
THERMODYNAMIC BETHE ANSATZ AND
DILOGARITHM IDENTITIES I.

EDWARD FRENKEL AND ANDRÁS SZENES

1. Introduction

In the decade that has passed since the seminal work [?] by A.A. Belavin,
A.P. Polyakov, and A.B. Zamolodchikov, a lot of progress has been
made in understanding Conformal Field Theories (CFTs) in two di-
mensions. The success in the study of CFTs is due to their invariance
with respect to the Virasoro algebra, or, more generally, extended con-
formal algebras. This property allows one to describe CFTs in terms
of representation theory of infinite-dimensional Lie algebras or vertex
operator algebras, and algebraic geometry of complex curves.

In [?] A.B. Zamolodchikov introduced an interesting class of 2D
quantum field theories – perturbations of CFTs by relevant operators.
These theories lack conformal invariance, but possess some other re-
markable algebraic structures, which are yet to be fully understood
from the mathematical point of view. One of the properties is the ex-
istence of infinitely many local integrals of motion in involution. This
was conjectured in [?] (see also [?]) and proved in [?]. Thus, a pertur-
bation of a CFT is an integrable 2D quantum field theory, and as such,
it is governed by a purely elastic S–matrix, which satisfies various alge-
braic constraints [?]. These constraints are so strong that knowing the
spins of local integrals of motion one can often conjecture the S–matrix
and hence determine the theory completely, see [?, ?] and references
therein.

The Thermodynamic Bethe Ansatz (TBA) is a method of verifying
these conjectures, which was first applied in this context by Al.B. Zamolod-
chikov [?]. One starts with an integrable field theory conjectured to
be the perturbation of a CFT T , and studies its ultraviolet (UV) be-
havior. A theory on an infinitely long cylinder of circumference R is
described by a system of integral equations called the TBA equations.
To write down this system explicitly, let us assume that the theory has
N species of particles with masses ma, a = 1, . . . , N . One is interested
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in the functions εa(θ), which are called the spectral densities of par-
ticles of species a, see e.g. [?]. These are functions of the rapidity θ
(recall that rapidity is related to the energy E and the momentum p
by the formulas E = m cosh θ, p = m sinh θ). The TBA equations on
the functions εa(θ) read:

maR cosh θ = εa(θ) +
1

2π

N∑
b=1

∫ ∞
−∞

dθ′ φab(θ − θ
′) log (1 + Ya(θ

′)) ,

m(1.1)

where Ya(θ) = e−εa(θ), φab(θ) = −i
∂ logSab
∂θ

, and Sab(θ) is the S–matrix.

The TBA equations are usually hard to solve, but one can extract
a lot of information from them even without solving them explicitly.
The ground state energy of the theory is given by

E(R) = −
1

2π

N∑
a=0

∫ ∞
−∞

dθ maR cosh θ log (1 + Ya(θ)) .m(1.2)

In the UV limit R→ 0, in which one is supposed to recover the initial
CFT T , we should have E(R) ' −πc̃(R)/6R, where c̃(R) ∼ c̃+O(R).
From energy one finds using the TBA equations, see e.g. [?]:

π2

6
c̃ =

N∑
a=1

L

(
1

1 + ya

)
,m(1.3)

where L(z) is the Rogers dilogarithm function [?]:

L(z) =
1

2

∫ z

0
(logw d log(1− w)− log(1− w) dw) , 0 ≤ z ≤ 1,

m(1.4)

and ya = limR→0 Ya(θ). The numbers ya satisfy the system of algebraic
equations

ya =
N∏
b=1

(
1 +

1

yb

)Nab
,m(1.5)

where Nab is the number of poles of Sab(θ) in the upper half plane; in
particular, they do not depend on θ.

If the conjectural description of the perturbation of the CFT T is
correct, the number c̃ in the left hand side of the formula di should
coincide with the effective central charge of T . But in that case formula
di can be considered as a dilogarithm identity, which relates a rational
number c̃ to the algebraic numbers ya’s.

Many dilogarithm identities have been discovered this way in recent
years. While the TBA method has not yet been made rigorous, the
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identities have been proved rigorously by other methods, see [?, ?,
?]. Mathematically, the dilogarithm identities manifest a connection
between 2D quantum field theory on the one hand and algebraic K–
theory and number theory on the other, see [?]. We hope that better
understanding of the TBA will enable us to gain new insights into this
connection.

Recently, F. Gliozzi and R. Tateo [?] made an important step in
this direction. They found functional analogues of the identities di for
a large class of theories, which are labeled by pairs (G,H) of Dynkin
diagrams of types ADE and T (the latter is the diagram of type A
with a loop attached to one of the end vertices). In such a theory,
the species of particles are labeled by pairs of indices a = 1, . . . , rG,
and b = 1, . . . , rH, where rG and rH are the numbers of vertices in the
diagrams G and H, respectively.

The main fact, which is due to Al.B. Zamolodchikov [?] and, in the
general case, to F. Ravanini, A. Valleriani and R. Tateo [?] is that
any solution {Y b

a (θ)} of the TBA equations tba corresponding to the
(G,H) theory satisfies the following system of algebraic equations:

Y b
a

(
θ +

πI

h∨G

)
Y b
a

(
θ −

πI

h∨G

)
=

rG∏
c=1

(
1 + Y b

c (θ)
)Gac rH∏

d=1

(
1 +

1

Y d
a (θ)

)−Hbd
,

m(1.6)

where I =
√
−1, (Gac) and (Hbd) are the adjacency matrices of the

diagrams G and H, respectively, and h∨G is the dual Coxeter number of
G.

The Y –system Y and closely related to it T –system play an impor-
tant role in quantum field theory and statistical mechanics [?, ?, ?, ?].
In [?] it was conjectured that certain solutions of this system are in
one-to-one correspondence with the eigenvectors of integrals of motion
of the corresponding integrable field theory.

Al.B. Zamolodchikov [?] has conjectured an important periodicity
property of solutions of the system Y:

Y b
a

(
θ + πI

h∨G + h∨H
h∨G

)
= Y b̄

ā (θ),m(1.7)

where h∨H is the dual Coxeter number of H, and ā, b̄ are the vertices
conjugate to a, b, respectively. This periodicity property allows one to
find the conformal dimension of the field responsible for the perturba-
tion of the corresponding CFT, see [?].
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Now we can write down the dilogarithm identities conjectured in [?].
Let {Y b

a (θ)} is a solution of the Y –system Y. Fix θ and set

Xb
a(m) =

Y b
a (θ + πIm/h∨G)

1 + Y b
a (θ + πIm/h∨G)

.

Suppose that all Xb
a(m) are real numbers between 0 and 1. Then

rG∑
a=1

rH∑
b=1

h∨G+h∨H∑
m=1

L
(
Xb
a(m)

)
=
π2

6
rGrHh

∨
G.m(1.8)

Let yba = limθ→+∞ Y
b
a (θ). In the limit θ → +∞ the system Y becomes

a system of the type limiteq, and the identity gt becomes equivalent to
the identity di corresponding to the UV limit of the (G,H) theory (in
order to relate them, one has to use the Euler identity L(z) + L(1 −
z) = π2/6). Therefore the identities gt can be viewed as functional
analogues of the known dilogarithm identities di. It is interesting that
the identity corresponding to the (A1, A1) theory is the Euler identity
above, and the identity corresponding to the (A2, A1) theory is the
pentagon identity of the dilogarithm function, see [?].

There are many indications that analogues of the Y –system can be
defined for other integrable field theories and that there are dilogarithm
identities associated to them, see [?]. In [?] a geometric interpretation
for these identities is suggested.

In this paper, we give a proof of the periodicity conjecture periodic-
ity and the identities gt and their generalizations for the (An, A1) theo-
ries. We also prove analogous identities for the Bloch-Wigner function,
which is the imaginary counterpart of the Rogers dilogarithm. Our
proof of these identities relies on a universal property of the diloga-
rithm functions, which for the Bloch-Wigner function was first proved
by S. Bloch [?].

Our approach can be generalized to the identities corresponding to
more general diagrams. We have already obtained a complete proof
of periodicity and dilogarithm identities for the diagrams (An, A2) and
partial results in the general case. We will report on those results in a
separate publication.

The paper is organized as follows. In Sect. 2 we prove the period-
icity property of the Y –system. In Sect. 3 we give a general form of
the dilogarithm identities for the Rogers and the Bloch-Wigner diloga-
rithms. In Sect. 4 we prove the identities gt of (An, A1) type and their
generalizations.


