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Abstract

We consider supersymmetric extensions of the standard model with two

pairs of Higgs doublets. We study the possibility that CP violation is gener-

ated spontaneously in the scalar sector via vacuum expectation values (VEVs)

of the Higgs fields. Using a simple geometrical interpretation of the minimum

conditions we prove that the minimum of the tree-level scalar potential for

these models is allways real. We show that complex VEVs can appear once

radiative corrections and/or explicit soft CP violating terms are added to the

effective potential.
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1 Introduction

In order to introduce CP violation into gauge models one can consider two different

approaches [1]. CP violating phases could be intrinsic to the parameters of the original

Lagrangian or, alternatively, they could be spontaneous in the sense that all parameters

of the theory are real, but the vacuum expectation values (VEVs) of the scalar Higgs

fields are complex. Experimental evidence shows that CP violation is small but nonzero

(it has only been measured in kaon physics). In general, this fact provides a naturalness

criterium that can be used to decide which approach to generate CP violation seems

favoured for a definite model. The first approach will be more natural (i.e., require less

fine tuned idependent parameters) in models where after phase redefinitions of the fields

one is left with few independent phases, whereas spontaneous CP violation (SCPV) seems

preferred for models with a large number of parameters and a rich enough scalar sector.

In the standard model, for example, assuming the parameters in the Lagrangian

complex, all phases can be absorbed by field redefinitions except for two: the QCD

phase θ and the phase φ in the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The most

popular mechanism proposed to solve the strong CP problem (that we shall not treat

here) requires the introduction of a global symmetry [2], whereas the CKM phase appears

allways multiplied by the small mixing V13 and do not require a fine tuned value to

explain the kaon system. In this case SCPV, possible only by extending the Higgs and/or

fermion sectors, is less economical. In contrast, in supersymmetric (SUSY) extensions

of the standard model the origin of CP violation is more involving, due essentially to

the large number of soft SUSY breaking parameters in the Lagrangian. For arbitrary

complex parameters there are several new sources of CP violation, and the prediction of

a neutron electric dipole moment within the experimental limits requires cancellations of

two or three orders of magnitude. In this framework, the idea of SCPV seems appealing.
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Unfortunately, it is known that in the minimal SUSY extension of the standard model

(MSSM) there is no spontaneous generation of CP violation1.

The first SUSY extension where SCPV has been found is in models with gauge singlets

[5, 6], although in the simplest case the complex VEVs appear only for one-loop effective

potentials with very strong top corrections. The addition of singlets does not spoil

the gauge unification of the MSSM, relaxes bounds on the mass of the lightest neutral

scalar, and offers a possible explanation to the µ problem (the Higgs mass term in the

superpotential). Moreover, as shown by Pomarol [6], the phases generated spontaneously

in these models could be enough to explain CP violation in kaon physics (i.e., no complex

Yukawas would be necessary). The singlet models, however, seem to imply either the

presence of light Higgs scalars and heavy squarks or small complex phases, which in turn

invoke some degree of fine tuning.

In this article we study the possibility of SCPV in SUSY models with two pairs of

Higgs doublets. These models are an obvious generalization of the minimal case (they

do not introduce new species, just double the Higgs sector). They occur naturally in

left-right symmetric scenarios, where at least two bidoublets are required in order to get

realistic fermion masses and mixings. It was also shown [7] that (unlike the minimal

or singlet SUSY models) four Higgs doublet models can have a large tanβ without fine

tuning or too light charginos. Like in the singlet case, the lightest scalar in the four

Higgs doublet models has not necessarily a tree-level mass smaller than the Z mass. The

fact that four doublet models require an intermediate scale to be consistent with gauge

unification could also be an advantage [8], since it might be more in line with recent data

on αs(MZ) than minimal unification scenarios.

Since more than one Higgs doublet couples to quarks of a given charge, these models

1In fact, SCPV in MSSM is in principle possible once the radiative corrections are included [3].
However, this model contains a too light boson, and is thus experimentally excluded [4].
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have in principle too large flavor changing neutral currents (FCNC) and require a mech-

anism to suppress some Yukawa couplings (usually, an approximate flavor symmetry [9]).

If the couplings are complex with phases of order one these models also tend to have too

large CP violation in the kaon system and too large neutron electric dipole moment [10],

requiring an additional mechanism to suppress phases or couplings. These questions,

briefly addressed in this paper, will be studied in detail elsewhere in the framework of

models with approximate global symmetries [11, 12].

2 The Higgs sector and the minimum conditions

We start defining the model and establishing the conditions for the minimum of the

tree-level potential. For previous work on SUSY models with four Higgs doublets see for

example [13].

The Higgs sector of the model contains two pairs of SU(2) doublet superfields,

(H1, H3) and (H2, H4), with hypercharges −1 and +1, respectively. We denote these

doublets by

H1(3) =

(
φ0

1(3)

φ−1(3)

)
, H2(4) =

(
φ+

2(4)

φ0
2(4)

)
. (1)

The most general superpotential with four higgs doublets is then given by

W = Q(h1H1 + h3H3)Dc +Q(h2H2 + h4H4)U c + L(he1H1 + he3H3)Ec

+ µ12H1H2 + µ32H3H2 + µ14H1H4 + µ34H3H4, (2)

where Q stand for quark doublets, Dc for down quark singlets, U c for up quark singlets,

L for lepton doublets, Ec for charged lepton singlets, and hi are the Yukawa matrices

(family indices are omitted).

Including soft SUSY breaking terms, the most general tree level scalar potential in-

volving only Higgs fields is given by

V = m2
1H
†
1H1 +m2

2H
†
2H2 +m2

3H
†
3H3 +m2

4H
†
4H4 +
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+ (m2
12H1H2 + h.c.) + (m2

32H3H2 + h.c.) +

+ (m2
14H1H4 + h.c.) + (m2

34H3H4 + h.c.) +

+ (m2
13H

†
1H3 + h.c.) + (m2

24H
†
2H4 + h.c.) + V 4HD

D , (3)

where V 4HD
D is the D-term part of the potential. For the neutral components of the

doublets one has

V 4HD
D =

1

8
(g2 + g′2)[φ0 †

1 φ0
1 + φ0 †

3 φ0
3 − φ

0 †
2 φ0

2 − φ
0 †
4 φ0

4]2. (4)

We will assume that the theory is CP invariant, i.e., all the couplings and mass pa-

rameters are real. We do not assume any higher energy scales or accidental cancellations,

but we suppose that there is a part of the parameter space giving minima of the potential

which do not break the electric charge.

After spontaneous symmetry breaking, the Higgs fields will acquire VEVs which are

possibly complex (from now on we drop the 0 superscript to specify neutral fields):

< φ1 >=
1
√

2
v1 ; < φ3 >=

1
√

2
v3e

iδ3 , (5)

and

< φ2 >=
1
√

2
v2e

iδ2 ; < φ4 >=
1
√

2
v4e

iδ4 , (6)

where we have used a global hypercharge transformation to rotate away the phase of

< φ1 >. The vacuum expectation value of the scalar potential is then

< V > =
1

2
m2

1v
2
1 +

1

2
m2

2v
2
2 +

1

2
m2

3v
2
3 +

1

2
m2

4v
2
4 +m2

12v1v2 cos δ2 +m2
13v1v3 cos δ3 +

+ m2
14v1v4 cos δ4 +m2

32v3v2 cos(δ3 + δ2) +m2
34v3v4 cos(δ3 + δ4) +

+ m2
24v2v4 cos(δ2 − δ4) +

1

32
(g2 + g′2)[v2

1 + v2
3 − v

2
2 − v

2
4]2. (7)

The conditions at the minimum are

∂V

∂v1
= m2

1v1 +m2
12v2 cos δ2 +m2

13v3 cos δ3 +m2
14v4 cos δ4 + v1g(v) = 0 ,
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∂V

∂v2
= m2

2v2 +m2
12v1 cos δ2 +m2

32v3 cos(δ3 + δ2) +m2
24v4 cos(δ2 − δ4)− v2g(v) = 0 ,

∂V

∂v3

= m2
3v3 +m2

32v2 cos(δ3 + δ2) +m2
13v1 cos δ3 +m2

34v4 cos(δ3 + δ4) + v3g(v) = 0 ,

∂V

∂v4
= m2

4v4 +m2
24v2 cos(δ2 − δ4) +m2

34v3 cos(δ3 + δ4) +m2
14v1 cos δ4 − v4g(v) = 0(8)

where g(v) = 1
8
(g2 + g′2)[v2

1 + v2
3 − v

2
2 − v

2
4], and

∂V

∂δ2
= m2

12v1v2 sin δ2 +m2
32v3v2 sin(δ3 + δ2) +m2

24v2v4 sin(δ2 − δ4) = 0 ,

∂V

∂δ3

= m2
32v3v2 sin(δ3 + δ2) +m2

13v1v3 sin δ3 +m2
34v3v4 sin(δ3 + δ4) = 0 ,

∂V

∂δ4
= −m2

24v2v4 sin(δ2 − δ4) +m2
34v3v4 sin(δ3 + δ4) +m2

14v1v4 sin δ4 = 0. (9)

The seven equations in (8) and (9) contain seven unknows: the four VEVs vi (i =

1, ..., 4) and the three phases δi (i = 2, 3, 4), and thus can be in principle solved. The last

three equations have a trivial solution where all the sines vanish. However, a necessary

condition for the theory to have spontaneous CP violation is that at least one of the

phases δi is different from 0 or π. Therefore we are looking for nontrivial solutions to

(9). The easiest way to solve this problem is to realize that there is a geometrical object

that satisfies these equations2. It is defined by 3 triangles, each of which has two of the

angles δi as shown in Figure 1. Appropriately, we call this object “tri-triangle”. Six of

the nine sides of the tri-triangle are independent. Addition of the sine laws of the three

triangles gives

(a− x) sin δ2 + c sin(δ3 + δ2) + d sin(δ2 − δ4) = 0 ,

c sin(δ3 + δ2) + (b− z) sin δ3 + f sin(δ3 + δ4) = 0 ,

−d sin(δ2 − δ4) + f sin(δ3 + δ4) + (e− y) sin δ4 = 0 . (10)

2This is similar to most searches for SCPV in models with two phases. In that case, the nontrivial
solution is found when the two phases can be fit as angles in a triangle with sides related to the VEVs
and mass parameters in the potential [14].
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Comparing (9) and (10) we find the correspondence between the six independent distances

in the tri-triangle and the six independent quantities m2
ijvivj:

a− x = m2
12v1v2 , c = m2

32v2v3 ,

b− z = m2
13v1v3 , d = m2

24v2v4 ,

e− y = m2
14v1v4 , f = m2

34v3v4 . (11)

Using the tri-triangle we can eliminate the cosines of the phases δi in Eqs. (8) in terms

of the sides:

v1
∂V

∂v1
= m2

1v
2
1 + (−

ab

c
+
xe

d
−
yz

f
) + v2

1g(v) = 0

v2
∂V

∂v2
= m2

2v
2
2 + (−

ac

b
+
dx

e
)− v2

2g(v) = 0

v3
∂V

∂v3

= m2
3v

2
3 + (−

bc

a
−
zf

y
) + v2

3g(v) = 0

v4
∂V

∂v4
= m2

4v
2
4 + (

ed

x
−
yf

z
)− v2

4g(v) = 0 . (12)

To solve the four equations above and find the VEVs vi we need first to express the

combinations of sides in (12) in terms of the masses and VEVs in Eq. (11). The VEVs

would give us the sides of the tri-triangle and from them we would construct the tri-

triangle and read the angles δi. This would complete the search for the CP violating

minimum of the scalar potential.

As we will prove in the next section, no such solution for the VEVs vi can be found

without fine tuning the mass parameters. This is because supersymmetry and the gauge

symmetries dictate a too restricted form for the scalar potential (a simple D-term con-

tribution and no trilinear terms). In the rest of the paper we show explicitly why this is

so and point out minimal modifications that would induce nontrivial phases.
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3 The minimum

To solve (12) we need to express the combinations involving the nine sides of the tri-

triangle in terms of masses and VEVs (i.e., in terms of the six distances in Eq. (11)).

This requires solving a 4th order equation; we simplify this procedure by making a

redefinition of the Higgs fields. We rewrite the scalar potential for the neutral fields in

matrix notation:

V =
(
φ†1 φ†3

) ( m2
1 m2

13

m2
13 m2

3

)(
φ1

φ3

)
+
(
φ†2 φ†4

) ( m2
2 m2

24

m2
24 m2

4

)(
φ2

φ4

)

+ [
(
φ1 φ3

)( m2
12 m2

14

m2
32 m2

34

)(
φ2

φ4

)
+ h.c.]

+
1

8
(g2 + g′2)[

(
φ†1 φ†3

)( φ1

φ3

)
−
(
φ†2 φ†4

)( φ2

φ4

)
]2 . (13)

The first two matrices above can be diagonalized through two unitary transformations

(in our case two rotations, since the mass matrices are real and symmetric) of the neutral

scalar fields:

(
φ′1
φ′3

)
= U1

(
φ1

φ3

)
;

(
φ′2
φ′4

)
= U2

(
φ2

φ4

)
. Note that the quartic term in

the potential will not change its form and can be obtained just by replacing unprimed by

primed fields. Then, without loss of generality we can go to a basis where m′213 = m′224 = 0

(from now on we drop the prime to specify rotated quantities). In Fig. 1 this corresponds

to a tri-triangle where the sides 1/d, 1/e, and 1/x disappear (that triangle becomes

infinite) and the quantities b and z become equal. Such an object depends on four

independent distances and contains three angles that vary (for different choices of the

distances) between 0 and π. The minimum conditions can be immediately read from

Eq.(11) for this case:

a = m2
12v1v2 , c = m2

32v2v3 ,

y = −m2
14v1v4 , f = m2

34v3v4 . (14)
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It is easy to see that if all the masses m2
ij in Eq. (2) are positive the absolute minimum

will be real. A necessary condition to have an absolute minimum with complex phases

is that

m2
12m

2
14m

2
32m

2
34 < 0 . (15)

The signs of the masses m2
ij in Eq. (14) satisfy that constraint. As long as the choice

of signs of the mass terms satisfies (15), the minimum can be obtained from the above

tri-triangle just by redefining the angles δi.

Now we try to solve the minimum conditions (12) which correspond to this partic-

ular tri-triangle. The quantity b is not an independent distance, the solution can be

determined in terms of a, c, f , and y (given in Eq. (14)) in Figure 1. We find

1

b
=

1

v1v3
h(v) , (16)

where

h(v) =
√
m2

12m
2
34 −m

2
14m

2
32

√√√√ 1
m2

32m
2
34
v2

1 −
1

m2
12m

2
14
v2

3

m2
12m

2
32v

2
2 −m

2
14m

2
34v

2
4

. (17)

Then the conditions (12) read

v1
∂V

∂v1
= v2

1 [m2
1 −

m2
12m

2
34 −m

2
14m

2
32

m2
32m

2
34

1

h(v)
+ g(v) ] = 0

v2
∂V

∂v2

= v2
2 [m2

2 −m
2
12m

2
32h(v)− g(v) ] = 0

v3
∂V

∂v3
= v2

3 [m2
3 +

m2
12m

2
34 −m

2
14m

2
32

m2
12m

2
14

1

h(v)
+ g(v) ] = 0

v4
∂V

∂v4

= v2
4 [m2

4 +m2
14m

2
34h(v)− g(v) ] = 0 . (18)

Since these four equations depend only on two combinations of VEVs, namely g(v) and

h(v), they are uncompatible (unless a fine tuned value of the masses is chosen). We

conclude that no tri-triangle like solution exists for the tree level potential in Eq. (7),

and the three phases δi of the minima are necessarily zero or π. This situation is some-

what similar to the no-go theorem for simple singlet models [5]. In the tree level four
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Higgs model, SCPV is not possible because of the specific form of the supersymmetric

potentials.

4 Modifications of the model

We find two types of modifications or additions that would change this result, allowing for

CP violating minima. The first possibilty would require to add to the effective potential

new terms in order to avoid the cancellations producing that only two combinations of

the four VEVs appear in conditions (18). Since we already considered the most generic

Lagrangian consistent with (softly broken) SUSY and gauge invariance, one is only left

(of course, unless new fields are introduced) with effective radiative corrections from order

one Yukawa couplings. In order to change at least two of the four conditions (18) one

needs two strong couplings. These could be the two couplings of the top quark to H2

and H4 or a top coupling combined with a bottom coupling to H1 or H3
3. Notice that in

the second case the minimum conditions (9) will keep the same form as in the tree level

case, and therefore the tri-triangle solution works also here. In order to suppress FCNC

in these cases the simplest idea is to invoke some additional symmetry that will suppress

the Yukawa couplings of the additional Higsses (H3 and H4). Thus the second case, with

one top and one bottom Yukawa coupling large, seems preferred.

A second possibility to obtain complex minima which does not rely on radiative

effects would imply a substantial (but, in our opinion, well motivated) change on the

definition of the model. We have assumed that all couplings in the potential are real

and all phases are generated spontaneously. It seems plausible, however, to relax this

requirement and introduce soft CP violation in the µ terms (see Eq. (3)). These terms

could have their origin in some higher scale (singlet VEVs) with no effects on the rest

3Note that since now the Z mass has contributions from four VEVs, it is possible to have order one

bottom Yukawa couplings even for order one tanβ ≡

√
v2

2
+v2

4

v2
1+v2

3
.

9



of parameters. It turns out that one can absorb three of the four µ phases by Higgs

field redefinitions, resulting into a new Lagrangian with only one complex phase δ5
4. The

origin of CP violation would not be entirely spontaneous, but it would not appear neither

in an uncontrolled way. This scenario seems more flexible for a treatment of FCNC in

terms of an additional symmetry[11, 12] since no a priori conditions on the sizes of the

Yukawa couplings have been set. It also avoids the typical domain wall problems of

theories with spontaneous breaking of discrete symmetries.

5 Conclusions

The models with four Higgs doublets are another well motivated minimal extension of

the MSSM. We have studied the possibility of SCPV in these models. We found a simple

geometrical interpretation of the minimum equations that allowed us to understand the

conditions for SCPV. Although no complex minima of the tree-level potential are possible,

we singled out two interesting possibilities (radiative effects and explicit µ phases) that

modify the potential so that CP violating phases appear. A more detailed analysis of

these possibilities will be discussed elsewhere [12].
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4This would break one of the equations of (9) and destroy the tri-triangle solution. However, since
the trivial CP conserving solution is also destroyed, the only solution is automatically CP violating.
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Figure 1: The geometrical object which represents the CP nontrivial solution of equations
(9) consists of three triangles. Each triangle contains two of the three angles δ2, δ3 and
δ4. The sides of the triangles are denoted by 1/a, 1/b, 1/c, 1/d, 1/e, 1/f, 1/x, 1/y, 1/z.
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