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Cosmological restrictions on conformally invariant SU(5) GUT models

Abstract. Dirac’s theory of constrained Hamiltonian systems is applied to the minimal

conformally-invariant SU(5) grand-unified model studied at 1-loop level in a de Sitter

universe. For this model, which represents a simple and interesting example of GUT

theory and at the same time is a step towards theories with larger gauge group like SO(10),

second-class constraints in the Euclidean-time regime exist. In particular, they enable one

to prove that, to be consistent with the experimentally established electroweak standard

model and with inflationary cosmology, the residual gauge-symmetry group of the early

universe, during the whole de Sitter era, is bound to be SU(3)×SU(2)×U(1). Moreover,

the numerical solution of the field equations subject to second-class constraints is obtained.

This confirms the existence of a sufficiently long de Sitter phase of the early universe, in

agreement with the initial assumptions.

PACS numbers: 02.60.Cb, 04.20.Fy, 11.15.Ex, 98.80.Cq, 98.80.Dr
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1. Introduction

In recent work by the first two authors (Buccella et al 1992) the spontaneous-symmetry-

breaking pattern of SU(5) gauge theory was studied in a de Sitter universe. The main result

was the proof that the technique described in Buccella et al 1980 to study spontaneous

symmetry breaking of SU(n) for renormalizable polynomial potentials in flat spacetime can

be generalized, for SU(5), to the curved background relevant to the inflationary cosmology

(i.e. de Sitter). One thus obtained a better understanding of the result, previously found

with a different numerical analysis (Allen 1985), predicting the slide of the inflationary

universe into either the SU(3)× SU(2)× U(1) or SU(4)× U(1) extremum.

The main tool used was the Wick-rotated path integral for Yang-Mills-Higgs theory at

1-loop level about curved backgrounds (leading to a de Sitter model with S4 topology), and

the corresponding 1-loop effective potential V (r, Φ̂) first derived in Allen 1985. Assuming

that the Higgs field Φ̂ = diag
(
ϕ1, ϕ2, ϕ3, ϕ4, ϕ5

)
belongs to the adjoint representation

of SU(5), and using the bare Lagrangian and the tree potential appearing in equations

(2.1)-(2.2) of Buccella et al 1992, the background-field method and the choice of ’t Hooft’s

gauge-averaging term lead to (Allen 1985, Buccella et al 1992)

V (r, Φ̂) =
15

64π2

{
Q+

1

3

(
1− log(r2M2

X)
)}

R g2‖ Φ̂ ‖

+

{
9

128π2

(
1− log(r2M2

X)
)
−

21

320π2
Λ̃

}
g4‖ Φ̂ ‖

2

+
15

128π2

{
12

5
Λ̃+
(

1− log(r2M2
X)
)}

g4
5∑
i=1

ϕi
4
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−
3

16π2r4

5∑
i,j=1

A

[
r2g2

2
(ϕi − ϕj)

2

]
+ V0 (1.1)

where Q has been defined in equation (2.6) of Buccella et al 1992, and we here denote by Λ̃

the parameter defined in equation (2.7) of Buccella et al 1992, to avoid confusion with the

cosmological constant Λ. Note also that A denotes the special function defined in equation

(A.1) of the appendix, r =
√

3/Λ is the four-sphere radius, and the constant V0 is equal

to the desired V (Φ = 0) value.

A naturally-occurring question is whether further restrictions on the SU(5) broken-

symmetry phases can be derived within the framework of inflationary cosmology. This

paper is devoted to the study of such a problem, and is thus organized as follows. Section

2 performs the Hamiltonian analysis of the Riemannian (i.e. Euclidean-time) version of a

de Sitter background coupled to the SU(5) model, following Dirac’s theory of constrained

systems. Section 3 studies the 1-loop effective potential in the SU(3) × SU(2) × U(1)

and SU(4)× U(1) broken-symmetry phases. Section 4 shows that to be compatible with

the prescriptions of the electroweak standard model and with the inflationary scheme, the

early universe can only reach the SU(3) × SU(2) × U(1) broken phase and that during

all the de Sitter era, possible tunneling processes towards the SU(4) × U(1) invariant

phase are energetically forbidden. Section 5 describes the numerical integration of the

corresponding field equations for the four-sphere radius and the components of the Higgs

field. Concluding remarks are presented in section 6.
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2. Hamiltonian analysis

The effective Lagrangian for the Riemannian version of an exact de Sitter background with

S4 topology coupled to the SU(5) model is given by (up to a multiplicative constant)

L =

[
−

3r2

4πG
+ r4

(
5∑
i=1

ϕ̇2
i

2
+ V (r, Φ̂)

)]
(2.1)

where the derivatives ϕ̇i are taken with respect to the Euclidean time τ and the spatial

gradient of the Higgs field has been assumed to be negligible. Note that, after having

integrated over the gauge-bosons degrees of freedom, the effective potential only involves

the Higgs field. According to the simplified argument usually presented in the literature,

the field equations obtained by varying the action with respect to r and Φ̂ are then (Allen

1983)

r2 =
3

8πG
[∑5

i=1 ϕ̇
2
i /2 + V (r, Φ̂)

] (2.2a)

ϕ̈i =
δV (r, Φ̂)

δϕi
∀i = 1, .., 5 . (2.2b)

However, this approach does not take into account the full Hamiltonian treatment of the

problem. In other words, from equation (2.1) one derives the primary constraint pr ≈ 0,

where pr is the momentum conjugate to the four-sphere radius, and ≈ is the symbol of

weak equality (i.e. an equality which only holds on the constraint surface). This primary

constraint should be preserved using the technique described for example in Dirac 1964

and Esposito 1992. The corresponding Hamiltonian analysis is as follows.
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The canonical Hamiltonian Hc, defined as the Legendre transform of the Lagrangian

L in equation (2.1), takes the form

Hc = r−4
5∑
i=1

p2
ϕi

2
+ br2 − r4V (r, Φ̂) (2.3)

where we have defined b ≡ 3/(4πG). Thus, the effective Hamiltonian H̃ defined on the

whole phase space becomes

H̃ ≡ Hc + λ(r, Φ̂, pr, pΦ̂) pr . (2.4)

The preservation of the primary constraint V1 ≡ pr yields

ṗr ≡
{
pr, H̃

}
≈ 2r−5

5∑
i=1

p2
ϕi
− 2br + 4r3V (r, Φ̂) + r4 δV

δr
(2.5)

where
{
,
}

denote the Poisson brackets. One therefore finds in our model the secondary

constraint

V2 ≡ 2r−5
5∑
i=1

p2
ϕi
− 2br + 4r3V (r, Φ̂) + r4 δV

δr
. (2.6)

Further constraints are not found, since the preservation of V2 leads to the condition

0 = V̇2 ≡
{
V2, H̃

}
≈
{
V2, Hc

}
+ λ
{
V2, V1

}
(2.7)

which can be solved for λ as

λ = −

{
V2, Hc

}
{
V2, V1

} . (2.8)
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This solution can be obtained since the constraints V1 and V2 are second-class, and the

Poisson brackets appearing in the formula for λ are found to be

{
V2, Hc

}
= −

4

r

5∑
i=1

{
p2
ϕi
, V (r, Φ̂)

}
−

1

2

5∑
i=1

{
p2
ϕi
,
δV

δr

}

=
8

r

5∑
i=1

pϕi
δV

δϕi
+

5∑
i=1

pϕi
δ2V

δϕiδr
(2.9)

{
V2, V1

}
= −10r−6

5∑
i=1

p2
ϕi
− 2b+ 12r2V (r, Φ̂) + r4 δ

2V

δr2
+ 8r3 δV

δr
. (2.10)

Moreover, since V1 and V2 are second-class, they can be set strongly to zero using Dirac

brackets (Dirac 1964, Esposito 1992), hereafter denoted by { , }∗. The corresponding

field equations are

ṙ ≈
{
r, H̃

}∗
≈ λ (2.11)

ϕ̇i ≈
{
ϕi, H̃

}∗
≈ r−4pϕi

(
1−

2

r

V2

{V1, V2}

)
(2.12)

ṗr ≈
{
pr, H̃

}∗
≈
{
pr, Hc

}
−
{
pr, Vl

}
C−1
lm

{
Vm, H̃

}
≈ 0 (2.13)

ṗϕi ≈
{
pϕi , H̃

}∗
≈
{
pϕi , Hc

}
−
{
pϕi , Vl

}
C−1
lm

{
Vm, H̃

}

≈ r4 δV

δϕi
+

(
4r3 δV

δϕi
+ r4 δ2V

δrδϕi

)
V2

{V1, V2}
(2.14)

where Clm is the matrix of Poisson brackets of second-class constraints. Note that, since

V2 = 0 when Dirac brackets are used, equations (2.12) and (2.14) can be written as

ϕ̇i ≈ r
−4pϕi (2.15)
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ṗϕi ≈ r
4 δV

δϕi
. (2.16)

For the purpose of numerical integration, the most convenient form of these equations is

d

dτ

(
r4ϕ̇i

)
≈ r4 δV

δϕi
(2.17)

ṙ ≈ −
r3
(

8
∑5
i=1 ϕ̇i

δV
δϕi

+ r
∑5
i=1 ϕ̇i

δ2V
δϕiδr

)
(
−10r2

∑5
i=1 ϕ̇

2
i − 2b+ 12r2V + r4 δ2V

δr2 + 8r3 δV
δr

) . (2.18)

Such a system is here solved choosing the following initial conditions:

r(0) ≡ r0 =
√

3/8πGV0 (2.19)

ϕi(0) = ϕ0
i (2.20)

pr(0) = 0 (2.21)

pϕi(0) = 0 (2.22)

where in equation (2.19) the value chosen for r0 leads to a suitable cosmological constant for

the inflationary era, and in equation (2.22) we have neglected for simplicity initial-kinetic-

energy effects (cf end of section 5). Of course, the ϕ0
i values should obey the constraint

V2(τ = 0) = 0, i.e.

0 = −2br0 + 4(r0)3V (r0, Φ̂0) + (r0)4 δV

δr

∣∣∣∣
r0,Φ̂0

. (2.23)

From now on it is useful to use dimensionless units. For this purpose, we define σ ≡√
2G/3π =

√
2/(3πM2

P ) and make the rescalings r → σ r, τ → σ τ , ϕi → φi/(πσ
√

2),
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and we also define 2π2σ4V (σr, φi/(πσ
√

2)) ≡ Ṽ (r, φi). The dimensionless field equations

corresponding to equations (2.17)-(2.18) are then found to be

d

dτ

(
r4φ̇i

)
≈ r4 δṼ

δφi
(2.24)

ṙ ≈ −
r3
(

8
∑5
i=1 φ̇i

δṼ
δφi

+ r
∑5
i=1 φ̇i

δ2Ṽ
δφiδr

)
(
−10r2

∑5
i=1 φ̇

2
i − 2 + 12r2Ṽ + r4 δ2Ṽ

δr2 + 8r3 δṼ
δr

) . (2.25)

Moreover, the initial conditions here chosen take the form

r(0) ≡ r0 =

√
1

2Ṽ0

∼=
3M2

P

4M2
X

(2.26)

φi(0) = φ0
i (2.27)

pr(0) = 0 (2.28)

pϕi(0) = 0 (2.29)

where the φ0
i values obey, for a given r0 value, the constraint

0 = −2r0 + 4(r0)3Ṽ (r0, φ
0
i ) + (r0)4 δṼ

δr

∣∣∣∣∣
r0,φ

0
i

. (2.30)

Note that the choice V0 = M4
X fixes reasonably the critical temperature for the phase

transitions to be of order TC ∼= MX (MX , approximately equal to 1015 Gev, is the typical

order of magnitude of the unification mass in the minimal SU(5) model).
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3. 1-loop effective potential

We here study φ̂ in the forms invariant under the subgroups SU(3) × SU(2)× U(1) and

SU(4)× U(1) respectively, i.e.

φ̂321 =
‖φ̂321‖1/2√

30
diag(2, 2, 2,−3,−3) (3.1)

φ̂41 =
‖φ̂41‖1/2√

20
diag(1, 1, 1, 1,−4) (3.2)

since it has been shown in Allen 1985 and Buccella et al 1992 that these are the only

subgroups relevant to the SU(5) symmetry-breaking pattern. From now on, we denote by

γ(τ) the norm of φ̂321 or of φ̂41, which is the only variable characterizing these broken-

symmetry phases.

The form of the dimensionless effective potential in the 321 and 41 directions (i.e.

when φ̂ = φ̂321 or φ̂ = φ̂41) is obtained inserting equations (3.1)-(3.2) into equation (1.1),

which yields

Ṽ (r, φ̂321)|‖φ̂‖1/2=γ ≡ Ṽ321(r, γ)

=
45α

4πr2

{
Q+

1

3

[
1− log

(
2M2

X

3πM2
P

r2

)]}
γ2

+
25α2

32π2

[
1− log

(
2M2

X

3πM2
P

r2

)]
γ4

−
9

2r4
A

[
5α

6π
r2γ2

]
+ Ṽ0 (3.3)
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Ṽ (r, φ̂41)|‖φ̂‖1/2=γ ≡ Ṽ41(r, γ)

=
45α

4πr2

{
Q+

1

3

[
1− log

(
2M2

X

3πM2
P

r2

)]}
γ2

+
75α2

16π2

{
1

4

[
1− log

(
2M2

X

3πM2
P

r2

)]
+

Λ̃

5

}
γ4

−
3

r4
A

[
5α

4π
r2γ2

]
+ Ṽ0 (3.4)

where Ṽ0 ≡ (8M4
X)/(9M4

P ) and α ≡ g2/4π. It is also useful to derive the r → ∞ limit of

these potentials (i.e. their flat-space limit) as

Ṽ (φ̂321)|‖φ̂‖1/2=γ(r→∞) = Ṽ0 +
25α2

32π2
γ4

[
log

(
5αM2

P

4M2
X

γ2

)
−

1

2

]
(3.5)

Ṽ (φ̂41)|‖φ̂‖1/2=γ(r→∞) = Ṽ0 +
15α2

16π2
Λ̃γ4 +

75α2

64π2
γ4

[
log

(
15αM2

P

8M2
X

γ2

)
−

1

2

]
. (3.6)

The potentials (3.5) and (3.6) evaluated at their minima, denoted for simplicity by γm,

turn out to be

Ṽ (φ̂321)|‖φ̂‖1/2=γm
(r→∞) = Ṽ0 −

1

4π2

M4
X

M4
P

(3.7)

Ṽ (φ̂41)|‖φ̂‖1/2=γm
(r →∞) = Ṽ0 −

1

6π2

M4
X

M4
P

exp

[
−

8

5
Λ̃

]
. (3.8)

The experimental evidence for the SU(3) × SU(2) × U(1) gauge symmetry at energy

E greater than or of order 100 GeV requires for the scalar potential that the absolute

minimum of Ṽ (φ̂321)(r→∞) should remain below the absolute minimum of Ṽ (φ̂41)(r→
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∞) and below Ṽ0. One thus finds the condition on the bare parameters Λ2 and Λ4 (Allen

1985) of the scalar potential

3

5
Λ4 − Λ2 > −

75α2

32
log

(
3

2

)
. (3.9)

From now on, we restrict the choice of Λ2 and Λ4 to the region defined by the inequality

(3.9). Under the assumptions described so far, the initial conditions (2.27) and (2.29) take

the form

γ(0) = γ0 (3.10)

γ̇(0) = 0 . (3.11)

The γ0 value and the corresponding residual symmetry are obtained by solving separately

the constraint equations (cf equation (2.23))

0 = −2r0 + 4(r0)3Ṽ321(r0, γ0) + (r0)4 δṼ321

δr

∣∣∣∣∣
r0,γ0

(3.12)

0 = −2r0 + 4(r0)3Ṽ41(r0, γ0) + (r0)4 δṼ41

δr

∣∣∣∣∣
r0,γ0

. (3.13)

After doing this, one compares the Ṽ321(r0, γ0) and Ṽ41(r0, γ0) values, requiring that the

correct initial condition should lead to the minimum value of the effective potential. Once

the correct initial condition has been picked out in this way, the system (2.24)-(2.25)

expressed in terms of γ becomes

d

dτ

(
r4γ̇
)
≈ r4 δṼ

δγ
(3.14)

12
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ṙ ≈ −
r3γ̇

(
8 δṼ
δγ

+ r δ
2Ṽ
δγδr

)
(
−10r2γ̇2 − 2 + 12r2Ṽ + r4 δ2Ṽ

δr2 + 8r3 δṼ
δr

) (3.15)

jointly with the constraint (cf equation (2.6))

V2(τ) ≡ 2r3γ̇2 − 2r + 4r3Ṽ (r, γ) + r4 δṼ

δr
(3.16)

which should vanish ∀τ .

4. Absolute minimum

By virtue of equations (A.7)-(A.19) of the appendix, the asymptotic form of the constraints

(3.12)-(3.13) is

25α2

32π2
γ4

0

[
log

(
5αM2

P

4M2
X

γ2
0

)
−

1

2

]
+ O

(
r−2
0

)
= 0 (4.1)

25α2

32π2
γ4

0

[
3

2
log

(
15αM2

P

8M2
X

γ2
0

)
−

3

4
+

6

5
Λ̃

]
+ O

(
r−2
0

)
= 0 . (4.2)

The numerical solution of equation (4.1) yields γ0
∼= 1.42 · 10−3, where the NAG-library

routine C05ADF has been used in double-precision. Such a value of γ0 is compatible with

the asymptotic formulae appearing in the appendix. Interestingly, if the inequality (3.9)

holds, one finds ∀τ

Ṽ41(τ)− Ṽ321(τ) ∼
25α2

32π2
γ4

[
3

2
log
(3

2

)
−

1

4
+

6

5
Λ̃

]
>

25α2

32π2
γ4

[
3

4
log
(3

2

)
−

1

4

]
> 0 . (4.3)
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This result ensures that at τ = 0, if r0 is taken to be of order 108, so that the asymptotic

formulae of the appendix can be applied, the only possible residual symmetry is SU(3)×

SU(2) × U(1). Remarkably, because equation (4.1) is, at least up to first order in the

r0-expansion, independent of the bare parameters (Λ̃, Q) of the scalar potential and only

dependent on MX , the value found for γ0 is basically model-independent. If the alternative

symmetry SU(4)×U(1) were chosen, the inequality (4.3) would lead to a tunneling of the

Higgs field towards the energetically more favourable phase. Moreover, our result (4.3)

ensures that, once the initial SU(3) × SU(2)× U(1) symmetry is chosen, the Higgs field

remains in this broken-symmetry phase during the whole de Sitter phase of the early

universe.

5. Numerical analysis

The numerical integration of the system (3.14)-(3.15) can be performed after reduction to

first-order form, and using the second-class constraint (3.16) and equations (2.15)-(2.16).

Thus, defining

γ̇(τ) ≡ η(τ) (5.1)

this leads to

η̇(τ) ≈
δṼ

δγ
−

4η2r2
(

8 δṼ
δγ

+ r δ
2Ṽ
δγδr

)
(

12− 32r2Ṽ − 13r3 δṼ
δr
− r4 δ2Ṽ

δr2

) (5.2)

14
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ṙ(τ) ≈
r3η

(
8 δṼ
δγ

+ r δ
2Ṽ
δγδr

)
(

12− 32r2Ṽ − 13r3 δṼ
δr
− r4 δ2Ṽ

δr2

) . (5.3)

By taking r0
∼= 108, which is a typical value for GUT models in a de Sitter universe,

the system (5.1)-(5.3) has been solved within the framework of the Runge-Kutta-Merson

method (NAG-library routine D02BAF). The results of our numerical analysis are shown

in figures 1 − 3, which present the Euclidean-time evolution of γ, γ̇ and r respectively.

These plots clearly show the existence of an almost exact de Sitter phase (i.e. when the

four-sphere radius remains approximately constant) with typical time τ , in dimensionless

units, of order 3 · 104, whereas the duration of the exponentially-expanding phase may

be taken to be of order 7 · 104. Interestingly, this result is practically independent of the

bare parameters in the SU(5) potential we have chosen if the inequality (3.9) is satisfied.

Further restrictions are then given by particle physics, i.e. proton-lifetime experiments and

renormalization-group equations for the coupling constants and (sin θW )2 (Buccella et al

1989, Becker-Szendy et al 1990, Amaldi et al 1992).

If τ ≥ 7 · 104, figure 3 shows a rapid variation of the four-sphere radius, so that the

early universe is no longer well described by a de Sitter or exponentially-expanding model.

Note also that the numerical analysis here presented rules out the occurrence of tunneling

effects between broken-symmetry phases. Moreover, it should be emphasized that, setting

to zero the initial kinetic energy (cf equation (3.11)) one obtains the most favourable initial

conditions for a long de Sitter phase of the early universe, whereas values of γ̇(0) 6= 0 may

be shown to lead to a much more rapid variation of the four-sphere radius r.
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6. Concluding remarks

This paper has studied the SU(5) symmetry-breaking pattern in a de Sitter universe from

a Hamiltonian point of view. As a result of this analysis, one finds that the model is

characterized by two second-class constraints. Interestingly, the secondary second-class

constraint has been used to prove that the early universe can only reach the SU(3) ×

SU(2)×U(1) broken-symmetry phase if we require the correct low-energy limit for the GUT

theory. Furthermore, under this obvious requirement, the SU(3)×SU(2)×U(1) invariant

direction turns out to be energetically more favourable than SU(4)× U(1). Thus, during

the whole inflationary era, possible tunneling effects between the two broken-symmetry

phases are forbidden.

This conclusion supersedes earlier work on the SU(5) symmetry-breaking pattern in

de Sitter cosmologies appearing in Allen 1985 and Buccella et al 1992. It also provides

a relevant example of cosmological restrictions on GUT models (cf Collins and Langbein

1992).

Moreover, the resulting field equations have been solved numerically. Standard meth-

ods for the numerical integration of first-order systems of ordinary differential equations

show that the early universe starts out in a de Sitter state. The exact de Sitter state is

then replaced by a more general exponentially-expanding universe corresponding to the

slow-rolling-over phase, as one would expect. In dimensionless units, the total duration of

these two phases has been found to be of order 7 · 104.
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From a field-theoretical point of view, the 1-loop effective potential of equation (1.1),

originally derived in Allen 1985, and also used in Buccella et al 1992 and in this paper,

might be subject to criticisms, since topological methods have been used to prove the

general non-existence of a gauge choice for a theory with gauge group SU(N), N ≥ 3, over

the manifolds S3 and S4 (Jungman 1992 and references therein). However, this difficulty

holds for a classical non-Abelian gauge-field theory. By contrast, we have studied the

quantization of a Yang-Mills-Higgs theory where gauge-averaging terms are included in

the Wick-rotated path integral using the Faddeev-Popov technique and a specific choice

first proposed by ’t Hooft (Allen 1985, Buccella et al 1992). Although the choice of a

gauge-averaging term is clearly suggested by what would be set to zero at the classical

level, there is by now some evidence that the resulting quantum theory is not equivalent

to the model where only physical degrees of freedom are quantized after fixing the gauge

(Esposito 1992 and references therein). It therefore appears that the approach used in Allen

1985 to evaluate the 1-loop effective potential for SU(5) theory in de Sitter cosmologies

remains a useful tool to improve our understanding of the symmetry-breaking pattern of

non-Abelian gauge theories in curved backgrounds.

Appendix

The function A(z) appearing in equation (1.1), and its derivatives, are given by (Allen

1985)

A(z) ≡
z2

4
+
z

3
−

∫ 3
2 +
√

1
4−z

2

y
(
y −

3

2

)(
y − 3

)
ψ(y) dy
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−

∫ 3
2−
√

1
4−z

1

y
(
y −

3

2

)(
y − 3

)
ψ(y) dy (A.1)

A′(z) = −
1

2
(z + 2)

[
ψ

(
3

2
+

√
1

4
− z

)
+ ψ

(
3

2
−

√
1

4
− z

)]
+
z

2
+

1

3
(A.2)

A′′(z) =
1

2
−

1

2

[
ψ

(
3

2
+

√
1

4
− z

)
+ ψ

(
3

2
−

√
1

4
− z

)]

+
1

4

(z + 2)√(
1
4 − z

)
[
ψ′
(

3

2
+

√
1

4
− z

)
− ψ′

(
3

2
−

√
1

4
− z

)]
. (A.3)

At large z, the following asymptotic expansions hold (Allen 1985):

A(z) ∼ −

(
z2

4
+ z +

19

30

)
log (z) +

3

8
z2 + z + const.+ O

(
z−1
)

(A.4)

A′(z) ∼ −
1

2
(z + 2) log (z) +

z

2
+ O

(
z−1
)

(A.5)

A′′(z) ∼ −
1

2
log (z) + O

(
z−1
)

. (A.6)

In section 4, we rely on the following exact formulae for the derivatives of the dimensionless

effective potential in the SU(3)×SU(2)×U(1) and SU(4)×U(1) broken-symmetry phases:

δṼ321

δr
(r, γ) = −

45α

2πr3

{
Q+

1

3

[
2− log

(
2M2

X

3πM2
P

r2

)]}
γ2 −

25α2

16π2r
γ4

+
18

r5
A

[
5α

6π
r2γ2

]
−

15α

2πr3
γ2A′

[
5α

6π
r2γ2

]
(A.7)
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δ2Ṽ321

δr2
(r, γ) =

135α

2πr4

{
Q+

1

3

[
8

3
− log

(
2M2

X

3πM2
P

r2

)]}
γ2 +

25α2

16π2r2
γ4

−
90

r6
A

[
5α

6π
r2γ2

]
+

105α

2πr4
γ2A′

[
5α

6π
r2γ2

]

−
25α2

2π2r2
γ4A′′

[
5α

6π
r2γ2

]
(A.8)

δ2Ṽ321

δγδr
(r, γ) = −

15α

πr3

{
3Q+ 2− log

(
2M2

X

3πM2
P

r2

)}
γ −

25α2

4π2r
γ3

+
15α

πr3
γA′

[
5α

6π
r2γ2

]
−

25α2

2π2r
γ3A′′

[
5α

6π
r2γ2

]
(A.9)

δṼ321

δγ
(r, γ) =

45α

2πr2

{
Q+

1

3

[
1− log

(
2M2

X

3πM2
P

r2

)]}
γ

+
25α2

8π2

[
1− log

(
2M2

X

3πM2
P

r2

)]
γ3 −

15α

2πr2
γA′

[
5α

6π
r2γ2

]
(A.10)

δṼ41

δr
(r, γ) = −

45α

2πr3

{
Q+

1

3

[
2− log

(
2M2

X

3πM2
P

r2

)]}
γ2 −

75α2

32π2r
γ4

+
12

r5
A

[
5α

4π
r2γ2

]
−

15α

2πr3
γ2A′

[
5α

4π
r2γ2

]
(A.11)

δṼ41

δγ
(r, γ) =

45α

2πr2

{
Q+

1

3

[
1− log

(
2M2

X

3πM2
P

r2

)]}
γ

+
75α2

4π2

{
1

4

[
1− log

(
2M2

X

3πM2
P

r2

)]
+

Λ̃

5

}
γ3

−
15α

2πr2
γA′

[
5α

4π
r2γ2

]
. (A.12)
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In light of equations (A.4)-(A.6), the asymptotic expansions of the dimensionless effective

potential and of equations (A.7)-(A.12) are given by

Ṽ321(r, γ) ∼ Ṽ0 +
25α2

32π2
γ4

[
log

(
5αM2

P

4M2
X

γ2

)
−

1

2

]

+
15α

4πr2

[
3Q+ log

(
5αM2

P

4M2
X

γ2

)]
γ2 + O(r−4) (A.13)

δṼ321

δr
(r, γ) ∼ −

15α

2πr3

[
3Q+ log

(
5αM2

P

4M2
X

γ2

)]
γ2 + O(r−5) (A.14)

δ2Ṽ321

δr2
(r, γ) ∼

135α

2πr4

{
Q+

1

3

[
−

2

3
+ log

(
5αM2

P

4M2
X

γ2

)]}
γ2 + O(r−6) (A.15)

δ2Ṽ321

δγδr
(r, γ) ∼ −

15α

πr3

[
3Q+ 2 + log

(
5αM2

P

4M2
X

γ2

)]
γ + O(r−5) (A.16)

δṼ321

δγ
(r, γ) ∼

25α2

8π2
γ3 log

(
5αM2

P

4M2
X

γ2

)

+
15α

2πr2

[
3Q+ 1 + log

(
5αM2

P

4M2
X

γ2

)]
γ + O(r−4) (A.17)

δṼ41

δr
(r, γ) ∼ −

15α

2πr3

[
3Q+ log

(
15αM2

P

8M2
X

γ2

)]
γ2 + O(r−5) (A.18)

δṼ41

δγ
(r, γ) ∼

15α2

4π2
γ3

{
5

4
log

(
15αM2

P

8M2
X

γ2

)
+ Λ̃

}
+ O(r−2) . (A.19)
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Figure captions

Figure 1. The Euclidean-time evolution of the norm γ of the Higgs field is here plotted,

after solving numerically the system (5.1)-(5.3).

Figure 2. The evolution of γ̇ is here shown.

Figure 3. The numerical solution for the Euclidean-time evolution of the four-sphere

radius r is here presented. If τ ∈
[
0, 3 · 104

]
, our solution of the system (5.1)-(5.3)

shows that r is approximately constant, as one would expect during the de Sitter

phase of the early universe.
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