − (τ̇ (1)

j )2 − τ ′′j
(1)
τ

(1)
j + (τ ′

(1)
j )2 −m2(τ (1)

j−1τ
(1)
j+1 − (τ (1)

j )2) = 0, (3.6)

and the quadratic part is always satisfied by the solution of the linear part. The linear
equation is solved by

τ
(1)
j = exp(σx− λt+ x0 + jρ), (3.7)

for constants σ, λ, x0 and ρ. The periodicity in the label j on τj then implies

ρ =
2πia

n+ 1
, a : integer 1 ≤ a ≤ n. (3.8)

The parameters σ, λ and the integer a are constrained by

F(σ, λ, a) ≡ σ2 − λ2 − 4m2 sin2 πa

n+ 1
= 0, (3.9)

in order to satisfy (3.5). It is very easy to verify that the quadratic equation is also
satisfied.
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Thus we arrive at the explicit one soliton solution

φa(x, t) = −
1

iβ

n∑
j=0

αj log[1 + ωaj exp(σx− λt+ x0)], (3.10)

in which the parameters σ and λ should satisfy

σ2 − λ2 = 4m2 sin2 πa

n+ 1
, (3.11)

and ω is a primitive root of unity ω = e
2πi
n+1 , ωn+1 = 1. The right hand side of (3.11) is

is simply the mass2 of the fundamental particles in a(1)
n Toda field theory. The above

1-soliton solutions are classified into three different types as follows:

1) σ, λ : Real r− soliton
2) σ, λ : pure Imaginary i− soliton
3) σ, λ : Complex c− soliton.

(3.12)

The c-solitons contain all the 1-soliton solutions not belonging to the r-solitons and i-
solitons; for example, σ: real and λ: pure imaginary. The parameters (σ, λ) have one real
degree of freedom in the cases of r-solitons and i-solitons, whereas (σ, λ) have two real
degrees of freedom in the c-soliton case. The r- and i-solitons are located at the boundaries
of the moduli space of the c-soliton solutions. As we will see in section 5, these three types
of 1-soliton solutions have very different characters. The other parameter x0 is in general
complex and its real part x0R is related to the location of the soliton at t = 0. The
imaginary part of x0, x0I can be restricted to 0 ≤ x0I < 2π without loss of generality.

In the rest of this section we give the two soliton solutions without derivation [11].
Let us define

y
(p)
j = σpx− λpt+ x

(p)
0 +

2πiap
n+ 1

j, (3.13)

in which the parameters σp, λp and the integer ap satisfy the constraint

F(σp, λp, ap) = 0.

Then a general two soliton solution is given by

τj = 1 + ey
(1)
j + ey

(2)
j + ey

(1)
j +y

(2)
j +γ(12) , (3.14)

in which the interaction function eγ(pq) is given by [11]

eγ(pq) = −
F(σp − σq, λp − λq, ap − aq)

F(σp + σq, λp + λq , ap + aq)
. (3.15)

4 “Stability” of 1 Soliton Solutions

As a “prerequisite” for calculating “quantum mass corrections” of solitons, Hollowood
[18], Evans [22] and Delius and Grisaru [20] produced certain arguments that the soliton
solutions are classically “stable”. In this section we recapitulate the essence of their
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“stability” arguments and show that these are flawed. They picked up a stationary r-
soliton solution located at the origin

φ̄a(x) = −
1

iβ

n∑
j=0

αj log[1 + ωajemax], ma = 2m sin
πa

n+ 1
, (4.1)

and considered a small perturbation around it:

φ(x, t) = φ̄(x) + η(x, t). (4.2)

From the equation of motion for φ, a linearised equation for the small perturbation η was
derived

∂2
µη +m2

n∑
j=0

αj(αj · η) exp(iβαj · φ̄) = 0. (4.3)

Assuming simple time dependence

η(x, t) = η(x)eiνt,

the linearised equation of motion was reduced to an eigenvalue problem

Dη = ν2η, (4.4)

in which D was a non-hermitian second order differential operator of the following form

D = −
d2

dx2
+m2

n∑
j=0

αj ⊗ αj exp(iβαj · φ̄). (4.5)

They argued that “if the spectrum of D –for bounded eigenfunctions– was real and pos-
itive; hence, the frequencies ν were real, then the small perturbations to φ̄ would not
diverge”.

If D is hermitian, then obviously its eigenvalues ν2 are real, the eigenfunctions belong-
ing to different eigenvalues are orthogonal to each other and they constitute a complete
basis of the function space. However, D is non-hermitian. Its eigenvalues are in general
complex and the eigenfunctions are not guaranteed to form a complete orthogonal basis of
the entire function space. Therefore, the “stability argument” based on the eigenfunctions
of D is in general incomplete.

Hollowood and Evans’ [18, 22] argument that “ν2 are real” goes as follows: First φ̄
satisfies the following “twisted reality” condition

φ̄∗(x) = −Mφ̄(x), ∗ denotes complex conjugation, (4.6)

in which M acts as a Z2 symmetry of the roots

Mαj = αn+1−j , αn+1 ≡ α0, (4.7)

and it also satisfies the conditions

M2 = 1, M t = M. (4.8)
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From this it follows that

D† = MDM, † denotes hermitian conjugation. (4.9)

Hence, they argue that “D is hermitian” with respect to the following “inner product”:

〈f, g〉 =
∫ ∞
−∞

dx f †(x) ·Mg(x). (4.10)

In fact, it is easy to see

〈f,Dg〉 =
∫ ∞
−∞

dxf †(x) ·MDg(x) =
∫ ∞
−∞

dxf †(x) · D†Mg(x) = 〈Df, g〉. (4.11)

Based on this they assert that the spectrum of D is real.

However, the flaw lies in the point that 〈f, g〉 does not define an inner product since
it is not positive definite. Namely, 〈f, f〉 can be positive, zero or negative and 〈f, f〉 = 0
does not imply f = 0. Supposing that f is an eigenfunction of D with eigenvalue ν2, then
we can calculate 〈f,Df〉 in two ways to obtain(

ν2 − (ν2)∗
)
〈f, f〉 = 0. (4.12)

But we cannot conclude from this that ν2 is real:

ν2 6= (ν2)∗, in general,

because of the possibility of 〈f, f〉 = 0, see (A.4). The fact that the “inner product” 〈f, g〉
is not positive definite can be easily seen when one takes a basis of the n-dimensional
vector space (the Cartan subalgebra of an) such that M is diagonal. Since M2 = 1, M
has eigenvalue ±1 subspaces and the −1 subspace violates the positive definiteness. In
appendix A we give a simple example of M and D satisfying the conditions (4.8) and
(4.9), but D failing to produce real eigenvalues, or failing to give a complete orthogonal
basis consisting of its eigenvectors.

Delius and Grisaru’s argument [20] is slightly different. They assumed a complete set
of orthonormal eigenfunctions ηk(x) of D

Dηk(x) = ν2
kηk(x), 〈〈ηk, ηk′〉〉 = δkk′ , (4.13)

with respect to an “inner product” without complex conjugation

〈〈f, g〉〉 =
∫ ∞
−∞

dxf t(x) · g(x), t denotes transpose. (4.14)

They argued that D was not hermitian but symmetric

〈〈f,Dg〉〉 = 〈〈Df, g〉〉.

However, 〈〈f, g〉〉 cannot define an inner product, since 〈〈f, f〉〉 is neither real nor posi-
tive. Therefore, the “stability analysis” and “quantisation” based on a “complete set”
of eigenfunctions of D cannot be justified. In appendix B we give a simple example of
2× 2 matrix which is symmetric but non-hermitian and show that its eigenvectors need
not form a complete orthogonal basis.

Further they went on calculating the explicit eigenfunctions of D with real eigenvalues
for the evaluation of the “quantum corrections” to the masses of solitons. Such “quantisa-
tion procedure” is not well founded because the eigenfunctions do not span the complete
function space. For, if we assume that D has real eigenvalues only and that the corre-
sponding eigenfunctions form a complete orthogonal basis, then we can easily prove that
D is hermitian, which is a contradiction.
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5 Blowing up Solutions 1

In the previous section we have confirmed that the linear operator D (4.5) describing small
perturbations around a stationary r-soliton solution is not hermitian. Thus the “small
perturbations” always contain certain components which grow exponentially in time and
the linear approximation eventually breaks down. In this and subsequent sections we will
show that most solutions of the imaginary coupling affine Toda field theory really develop
singularities after certain time and that the theory is unstable.

Let us first look at the asymptotic (x→ ±∞) properties of the three types of 1-soliton
solutions (3.12) at t = 0. All of them are bounded functions of x. For r- and c-solitons,
let us assume that Reσ > 0. Then at x→ +∞ the expression (3.10) can be simplified as

−iβφ(x, t) ≈
n∑
j=0

αj log[exp(σx+ x0 +
2πia

n+ 1
j)]

=
n∑
j=0

αj

(
σx+ x0 +

2πia

n+ 1
j

)

=
n∑
j=0

αj

(
2πia

n+ 1
j

)
. (5.1)

(5.2)

The parts proportional to σx+x0 cancel with each other due to the relation of the simple
roots

∑n
j=0 αj = 0. At x → −∞ the r- and c-soliton solutions simply go to zero. Similar

arguments can be made for the i-soliton solutions. It is easy to show that any combination
of the above soliton solutions shares this property.

In this section we will show that all c-soliton solutions develop singularities after a
finite time. The singularity is caused by vanishing of the arguments of the logarithms.
Let us follow the time developments from the ‘initial’ time t = 0. At t = 0 the argument
of the j th logarithm is

1 + exp(σx+ x0 +
2πia

n+ 1
j). (5.3)

In order this to vanish x must be a root of

σx+ x0 +
2πia

n+ 1
j = i(2m+ 1)π, m : integer (5.4)

However, this equation does not have a real root in general. If it has one, we could have
started with a slightly different x0 and σ. To sum up,

1

σ

(
i(2m+ 1)π −

2πia

n+ 1
j − x0

)
is in general complex, unless x0 and σ are fine tuned. So φ(x, 0) is regular everywhere.
From the continuity of (3.10) φ(x, t) is regular everywhere for small enough t.

As t increases from zero, the argument of the c-soliton changes. The condition for
vanishing argument (5.4) now reads

σx− λt+ x0 +
2πia

n + 1
j = i(2m+ 1)π, m : integer. (5.5)
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By introducing the real and imaginary parts of σ, λ and x0

σ = σR + iσI , λ = λR + iλI , x0 = x0R + ix0I,

(5.5) can be rewritten as(
σR −λR
σI −λI

)(
x

t

)
=
(

−x0R

(2m + 1)π − 2πa
n+1

j − x0I

)
, (5.6)

which has always a real root, unless

det
(
σR −λR
σI −λI

)
= −σRλI + σIλR = 0. (5.7)

The above condition means that

σI

σR
=
λI

λR
, or σ = kλ, k : real. (5.8)

In this case the condition σ2−λ2 = 4m2 sin2 πa
n+1

(3.11) can never be satisfied by complex σ
and λ. So we need not worry about the above situation in the case of c-solitons. The above
result also shows that the r-soliton and the i-soliton solutions are essentially singularity
free, since for them the determinant (5.7) vanishes.

Let us choose among the roots of (5.6) for various j and m, the one having the smallest
|t| and call it tM . If tM < 0 then we change λ→ −λ and get tM > 0. Therefore we have
shown that the c-soliton solutions always develop singularity as time increases.

Next let us remark that the above φ(x, 0) can be made as small as we wish within a
given finite interval [−L,L]. Suppose σR > 0, then by choosing x0R sufficiently large and
negative, we can make

| exp(σx+ x0 +
2πia

n+ 1
j)| < ε for |x| < L. (5.9)

In fact

Max| exp(σx+ x0 +
2πia

n + 1
j)| = eσRL+x0R ,

so that we have to choose x0R such that

eσRL+x0R < ε = elog ε.

That is
x0R < −σRL+ log ε. (5.10)

Due to the fact that the influence of the c-soliton solution on φ(x, 0) can be made as
small as we wish in any finite region, the above result (blowing up of a c-soliton solution)
can also be regarded as the “instability” of the “vacuum”, φ(x, t) ≡ 0.

This instability can be naively “understood” if we approximate (3.10) in the region
x < L,

−iβφ(x, t) =
n∑
j=0

αj e
σx−λt+x0+2πia

n+1
j (5.11)
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which has e−λt, an exponentially growing or decaying factor for complex λ. It should be
noted, however, that this approximation is not valid for x > L.

Before concluding this section let us remark on the vacuum on which quantum states
should be built. In any Lorentz invariant quantum field theory, the vacuum is a classical
configuration (namely a solution of the equation of motion) satisfying the following two
conditions: 1) time and space translational invariance. 2) having the lowest energy (which
can be chosen to be zero). In the affine Toda field theory with real coupling it is φ(x, t) ≡ 0
and unique.

But the situation is very different in imaginary coupling theory. There is no classical
solution satisfying these two conditions. In short there is no stable vacuum. Firstly the
candidates satisfying the condition 1) are infinite in number, that is the points (2.5).
Therefore we call them “vacua”. The degeneracy of “vacua” usually indicates instability
in ordinary quantum field theory context.

Secondly, there are infinitely many solutions of equation of motion which have lower
energies than the φ(x, t) ≡ 0 (or 2π

β

∑
kjλj), configuration. Therefore these “vacua” are

unstable since they will decay into lower energy states by quantum tunneling. Suppose φ0

is a constant such that VI(φ0) = −v < 0. Then consider the solution of the initial value
problem

φ(x, 0) = φ0, ∂tφ(x, 0) = 0, (5.12)

which has energy lower than 0. In this construction the total energy is in fact minus
infinity, E = −v × spacevolume.

There are also solutions having finite negative energy. Consider the solution of the
following initial value problem:

φ(x, 0) = 0, everywhere ∂tφ(x, 0) = if(x), (5.13)

in which f(x) is a real function and finite everywhere and square integrable∫ ∞
−∞

f(x)t · f(x)dx = F > 0.

which has a negative total energy

E = −
1

2
F < 0.

None of these negative energy solutions are time and space translational invariant. We
do not know if the solutions of the initial value problems (5.12),(5.13) reman finite or
not. The existence of these negative energy states is another evidence of the instability
of “vacua” and it gives another difficult hurdle for constructing the quantum field theory,
if any.

6 Blowing up Solutions 2

Next let us show that any r-soliton solution is unstable in the same manner as the “vac-
uum” is unstable by an addition of a small c-soliton solution. In other words we show that
2-soliton solutions consisting of a 1 r-soliton and a 1 c-soliton solutions develop singularity
after a finite time.
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For simplicity, let us assume that the r-soliton is at rest near the origin,

Ψ(a)
j = 1 + emax+x

(a)
0 +2πia

n+1
j ≡ 1 + ey

a
j , (6.1)

x
(a)
0R = 0. (6.2)

Let us add to it a c-soliton from the right (meaning σR > 0),

Ψ
(C,b)
j = 1 + eσx−λt+x

(b)
0 +2πib

n+1
j ≡ 1 + ey

b
j , (6.3)

σ2 − λ2 = 4m2 sin2 πb

n+ 1
, 1 ≤ b ≤ n. (6.4)

The total solution is

−iβφ(x, t) =
n∑
j=0

αj log[1 + ey
a
j + ey

b
j + eγab+y

a
j +ybj ], (6.5)

in which γab is the interaction function (cf. (3.15) )

eγab = −
m2
a +m2

b −m
2
a−b − 2maσ

m2
a +m2

b −m
2
a+b + 2maσ

,

a complex function of σ.
First let us consider the initial form of the solution at t = 0. Suppose ma > σR > 0,

then as in the previous case, we can make the influence of the c-soliton as small as we
wish

| exp(σx+ x
(b)
0 +

2πib

n + 1
j)| < ε for |x| < L, (6.6)

by choosing x
(b)
0R sufficiently large and negative. Let us also require that

L�
1

ma

. (6.7)

Then at x > L we have
|ey

a
j | � 1

and the argument of the logarithm in (6.5) can be well approximated by

ey
a
j (1 + eγab+y

b
j ). (6.8)

So at t = 0 and x > L

−iβφ(x, 0) ≈
n∑
j=0

αj log[ey
a
j (1 + eγab+σx+x

(b)
0 +2πib

n+1
j)]. (6.9)

Thus by the same argument as in the previous section, φ(x, 0) is regular for x > L. And
for x < L, the effect of the c-soliton is negligible and φ(x, 0), x < L is given by the r-
soliton solution, which is regular. Therefore φ(x, 0) is regular everywhere. By continuity
in t, φ(x, t) is regular for sufficiently small t.
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As t increases, it becomes possible that at x > L

1 + eγab+σx−λt+x
(b)
0 +2πib

n+1
j

vanishes. The solution is obtained by solving(
σR −λR
σI −λI

)(
x
t

)
=

(
−x(b)

0R − (γab)R
(2m+ 1)π − 2πa

n+1
j − x(b)

0I − (γab)I

)
. (6.10)

The singularity occurs at tM and the system is unstable.
As before this instability can be naively “understood” if we approximate (6.5) in the

region x < L,

−iβφ(x, t) =
n∑
j=0

αj e
σx−λt+x(b)

0 +2πia
n+1

j+γab (6.11)

which has e−λt, an exponentially growing or decaying factor for complex λ. It should be
noted, however, that this approximation is not valid for x > L.

As in the previous section we show the existence of solutions having lower energies
than the single r-solitons. In other words these r-solitons do not have a “mass gap”. Let
φr(x, t) be an explicit 1 r-soliton solution. Consider the solution of the following initial
value problem:

φ(x, 0) = φr(x, 0), ∂tφ(x, 0) = ∂tφr(x, 0) + if(x), (6.12)

in which f(x) is a real function and finite everywhere. It is chosen to be orthogonal to
the real and imaginary parts of ∂tφr(x, 0);∫ ∞

−∞
∂tφ

t
rR(x, 0) · f(x)dx = 0,

∫ ∞
−∞

∂tφ
t
rI(x, 0) · f(x)dx = 0,

and square integrable ∫ ∞
−∞

f(x)t · f(x)dx = F > 0.

The solution has a real total energy

E = Er −
1

2
F,

in which Er is the total energy of the 1 r-soliton solution.

7 Summary

As expected from the non-hermiticity of the Lagrangian, the affine Toda field theory
with a pure imaginary coupling constant is found to be classically unstable: It has many
(almost all) solutions which develop singularity after a finite lapse of time; Its energy is
not positive definite; Its potential is not bounded from below; Small perturbation around
soliton solutions does not necessarily remain small as time passes.

From these it seems that it is a long way to go to construct a quantum theory of the
non-hermitian affine Toda field theory with a pure imaginary coupling constant, although
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the theory has many beautiful classical solutions with remarkable properties. Thus the
calculations of the quantum mass corrections to the solitons are ill-founded.

Although we have described many negative aspects of the affine Toda field theory with
imaginary coupling, we are still fascinated by and interested in the theory, especially in the
algebraic structure. We believe that the solitons have exact and factorisable S-matrices
obeying non-trivial Yang-Baxter equations [25, 26, 27], reflecting the integrability of the
theory. However, due to the constraints from unitarity, we expect that these S-matrices
can make sense only for certain discrete values of the coupling constant β2, at which,
for example, the corresponding conformal field theories are known to be unitary [10].
Therefore, the usual method of calculation in quantum field theory, the perturbation
calculation, is not applicable to the solitons and their bound states and no perturbative
mass corrections to them.
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A Counter Example to “hermiticity argument”

In this appendix we give a simple counter example to the “hermiticity argument” produced
by Hollowood and Evans. Let V2 be a two dimensional complex vector space and f, g ∈ V2,

f =
(
f1

f2

)
, g =

(
g1

g2

)
,

then the ordinary inner product is given by

(f, g) = f † · g = f∗1 g1 + f∗2 g2.

Next we choose the Z2 symmetry matrix M as

M =
(

1 0
0 −1

)
, M2 = 1, M t = M.

Then a 2× 2 matrix D

D =
(

a b
−b∗ d

)
, a, d : real, b : complex, (A.1)

satisfies the conjugation relation
D† = MDM. (A.2)

In fact, one can show easily that the above D is the most general 2× 2 matrix satisfying
the relation (A.2).

According to Hollowood and Evans [18, 22], D is “hermitian” with respect to a new
“inner product”

〈f, g〉 = f † ·Mg = f∗1 g1 − f
∗
2 g2.
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Obviously 〈f, f〉 is real but not positive (semi) definite. The characteristic polynomial of
D is

det
(
a− λ b
−b∗ d− λ

)
= λ2 − (a+ d)λ + ad+ |b|2 = (λ− λ1)(λ− λ2), (A.3)

λ1 + λ2 = a+ d, λ1λ2 = ad+ |b|2.

Thus the eigenvalues are either both real or a complex conjugate pair according to the
sign of the discriminant

(a+ d)2 − 4(ad+ |b|2) = (a− d)2 − 4|b|2.

The eigenvalue problem reads

ax+ by = λ1x,

−b∗x+ dy = λ1y.

Assuming b 6= 0, we get y = (λ1 − a)x/b and

〈f, f〉 = |x|2(1− |
λ1 − a

b
|2) =

|x|2

|b|2
(|b|2 − |λ1 − a|

2).

If λ1 is complex then |λ1 − a|2 = (λ1 − a)(λ2 − a) and it is easy to see

|b|2 − |λ1 − a|
2 = 0.

Thus we find that the eigenvector belonging to a complex eigenvalue has a “zero norm”
(see (4.12))

〈f, f〉 = 0. (A.4)

B Symmetric and non-hermitian matrices

In this appendix we show that the linear analysis around a one soliton solution proposed
by Delius and Grisaru [20] is incomplete with the help of a simple example.

We consider a simple symmetric and non-hermitian 2× 2 matrix,

D =
(
a+ ib c+ id

c+ id g − ib

)
, a, b, c, d, g : real, with b(g − a) = 2cd,

so that, the coefficients of the characteristic polynomial are real. The characteristic poly-
nomial reads,

λ2 − (a+ g)λ+ ag + b2 − c2 + d2 = 0. (B.1)

The roots are λ1, λ2 = A±B, where,

A = (a+ g)/2, and

B =
√

(a− g)2 − 4(b2 − c2 + d2)/2. (B.2)
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We show that if the eigenvalues are degenerate then the corresponding eigenspace is one
dimensional. Moreover, in this case the eigenvector has “zero norm” in their symmetric
“inner product” (4.14). So let us concentrate on the case of degenerate eigenvalues. In
this case, B = 0. The eigenvalue equation is given by

(a+ ib)x+ (c+ id)y =
(g + a)

2
x, (B.3)

so that

y =
1

(c+ id)
[(g− a)/2− ib]x, c+ id 6= 0.

Where we have taken f =
(
x
y

)
, as the eigenvector. Now let us examine the two cases viz

b = 0 and b 6= 0 separately:
Case i) b = 0. In this case either c or d is zero to maintain the condition b(g−a) = 2cd.

So we have
g − a = ±2d (±2ic) for c = 0 (d = 0)

and consequently y = ±ix.
Case ii) b 6= 0. In this case it is easy to see that vanishing discriminant implies b = ±c,

and in turn the condition b(g − a) = 2cd gives (g − a) = ±2d. So for this case again
y = ±ix.

For both cases the eigenspace is spanned by only one vector. Moreover the “inner
product” defined by Delius and Grisaru has vanishing norm,

〈〈f, f〉〉 = f t · f = x2 + y2 = x2 − x2 = 0. (B.4)

Thus the “complete set of orthogonal eigenfunctions” of D does not exist.
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