INFINITE-DIMENSIONAL ALGEBRAS IN DIMENSIONALLY REDUCED STRING THEORY

Alexandros A. Kehagias * ${ }^{\dagger}$
Physics Department
National Technical University
15780 Zografou Campus Athens, Greece

Abstract

We examine 4-dimensional string backgrounds compactified over a two torus. There exist two alternative effective Lagrangians containing each two $S L(2) / U(1)$ sigmamodels. Two of these sigma-models are the complex and Kähler structures on the torus. The effective Lagrangians are invariant under two different $O(2,2)$ groups and by the successive applications of these groups the affine $\widehat{O}(2,2)$ Kac-Moody algebra is emerged. The latter has also a non-zero central term which generates constant Weyl rescalings of the reduced 2-dimensional background. In addition, there exists a number of discrete symmetries relating the field content of the reduced effective Lagrangians.

[^0]It is known that higher-dimensional gravitational theories exhibit unexpected new symmetries upon reduction [1]. Dimensional reduction of the string background equations [2] with dilaton and antisymmetric field also exhibit new symmetries as for example dualities [3]-[5]. However, the exact string symmetries will necessarily be subgroups or discrete versions of the full symmetry group of the string background equations and thus, a study of the latter would be useful. The empirical rule is that the rank of the symmetry group increases by one as the dimension of the space-time is decreased by one after dimensional reduction [6]. However, the appearance of non-local currents in two-dimensions in addition to the local ones, turns the symmetry group infinite dimensional. Let us recall the $O(8,24)$ group of the heterotic string after reduction to three dimensions [7] which turns out to be the affine $\widehat{O}(8,24)$ algebra by further reduction to two dimensions [8] or the $\widehat{O}(2,2)$ algebra after the reduction of 4 -dimensional backgrounds [9]. The latter generalizes the Geroch group of Einstein gravity [10]-[12]. We will examine here the "affinization" of the symmetry group of the string background equations for 4 -dimensional space-times with two commuting Killing vectors and we will show the emergence of a central term. Generalization to higher dimensions is straightforward.

The Geroch group is the symmetry group which acts on the space of solutions of the Einstein equations [10]. Its counterpart in string theory, the "string Geroch group", acts, in full analogy, on the space of solutions of the one-loop beta functions equations [9]. The Geroch group, as well as its string counterpart, results by dimensional reducing four-dimensional backgrounds with zero cosmological constant over two commuting, orthogonal transitive, Killing vectors or, in other words, by compactifing M_{4} to $M_{2} \times T^{2}$. In dimensional reduced Einstein gravity, there exist two $S L(2, \mathbb{R})$ groups (the Ehlers' and the Matzner-Misner groups [13]) acting on the space of solutions, the interplay of which produce the infinite dimensional Geroch group. In the string case, we will see that apart from the Ehlers and Matzner-Misner groups acting on the pure gravitational sector, there also exist two other $S L(2, \mathbb{R})$ groups, one of which generates the familiar S-duality, acting on the antisymmetric-dilaton fields sector.

The Geroch group was also studied in the Kaluza-Klein reduction of supergravity theories [1]. It was B. Julia who showed that the Lie algebra of the Geroch group in Einstein gravity is the affine Kac-Moody algebra $\widehat{s l}(2)$ and he pointed out the existence of a central term [13]. We will show here that in the string case, after the reduction to $M_{2} \times T^{2}$, there exist four $S L(2, \mathbb{R})$ groups, the interplay of which produce the infinite dimensional Geroch group. However, there is also a central term which rescales the metric of M_{2} so that the Lie algebra of the string Geroch group turns out to be the $\widehat{s l}(2) \times \widehat{s l}(2) \simeq \widehat{o}(2,2)$ affine

Kac-Moody algebra. The appearance of a non-zero central term already at the tree-level is rather surprising since usually such terms arise as a concequence of quantization [15]. Here however, the central term acts non-trivially even at the "classical level" by constant Weyl rescalings of the reduced two-dimensional space M_{2}.

String propagation in a critical background \mathcal{M}, parametrized with coordinates $\left(x^{M}\right)$ and metric $G_{M N}\left(x^{M}\right)$, is described by a two-dimensional sigma-model action

$$
\begin{equation*}
S=\frac{1}{4 \pi \alpha^{\prime}} \int d^{2} z\left(G_{M N}+B_{M N}\right) \partial x^{M} \bar{\partial} x^{N}-\frac{1}{8 \pi} \int d^{2} z \phi R^{(2)} \tag{1}
\end{equation*}
$$

where $B_{M N}, \phi$ are the antisymmetric and dilaton fields, respectively. The conditions for conformal invariance at the 1-loop level in the coupling constant α^{\prime} are

$$
\begin{align*}
R_{M N}-\frac{1}{4} H_{M K \Lambda} H_{N}{ }^{K \Lambda}-\nabla_{M} \nabla_{N} \phi & =0 \\
\nabla^{M}\left(e^{\phi} H_{M N K}\right) & =0 \\
-R+\frac{1}{12} H_{M N K} H^{M N K}+2 \nabla^{2} \phi+\left(\partial_{M} \phi\right)^{2} & =0 \tag{2}
\end{align*}
$$

and the above equations may be derived from the Lagrangian [16]

$$
\begin{equation*}
\mathcal{L}=\sqrt{-G} e^{\phi}\left(R-\frac{1}{12} H_{M N K} H^{M N K}+\partial_{M} \phi \partial^{M} \phi\right) \tag{3}
\end{equation*}
$$

where $H_{M N \Lambda}=\partial_{M} B_{N \Lambda}+$ cycl. perm. is the field strength of the antisymmetric tensor field $B_{M N}$.

The right-hand side of the last equation in eq. (2) has been set to zero assuming that the central charge deficit δc is of order $\alpha^{\prime 2}$ (no cosmological constant). We will also assume that the string propagates in $M_{4} \times K$ with $c\left(M_{4}\right)=4+\mathcal{O}\left(\alpha^{\prime 2}\right)$ and that the dynamics is completely determined by M_{4} while the dynamics of the internal space K is irrelevant for our purposes. Thus, we will discuss below general 4-dimensional curved backgrounds in which $H_{\mu \nu \rho}$ can always be expressed as the dual of H^{M}

$$
\begin{equation*}
H_{M N \Lambda}=\frac{1}{2} \sqrt{-G} \eta_{M N \Lambda K} H^{K} \tag{4}
\end{equation*}
$$

with $\eta_{1234}=+1$ and $M, N, \ldots=0,1,2,3$. The Bianchi identity $\partial_{[K} H_{M N \Lambda]}=0$ gives the constraint

$$
\begin{equation*}
\nabla_{M} H^{M}=0 \tag{5}
\end{equation*}
$$

which can be incorporated into (3) as $b \nabla_{M} H^{M}$ by employing the Lagrange multiplier b so that (3) turns out to be

$$
\begin{equation*}
\mathcal{L}=\sqrt{-G} e^{\phi}\left(R-\frac{1}{2} s H_{M} H^{M}+\epsilon^{-\phi} b \nabla_{M} H^{M}+\partial_{M} \phi \partial^{M} \phi\right) . \tag{6}
\end{equation*}
$$

$s= \pm 1$ for spaces of Euclidean or Lorentzian signature, respectively and we will assume that $s=-1$ since the results may easily be generalized to include the $s=+1$ case as well. We may now eliminate H_{M} by using its equation of motion

$$
\begin{equation*}
H_{M}=e^{-\phi} \partial_{M} b, \tag{7}
\end{equation*}
$$

and the Lagrangian (6) turns out to be

$$
\begin{equation*}
\mathcal{L}=\sqrt{-G} e^{\phi}\left(R-\frac{1}{2} e^{-2 \phi} \partial_{M} b \partial^{M} b+\partial_{M} \phi \partial^{M} \phi\right) \tag{8}
\end{equation*}
$$

Let us now suppose that the space-time M_{4} has an abelian space-like isometry generated by the Killing vector $\xi_{1}=\frac{\partial}{\partial \theta_{1}}$ so that the metric can be written as

$$
\begin{equation*}
d s^{2}=G_{11} d \theta_{1}^{2}+2 G_{1 \mu} d \theta_{1} d x^{\mu}+G_{\mu \nu} d x^{\mu} d x^{\nu} \tag{9}
\end{equation*}
$$

where $\mu, \nu, \ldots=0,2,3$ and $G_{11}, G_{1 \mu}, G_{\mu \nu}$ are functions of x^{μ}. We may express the metric (9) as

$$
\begin{equation*}
d s^{2}=G_{11}\left(d \theta_{1}+2 A_{\mu} d x^{\mu}\right)^{2}+\gamma_{\mu \nu} d x^{\mu} d x^{\nu} \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
\gamma_{\mu \nu} & =G_{\mu \nu}-\frac{G_{1 \mu} G_{1 \nu}}{G_{11}} \\
A_{\mu} & =\frac{G_{1 \mu}}{G_{11}} \tag{11}
\end{align*}
$$

The metric (10) indicates the $M_{3} \times S^{1}$ topology of M_{4} and $\gamma_{\mu \nu}$ may be considered as the metric of the 3-dimensional space M_{3}. Space-times of this form have extensively been studied in the Kaluza-Klein reduction where A_{μ} is considered as a $\mathrm{U}(1)$-gauge field. The scalar curvature R for the metric (10) turns out to be

$$
\begin{equation*}
R=R(\gamma)-\frac{1}{4} G_{11} F_{\mu \nu} F^{\mu \nu}-\frac{2}{G_{11}^{1 / 2}} \nabla^{2} G_{11}^{1 / 2} \tag{12}
\end{equation*}
$$

where $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ and $\nabla^{2}=\frac{1}{\sqrt{-\gamma}} \partial_{\mu} \sqrt{-\gamma} \gamma^{\mu \nu} \partial_{\nu}$. By replacing (12) into (3) and integrating by parts we get the reduced Lagrangian

$$
\begin{equation*}
\mathcal{L}=\sqrt{-\gamma} G_{11}^{1 / 2} e^{\phi}\left(R(\gamma)-\frac{1}{4} G_{11} F_{\mu \nu} F^{\mu \nu}+\frac{1}{G_{11}} \partial_{\mu} G_{11} \partial^{\mu} \phi-\frac{1}{4} \frac{1}{G_{11}} H_{\mu \nu} H^{\mu \nu}+\partial_{\mu} \phi \partial^{\mu} \phi\right) \tag{13}
\end{equation*}
$$

where $H_{\mu \nu}=H_{\mu \nu 1}=\partial_{\mu} B_{\nu 1}-\partial_{\nu} B_{\mu 1}$. (A general discussion on the dimensional reduction of various tensor fields can be found in [17]). We have taken $H_{\mu \nu \rho}=0$ since in three dimensions
$B_{\mu \nu}$ has no physical degrees of freedom. Let us note that the Lagrangian (13) is invariant under the transformation

$$
\begin{align*}
G_{11} & \rightarrow \frac{1}{G_{11}}, \\
H_{\mu \nu} & \rightarrow F_{\mu \nu}, \\
\phi & \rightarrow \phi-\ln G_{11}, \\
\gamma_{\mu \nu} & \rightarrow \gamma_{\mu \nu}, \tag{14}
\end{align*}
$$

which, in terms of $G_{11}, G_{1 \mu}, G_{\mu \nu}, B_{1 \mu}$ and ϕ may be written as

$$
\begin{align*}
G_{11} & \rightarrow \frac{1}{G_{11}}
\end{aligned} \quad, \quad B_{\mu 1} \rightarrow \frac{G_{\mu 1}}{G_{11}}, ~ \begin{aligned}
G_{1 \mu} & \rightarrow \frac{B_{\mu 1}}{G_{11}}
\end{align*}, \quad G_{\mu \nu} \rightarrow G_{\mu \nu}-\frac{G_{1 \mu}^{2}-B_{\mu 1}^{2}}{G_{11}},
$$

and it is easily be recognized as the abelian duality transformation.
Let us further assume that M_{3} has also an abelian spece-like isometry generated by $\xi_{2}=\frac{\partial}{\partial \theta_{2}}$ so that $M_{3}=M_{2} \times S^{1}$. We will further assume that the two Killings $\left(\xi_{1}, \xi_{2}\right)$ of M_{4} are orthogonal to the surface M_{2}. Thus, the metric (9) can be written as

$$
\begin{equation*}
d s^{2}=G_{11} d \theta_{1}^{2}+2 G_{12} d \theta_{1} d \theta_{2}+G_{22} d \theta_{2}^{2}+G_{i j} d x^{i} d x^{j} \tag{16}
\end{equation*}
$$

where $i, j, \ldots=0,3$ and $G_{11}, G_{12}, G_{22}, G_{i j}$ are functions of x^{i} only. We may write the metric above as

$$
\begin{equation*}
d s^{2}=G_{11}\left(d \theta_{1}+A d \theta_{2}\right)^{2}+V d \theta_{2}^{2}+G_{i j} d x^{i} d x^{j} \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\frac{G_{12}}{G_{11}} \quad, \quad V=\frac{G_{11} G_{22}-G_{12}^{2}}{G_{11}} . \tag{18}
\end{equation*}
$$

By further reducing (13) with respect to ξ_{2} and using the fact that the only non-vanishing components of $F_{\mu \nu}$ and $H_{\mu \nu}$ are

$$
\begin{align*}
F_{i 2} & =\partial_{i} A \\
H_{i 2} & =\partial_{i} B \tag{19}
\end{align*}
$$

with $B=B_{21}$, we get

$$
\begin{align*}
\mathcal{L}= & \sqrt{-G^{(2)}} G_{11}{ }^{1 / 2} V^{1 / 2} e^{\phi}\left(R\left(G^{(2)}\right)-\frac{1}{2}(\partial A)^{2} \frac{G_{11}}{V}-\frac{1}{8}\left(\partial \ln \frac{G_{11}}{V}\right)^{2}\right. \\
& \left.-\frac{1}{2}(\partial B)^{2} \frac{1}{G_{11} V}-\frac{1}{8}\left(\partial \ln G_{11} V\right)^{2}+(\partial \tilde{\phi})^{2}\right), \tag{20}
\end{align*}
$$

where $\tilde{\phi}=\phi+\frac{1}{2} \ln G_{11} V$ and $(\partial \phi)^{2}=\partial_{i} \phi \partial^{i} \phi$. Let us now introduce the two complex coordinates τ, ρ [18] defined by

$$
\begin{align*}
\tau & =\tau_{1}+i \tau_{2} \tag{21}
\end{align*}=\frac{G_{12}}{G_{11}}+i \frac{\sqrt{G}}{G_{11}},
$$

where $G=G_{11} G_{22}-G_{12}{ }^{2}$ is the determinant of the metric on the 2-torus $T^{2}=S^{1} \times S^{1}$, so that τ, ρ turn out to be the complex and Kähler structure on T^{2}. In terms of τ, ρ, the Lagrangian (20) is written as

$$
\begin{equation*}
\mathcal{L}=\sqrt{-G^{(2)}} e^{\tilde{\phi}} \quad\left(\quad R\left(G^{(2)}\right)+2 \frac{\partial \tau \partial \bar{\tau}}{(\tau-\bar{\tau})^{2}}+2 \frac{\partial \rho \partial \bar{\rho}}{(\rho-\bar{\rho})^{2}}+(\partial \tilde{\phi})^{2}\right) \tag{23}
\end{equation*}
$$

where $R\left(G^{(2)}\right)$ is the curvature scalar of M_{2}. The Lagrangian above is clearly invariant under the $S L(2, \mathbb{R}) \times S L(2, \mathbb{R}) \simeq O(2,2, \mathbb{R})$ transformation

$$
\begin{align*}
& \tau \quad \rightarrow \quad \tau^{\prime}=\frac{a \tau+b}{c \tau+d}, \quad a d-b c=1 \\
& \rho \quad \rightarrow \quad \rho^{\prime}=\frac{\alpha \rho+\beta}{\gamma \rho+\delta}, \alpha \delta-\gamma \beta=1 \tag{24}
\end{align*}
$$

There also exist discrete symmetries acting on the (τ, ρ) space which leave $\tilde{\phi}$ invariant. One of these interchanges the complex and Kähler structures

$$
\begin{equation*}
D: \quad \tau \leftrightarrow \rho \quad, \tilde{\phi} \rightarrow \tilde{\phi} \tag{25}
\end{equation*}
$$

In terms of the fields G_{11}, G_{12}, G_{22}, and B_{12} the above transformation is written as

$$
\begin{align*}
& G_{11} \xrightarrow{D} \frac{1}{G_{11}} \quad, \quad G_{12} \xrightarrow{D} \frac{B_{21}}{G_{11}}, \\
& B_{21} \xrightarrow{D} \frac{G_{12}}{G_{11}} \quad, \quad G_{22} \xrightarrow{D} G_{22}-\frac{G_{12}^{2}-B_{21}^{2}}{G_{11}}, \tag{26}
\end{align*}
$$

which may be recognized as the factorized duality.
Other discrete symmetries are [4]

$$
\begin{equation*}
W: \quad(\tau, \rho) \leftrightarrow(\tau,-\bar{\rho}), \tilde{\phi} \rightarrow \tilde{\phi} \tag{27}
\end{equation*}
$$

as well as

$$
\begin{equation*}
R: \quad(\tau, \rho) \leftrightarrow(-\bar{\tau}, \rho), \tilde{\phi} \rightarrow \tilde{\phi} \tag{28}
\end{equation*}
$$

with $R=D W D W$. The W, R discrete symmetries leave invariant the fields $G_{i j}, G_{11}, G_{22}$ and ϕ while

$$
\begin{align*}
G_{12} \xrightarrow{W} G_{12} \quad, \quad B_{21} \xrightarrow{W}-B_{21}, \\
G_{12} \xrightarrow{R}-G_{12} \quad, \quad B_{21} \xrightarrow{R}-B_{21} . \tag{29}
\end{align*}
$$

Let us note that there exists another Lagrangian which leads to the same equations as (23). In can be constructed by using the fact that in 3-dimensions, two-forms like $F_{\mu \nu}$ and $H_{\mu \nu}$ can be written as

$$
\begin{align*}
F^{\mu \nu} & =\frac{1}{\sqrt{3}} \frac{\eta^{\mu \nu \rho}}{\sqrt{-\gamma}} F_{\rho} \\
H^{\mu \nu} & =\frac{1}{\sqrt{3}} \frac{\eta^{\mu \nu \rho}}{\sqrt{-\gamma}} H_{\rho} \tag{30}
\end{align*}
$$

The Bianchi identities for $F_{\mu \nu}, H_{\mu \nu}$ are then imply

$$
\begin{equation*}
\nabla_{\mu} F^{\mu}=0 \quad, \quad \nabla_{\mu} H^{\mu}=0 \tag{31}
\end{equation*}
$$

Thus, we may express (13) as

$$
\begin{align*}
\mathcal{L}^{*}= & \sqrt{-\gamma} G_{11}^{1 / 2} e^{\phi}\left(R+\frac{1}{2} G_{11} F_{\mu} F^{\mu}+G_{11}^{-1 / 2} \epsilon^{-\phi} \psi \nabla_{\mu} F^{\mu}\right. \tag{32}\\
& \left.+\frac{1}{2} \frac{1}{G_{11}} H_{\mu} H_{\mu}+G_{11}^{-1 / 2} \epsilon^{-\phi} b \nabla_{\mu} H^{\mu}+\partial_{\mu} \phi \partial^{\mu} \phi\right),
\end{align*}
$$

where the constraints (31) have been taken into account by employing the auxiliary fields (b, ψ). The equations of motions for the H_{μ}, F_{μ} give

$$
\begin{align*}
F_{\mu} & =G_{11}^{-3 / 2} e^{-\phi} \partial_{\mu} \psi \\
H_{\mu} & =G_{11}^{1 / 2} e^{-\phi} \partial_{\mu} b \tag{33}
\end{align*}
$$

so that \mathcal{L}^{*} is written as

$$
\begin{align*}
\mathcal{L}^{*}= & \sqrt{-\gamma} G_{11}^{1 / 2} e^{\phi}\left(R(\gamma)-\frac{1}{2} \frac{1}{G_{11}{ }^{2}} e^{-2 \phi} \partial_{\mu} \psi \partial^{\mu} \psi\right. \\
& \left.-\frac{1}{2} e^{-2 \phi} \partial_{\mu} b \partial^{\mu} b+\partial_{\mu} \phi \partial^{\mu} \phi\right) \tag{34}
\end{align*}
$$

If we further reduce it with respect to ξ_{2}, we get

$$
\begin{align*}
\mathcal{L}^{*}=\sqrt{-G^{(2)}} G_{11}^{1 / 2} V^{1 / 2} e^{\phi} \quad(& R\left(G^{(2)}\right)+\frac{1}{2} \frac{\partial V}{V} \frac{\partial G_{11}}{G_{11}}-\frac{1}{2} \frac{1}{G_{11}^{2}} e^{-2 \phi}(\partial \psi)^{2} \\
& \left.+\frac{1}{2} e^{-2 \phi}(\partial b)^{2}+(\partial \phi)^{2}\right) . \tag{35}
\end{align*}
$$

The two Lagrangians $\mathcal{L}, \mathcal{L}^{*}$ given by (20) (or (23)) and (35), respectively lead to the same equations of motions. \mathcal{L} is invariant under $S L(2, \mathbb{R}) \times S L(2, \mathbb{R})$ while the symmetries of \mathcal{L}^{*} are less obvious. In order the invariance properties of both $\mathcal{L}, \mathcal{L}^{*}$ to become transparent, we adapt the following parametrization

$$
\begin{align*}
& G_{11}=e^{-\phi} \sigma \quad, \quad V=e^{-\phi} \frac{\mu^{2}}{\sigma} \tag{36}\\
& G_{i j}=e^{-\phi} \frac{\lambda^{2}}{\sigma} \eta_{i j} \tag{37}
\end{align*}
$$

where $\eta_{i j}=(-1,1)$. The metric (17) is then written as

$$
\begin{equation*}
d s^{2}=e^{-\phi} \sigma\left(d \theta_{1}+A d \theta_{2}\right)^{2}+e^{-\phi} \frac{1}{\sigma}\left(\mu^{2} d \theta_{2}^{2}+\lambda^{2} \eta_{i j} d x^{i} d x^{j}\right) . \tag{38}
\end{equation*}
$$

As a result, $\mathcal{L}, \mathcal{L}^{*}$ turn out to be

$$
\begin{align*}
\mathcal{L}= & \mu\left(2 \partial \ln \mu \partial\left(\frac{e^{-\phi / 2} \lambda \mu^{1 / 2}}{\sigma^{1 / 2}}\right)-\frac{1}{2} \frac{\sigma^{2}}{\mu^{2}}(\partial A)^{2}-\frac{1}{2}\left(\partial \ln \frac{\sigma}{\mu}\right)^{2}\right. \tag{39}\\
& \left.-\frac{1}{2} \frac{e^{2 \phi}}{\mu^{2}}(\partial B)^{2}-\frac{1}{2}\left(\partial \ln e^{-\phi} \mu\right)^{2}\right),
\end{align*}
$$

and

$$
\begin{equation*}
\mathcal{L}^{*}=\mu\left(2 \partial \mu \partial \ln \lambda-\frac{1}{2} \frac{1}{\sigma^{2}}(\partial \sigma)^{2}-\frac{1}{2} \frac{1}{\sigma^{2}}(\partial \psi)^{2}-\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} e^{-2 \phi}(\partial b)^{2}\right) . \tag{40}
\end{equation*}
$$

Note that (A, ψ) and (B, b) are related through the relations

$$
\begin{align*}
\partial_{i} A & =-\frac{1}{\sqrt{3}} \varepsilon_{i j} \frac{\mu}{\sigma^{2}} \eta^{j k} \partial_{k} \psi \tag{41}\\
\partial_{i} B & =-\frac{1}{\sqrt{3}} \varepsilon_{i j} e^{-2 \phi} \mu \eta^{j k} \partial_{k} b \tag{42}
\end{align*}
$$

where $\varepsilon_{12}=1$ is the antisymmetric symbol in two-dimensions.
Let us now define, in addition to the (τ, ρ) fields given in eqs. $(21,22)$, the complex fields (S, Σ)

$$
\begin{equation*}
S=b+i e^{\phi} \quad, \quad \Sigma=\psi+i \sigma \tag{43}
\end{equation*}
$$

Then $\mathcal{L}, \mathcal{L}^{*}$ may be expressed as

$$
\begin{align*}
\mathcal{L} & =\mu\left(2 \partial \ln \mu \partial\left(\frac{e^{-\phi / 2} \lambda \mu^{1 / 2}}{\sigma^{1 / 2}}\right)+2 \frac{\partial \tau \partial \bar{\tau}}{(\tau-\bar{\tau})^{2}}+2 \frac{\partial \rho \partial \bar{\rho}}{(\rho-\bar{\rho})^{2}}\right) \tag{44}\\
\mathcal{L}^{*} & =\mu\left(2 \partial \mu \partial \ln \lambda+2 \frac{\partial S \partial \bar{S}}{(S-\bar{S})^{2}}+2 \frac{\partial \Sigma \partial \bar{\Sigma}}{(\Sigma-\bar{\Sigma})^{2}}\right) \tag{45}
\end{align*}
$$

Thus, there exist four $S L(2, \mathbb{R}) / U(1)$-sigma models, \mathcal{L} is invariant under the $S L(2, \mathbb{R}) \times$ $S L(2, \mathbb{R})$ transformations (24) and \mathcal{L}^{*} is invariant under

$$
\begin{equation*}
S \rightarrow \frac{k S+m}{n S+\ell} \quad, \quad \Sigma \rightarrow \frac{k \Sigma+\eta}{\nu \Sigma+\theta} . \tag{46}
\end{equation*}
$$

These transformation do not affect μ. There also exist discrete Z_{2} transformations, besides those that have already been noticed in eqs. $(25,27,28)$, namely

$$
\begin{align*}
D^{\prime}:(S, \Sigma) & \leftrightarrow(\Sigma, S) \tag{47}\\
W^{\prime}:(S, \Sigma) & \leftrightarrow(S,-\bar{\Sigma}) \tag{48}\\
R^{\prime}:(S, \Sigma) & \leftrightarrow(-\bar{S}, \Sigma) . \tag{49}
\end{align*}
$$

Moreover, the transformations

$$
\begin{align*}
& N:(\tau, \rho) \leftrightarrow(S, \Sigma) \quad, \quad \lambda \leftrightarrow e^{-\phi / 2} \frac{\mu^{1 / 2}}{\sigma^{1 / 2}} \lambda, \tag{50}\\
& N^{\prime}:(\tau, \rho) \leftrightarrow(\Sigma, S) \quad, \quad \lambda \leftrightarrow e^{-\phi / 2} \frac{\mu^{1 / 2}}{\sigma^{1 / 2}} \lambda, \tag{51}
\end{align*}
$$

indentify the two Lagrangians and thus, may be considered as the string counterpart of the Kramer-Neugebauer symmetry [19]. Note that $\mathcal{L}, \mathcal{L}^{*}$ may also be written as

$$
\begin{align*}
\mathcal{L} & =\mu\left(2 \partial \ln \mu \partial\left(\frac{e^{-\phi / 2} \lambda \mu^{1 / 2}}{\sigma^{1 / 2}}\right)-\frac{1}{4} \operatorname{Tr}\left(h_{1}^{-1} \partial h_{1}\right)^{2}-\frac{1}{4} \operatorname{Tr}\left(h_{2}^{-1} \partial h_{2}\right)^{2}\right) \tag{52}\\
\mathcal{L}^{*} & =\mu\left(2 \partial \mu \partial \lambda-\frac{1}{4} \operatorname{Tr}\left(g_{1}^{-1} \partial g_{1}\right)^{2}-\frac{1}{4} \operatorname{Tr}\left(g_{2}^{-1} \partial g_{2}\right)^{2}\right) \tag{53}
\end{align*}
$$

where the 2×2 matrices h_{1}, h_{2}, g_{1} and g_{2} are

$$
\begin{array}{ll}
h_{1}=\left(\begin{array}{cc}
\frac{\sigma}{\mu} & \frac{\sigma}{\mu} A \\
\frac{\sigma}{\mu} A & \frac{\sigma}{\mu} A^{2}+\frac{\mu}{\sigma}
\end{array}\right), \quad h_{2}=\left(\begin{array}{cc}
\frac{e^{\phi}}{\mu} & \frac{e^{\phi}}{\mu} B \\
\frac{e^{\phi}}{\mu} B & \frac{e^{\phi}}{\mu} B^{2}+\frac{\mu}{e^{\phi}}
\end{array}\right), \\
g_{1}=\left(\begin{array}{cc}
\frac{1}{\sigma} & \frac{1}{\sigma} \psi \\
\frac{1}{\sigma} \psi & \frac{1}{\sigma} \psi^{2}+\sigma
\end{array}\right), \quad g_{2}=\left(\begin{array}{cc}
e^{-\phi} & e^{-\phi} b \\
e^{\phi} b & e^{\phi} b^{2}+e^{-\phi}
\end{array}\right) . \tag{55}
\end{array}
$$

The Lagrangian \mathcal{L} is invariant under the infinitesimal transformations

$$
\begin{align*}
& \delta \sigma=\sqrt{2} \frac{1}{\sigma} A \epsilon_{1}^{+}-2 \epsilon_{1}^{0} \quad, \quad \delta A=-\frac{1}{\sqrt{2}}\left(\frac{\sigma^{2}}{\mu^{2}}-A^{2}\right) \epsilon_{1}^{+}-2 A \epsilon_{1}^{0}+\sqrt{2} \epsilon_{1}^{-} \\
& \delta \phi=-\sqrt{2} B \epsilon_{2}^{+}+2 \epsilon_{2}^{0} \quad, \quad \delta B=-\frac{1}{\sqrt{2}}\left(\frac{e^{2 \phi}}{\mu^{2}}-B^{2}\right) \epsilon_{2}^{+}-2 B \epsilon_{2}^{0}+\sqrt{2} \epsilon_{2}^{-} \tag{56}
\end{align*}
$$

while \mathcal{L}^{*} is invariant under

$$
\begin{gather*}
\delta \sigma=-\sqrt{2} \psi \sigma \epsilon_{3}^{+}+2 \sigma \epsilon_{3}^{0} \quad, \quad \delta \psi=-\frac{1}{\sqrt{2}}\left(\frac{1}{\sigma^{2}}-\psi^{2}\right) \epsilon_{3}^{+}-2 \psi \epsilon_{3}^{0}+\sqrt{2} \epsilon_{3}^{-} \\
\delta \phi=\sqrt{2} b \epsilon_{4}^{+}-2 \epsilon_{4}^{0} \quad, \quad \delta b=-\frac{1}{\sqrt{2}}\left(e^{2 \phi}-b^{2}\right) \epsilon_{4}^{+}-2 b \epsilon_{4}^{0}+\sqrt{2} \epsilon_{4}^{-} \tag{57}
\end{gather*}
$$

The above infinitesimal transformations are generated by a set of four Killing vectors ($\mathbf{K}_{a}^{(i)}, a=$ $1,2,3, i=1,2,3,4)$ which can easily be written down by recalling that the metric

$$
\begin{equation*}
d s^{2}=d x^{2}+e^{2 x} d y^{2} \tag{58}
\end{equation*}
$$

has a three-parameter group of isometries generated by

$$
\begin{align*}
K_{+} & =-\sqrt{2} y \partial_{x}-\frac{1}{\sqrt{2}}\left(e^{-2 x}-y^{2}\right) \partial_{y} \\
K_{0} & =2\left(\partial_{x}-y \partial_{y}\right) \\
K_{-} & =\sqrt{2} \partial_{y} \tag{59}
\end{align*}
$$

which satisfy the $S L(2)$ commutation relations

$$
\begin{equation*}
\left[K_{+}, K_{0}\right]=2 K_{+},\left[K_{-}, K_{0}\right]=-2 K_{-},\left[K_{-}, K_{+}\right]=-K_{0} \tag{60}
\end{equation*}
$$

Among these Killing vectors, let us consider $K_{0}^{(3)}$ which scales both ψ and σ as

$$
\begin{equation*}
K_{0}^{(3)}:(\psi, \sigma) \rightarrow(\alpha \psi, \alpha \sigma) \tag{61}
\end{equation*}
$$

In view of eq. (41), A is also scaled as

$$
\begin{equation*}
A \rightarrow \frac{1}{\alpha} A \tag{62}
\end{equation*}
$$

so that (A, σ) is transformed into $\left(\frac{1}{\alpha} A, \alpha \sigma\right)$ which is generated by $-K_{0}^{(1)}$. However, \mathcal{L} is not invariant unless we also scale the conformal factor λ as $\sqrt{\alpha} \lambda$. Let us denote the generator of constant Weyl transformations by k. Then we have the relation

$$
\begin{equation*}
K_{0}^{(1)}+K_{0}^{(3)}=k \tag{63}
\end{equation*}
$$

In the same way, one may see that $K_{0}^{(2)}, K_{0}^{(4)}$ which transform (B, ϕ) and (b, ϕ) as $\left(e^{-\alpha} B, \phi+\right.$ $\alpha),\left(e^{\alpha}, \phi+\alpha\right)$ respectively satisfy

$$
\begin{equation*}
K_{0}^{(2)}+K_{0}^{(4)}=k . \tag{64}
\end{equation*}
$$

As a result, the algebra turns out to be

$$
\begin{array}{lll}
{\left[K_{+}^{(1)}, K_{0}^{(1)}\right]=2 K_{+}^{(1)},} & {\left[K_{-}^{(1)}, K_{0}^{(1)}\right]=-2 K_{-}^{(1)},} & {\left[K_{-}^{(1)}, K_{+}^{(1)}\right]=K_{0}^{(1)},} \\
{\left[K_{+}^{(2)}, K_{0}^{(2)}\right]=2 K_{+}^{(2)},} & {\left[K_{-}^{(2)}, K_{0}^{(2)}\right]=-2 K_{-}^{(2)},} & {\left[K_{-}^{(2)}, K_{+}^{(2)}\right]=K_{0}^{(2)},} \tag{65}\\
{\left[K_{+}^{(3)}, k-K_{0}^{(1)}\right]=2 K_{+}^{(3)},} & {\left[K_{-}^{(3)}, k-K_{0}^{(1)}\right]=-2 K_{-}^{(3)},} & {\left[K_{-}^{(3)}, K_{+}^{(3)}\right]=k-K_{0}^{(1)},} \\
{\left[K_{+}^{(4)}, k-K_{0}^{(2)}\right]=2 K_{+}^{(4)},} & {\left[K_{-}^{(4)}, k-K_{0}^{(2)}\right]=-2 K_{-}^{(4)},} & {\left[K_{-}^{(4)}, K_{+}^{(4)}\right]=k-K_{0}^{(2)}}
\end{array}
$$

If we define the generators $\left(h_{i}, k_{i}, f_{i}\right)$ by

$$
\begin{equation*}
h_{i}=K_{0}^{(i)}, f_{i}=K_{+}^{(i)}, e_{i}=K_{-}^{(i)} \tag{66}
\end{equation*}
$$

then the algebra (65) may be writen as

$$
\begin{align*}
{\left[h_{i}, h_{j}\right] } & =0, \\
{\left[h_{i}, e_{j}\right] } & =A_{i j} e_{j}, \\
{\left[h_{i}, f_{j}\right] } & =-A_{i j}, \\
{\left[e_{i}, f_{j}\right] } & =\delta_{i j} h_{j}, \tag{67}
\end{align*}
$$

where the Cartan martix $A_{i j}$ is

$$
A_{i j}=\left(\begin{array}{cc}
a_{i j} & 0 \tag{68}\\
0 & a_{i j}
\end{array}\right) \quad, \quad a_{i j}=\left(\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right)
$$

In addition, one may verify the Serre relation

$$
\begin{equation*}
\left(a d e_{i}\right)^{1-A_{i j}}\left(e_{j}\right)=0 \quad, \quad\left(a d f_{i}\right)^{1-A_{i j}}\left(f_{j}\right)=0 \tag{69}
\end{equation*}
$$

As a result, the algebra generated by the successive applications of the transformations $(56,57)$ is the affine Kac-Moody algebra $\widehat{o}(2,2)$ with a central term corresponding to constant Weyl rescalings of the 2-dimensional background metric. The central term survives in higher dimensions as well, since its emergence is related to the existence of two alternative effective Lagrangians after reducing the 3-dimensional theory down to two dimensions over an abelian isometry. It is the interplay of the symmetries of these Lagrangians which produce the KacMoody algebra.

References

[1] E. Cremmer and B. Julia, Nucl.Phys. B 62 (1979)141;
H. Nicolai, Phys. Lett. B 276 (1992)333;
B. Julia and H. Nicolai, Nucl. Phys. B 439 (1995)291.
[2] I. Bakas, Phys. Lett. B 343 (1995)103;
J. Maharana, preprints IP-BBSR-95-5,IP-BBSR-95-9, hep-th/9502001, hep-th/9502002;
I.R. Pinkstone, "Structure of dualities in bosonic string theories", DAMPT R94-62, hepth/9505147;
A.K. Biswas, A. Kumar and K. Ray, "Symmetries of heterotic string theory", preprint IP/BBSR/95-51, hep-th/9506037.
[3] K. Kikkawa and M. Yamasaki, Phys. Lett. B 149 (1984)357;
K. Narain, Phys. Lett. B 169 (1986)41;
T. Buscher, Phys. Lett. B 194 (1987)58; 201 (1988)466;
A. Shapere and F. Wilzcek, Nucl. Phys. B 320 (1989)669;
A. Giveon, E. Rabinovici and G. Veneziano, Nucl. Phys. B 322 (1989)167;
A. Giveon, Mod. Phys. Lett. A 6 (1991)2843;
E. Kiritsis, Mod. Phys. Lett. A 6 (1991)2871.
[4] A. Font, L. Ibáñez, D. Lüst and F. Quevedo, Phys. Lett. B 249 (1990)35;
S.J. Rey, Phys. Rev. D 43 (1991)326;
M. Rocek and E. Verlinde, Nucl. Phys. B 373 (1992)630;
E. Kiritsis, Nucl.Phys. B 405 (1993)143;
E. Alvarez, L. Alvarez-Gaumé, J. Barbon and Y. Lozano, "Some global aspects of duality in string theory", CERN-TH.6991/93;
L. Alvarez-Gaumé, "Aspects of abelian and non-abelian duality", CERN-TH.7036/93;
E. Kiritsis and N.A. Obers, Phys. Lett. B 334 (1994)67.
[5] A. Sen, Int. J. Mod. Phys. A 9 (1994)3707;
A. Giveon, M. Porrati and E. Rabinovici, Phys. Rep. 244 (1994)77.
[6] B. Julia, "Superspace and supergravity", eds. S.W. Hawkings and M. Rocek, Cambridge Univ. press, Cambridge 1980.
[7] A. Sen, Nucl. Phys. B 434 (1995)179.
[8] A. Sen, hep-th/9503057.
[9] I. Bakas, Nucl. Phys. B 428 (1994)374.
[10] R. Geroch, J. Math. Phys. 12 (1971)918; 13 (1972)394;
W. Kinnersley, J. Math Phys. 14 (1973)651; 18 (1977)1529;
W. Kinnersley and D.M. Chitre, J. Math. Phys. 18 (1977)1538;19 (19780)1926 2037.
[11] F.J. Ernst, Phys. Rev. 167 (1968)1175;
V.A. Belinskii and V.E. Sakharov, Sov. Phys. JETP 48 (1978)985; 50 (1979)1;
J. Gruszczak, J. Phys. A 14 (1981)3247.
[12] D. Maison, Phys. Rev. Lett 41 (1978)521; J. Math. Phys. 20 (1979)871;
B. Harrison, Phys. Rev. Lett. 41 (1978)1197;
G. Neugebauer, J. Phys. A 21 (1980)2417;
C. Cosgrove, J. Math. Phys. 21 (1980)2417;
P. Mazur, J. Phys. A 15 (1982)3173; Act. Phys. Polon. B 14 (1983)219;
P. Breitenlohner and D. Maison, Ann. Inst. H. Poinc. 46 (1987)215;
S. Mizoguchi, "The Geroch group in the Ashtekar formulation", preprint DESY-94-199.
[13] J. Ehlers, Dissertation, Univ. Hamburg (1957);
R. Matzner and C. Misner, Phys. Rev. 154 (1967)1229.
[14] B. Julia, "Affine Lie algebras in Physics", in "Proceedings of the Johns Hopkins Workshop on Current Problems in Particle Physics", Baltimore 1981.
[15] P. Goddard and D.I. Olive, Int. J. Mod. Phys. A 1 (1986)3031;
H.B. Halpern, E. Kiritsis, N. A. Obers and K. Clubok, "Irrational conformal field theory", preprint UCB-PTH-95-02, hep-th/9501144.
[16] C. Callan, D. Friedan, E. Martinec and M. Perry, Nucl. Phys. B 262 (1985)593.
[17] P. Forgács and N.S. Manton, Comm. Math. Phys. 72 (1980)15.
[18] R. Dijkraft, E. Verlinde and H. Verlinde, in "Perspectives in string theory", eds. P. Di Vecchia and J.L. Petersen, Word Scientific, Singapore, 1988.
[19] G. Neugebauer and D. Kramer, Comm. Math. Phys. 10 (1968)132.

[^0]: *e-mail: kehagias@sci.kun.nl
 ${ }^{\dagger}$ Address after September 1995: Phys. Dept., Inst. für Theor. Phys., Technische Univ., München, D-85748 Garching, Germany

