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Abstract

We examine 4-dimensional string backgrounds compactified over a two torus. There

exist two alternative effective Lagrangians containing each two SL(2)/U(1) sigma-

models. Two of these sigma-models are the complex and Kähler structures on the

torus. The effective Lagrangians are invariant under two different O(2, 2) groups and

by the successive applications of these groups the affine Ô(2, 2) Kac-Moody algebra is

emerged. The latter has also a non-zero central term which generates constant Weyl

rescalings of the reduced 2-dimensional background. In addition, there exists a number

of discrete symmetries relating the field content of the reduced effective Lagrangians.
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It is known that higher-dimensional gravitational theories exhibit unexpected new sym-

metries upon reduction [1]. Dimensional reduction of the string background equations [2]

with dilaton and antisymmetric field also exhibit new symmetries as for example dualities

[3]–[5]. However, the exact string symmetries will necessarily be subgroups or discrete ver-

sions of the full symmetry group of the string background equations and thus, a study of the

latter would be useful. The empirical rule is that the rank of the symmetry group increases

by one as the dimension of the space-time is decreased by one after dimensional reduction

[6]. However, the appearance of non-local currents in two-dimensions in addition to the local

ones, turns the symmetry group infinite dimensional. Let us recall the O(8, 24) group of

the heterotic string after reduction to three dimensions [7] which turns out to be the affine

Ô(8, 24) algebra by further reduction to two dimensions [8] or the Ô(2, 2) algebra after the

reduction of 4-dimensional backgrounds [9]. The latter generalizes the Geroch group of Ein-

stein gravity [10]–[12]. We will examine here the “affinization” of the symmetry group of the

string background equations for 4-dimensional space-times with two commuting Killing vec-

tors and we will show the emergence of a central term. Generalization to higher dimensions

is straightforward.

The Geroch group is the symmetry group which acts on the space of solutions of the Ein-

stein equations [10]. Its counterpart in string theory, the “string Geroch group”, acts, in full

analogy, on the space of solutions of the one-loop beta functions equations [9]. The Geroch

group, as well as its string counterpart, results by dimensional reducing four-dimensional

backgrounds with zero cosmological constant over two commuting, orthogonal transitive,

Killing vectors or, in other words, by compactifing M4 to M2 × T 2. In dimensional reduced

Einstein gravity, there exist two SL(2, IR) groups (the Ehlers’ and the Matzner-Misner groups

[13]) acting on the space of solutions, the interplay of which produce the infinite dimensional

Geroch group. In the string case, we will see that apart from the Ehlers and Matzner-Misner

groups acting on the pure gravitational sector, there also exist two other SL(2, IR) groups,

one of which generates the familiar S-duality, acting on the antisymmetric-dilaton fields

sector.

The Geroch group was also studied in the Kaluza-Klein reduction of supergravity theories

[1]. It was B. Julia who showed that the Lie algebra of the Geroch group in Einstein gravity

is the affine Kac-Moody algebra ŝl(2) and he pointed out the existence of a central term

[13]. We will show here that in the string case, after the reduction to M2 × T 2, there

exist four SL(2, IR) groups, the interplay of which produce the infinite dimensional Geroch

group. However, there is also a central term which rescales the metric of M2 so that the

Lie algebra of the string Geroch group turns out to be the ŝl(2)× ŝl(2) ' ô(2, 2) affine
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Kac-Moody algebra. The appearance of a non-zero central term already at the tree-level is

rather surprising since usually such terms arise as a concequence of quantization [15]. Here

however, the central term acts non-trivially even at the “classical level” by constant Weyl

rescalings of the reduced two-dimensional space M2.

String propagation in a critical backgroundM, parametrized with coordinates (xM) and

metric GMN (xM), is described by a two-dimensional sigma-model action

S =
1

4πα′

∫
d2z (GMN +BMN) ∂xM ∂̄xN −

1

8π

∫
d2zφR(2) , (1)

where BMN , φ are the antisymmetric and dilaton fields, respectively. The conditions for

conformal invariance at the 1-loop level in the coupling constant α′ are

RMN −
1

4
HMKΛHN

KΛ −∇M∇Nφ = 0

∇M(eφHMNK) = 0

−R+
1

12
HMNKH

MNK + 2∇2φ+ (∂Mφ)2 = 0 , (2)

and the above equations may be derived from the Lagrangian [16]

L =
√
−Geφ(R −

1

12
HMNKH

MNK + ∂Mφ∂
Mφ), (3)

where HMNΛ = ∂MBNΛ + cycl. perm. is the field strength of the antisymmetric tensor field

BMN .

The right-hand side of the last equation in eq. (2) has been set to zero assuming that

the central charge deficit δc is of order α′2 (no cosmological constant). We will also assume

that the string propagates in M4 × K with c(M4) = 4 + O(α′2) and that the dynamics is

completely determined by M4 while the dynamics of the internal space K is irrelevant for our

purposes. Thus, we will discuss below general 4-dimensional curved backgrounds in which

Hµνρ can always be expressed as the dual of HM

HMNΛ =
1

2

√
−GηMNΛKH

K , (4)

with η1234 = +1 and M,N, ... = 0, 1, 2, 3. The Bianchi identity ∂[KHMNΛ] = 0 gives the

constraint

∇MH
M = 0 , (5)

which can be incorporated into (3) as b∇MH
M by employing the Lagrange multiplier b so

that (3) turns out to be

L =
√
−Geφ(R−

1

2
sHMH

M + ε−φb∇MH
M + ∂Mφ∂

Mφ). (6)
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s = ±1 for spaces of Euclidean or Lorentzian signature, respectively and we will assume that

s = −1 since the results may easily be generalized to include the s = +1 case as well. We

may now eliminate HM by using its equation of motion

HM = e−φ∂Mb , (7)

and the Lagrangian (6) turns out to be

L =
√
−Geφ(R −

1

2
e−2φ∂Mb∂

Mb+ ∂Mφ∂
Mφ). (8)

Let us now suppose that the space-time M4 has an abelian space-like isometry generated

by the Killing vector ξ1 = ∂
∂θ1

so that the metric can be written as

ds2 = G11dθ
2
1 + 2G1µdθ1dx

µ +Gµνdx
µdxν , (9)

where µ, ν, ... = 0, 2, 3 and G11, G1µ, Gµν are functions of xµ. We may express the metric

(9) as

ds2 = G11(dθ1 + 2Aµdx
µ)2 + γµνdx

µdxν , (10)

where

γµν = Gµν −
G1µG1ν

G11
,

Aµ =
G1µ

G11
. (11)

The metric (10) indicates theM3×S1 topology ofM4 and γµν may be considered as the metric

of the 3-dimensional space M3. Space-times of this form have extensively been studied in the

Kaluza-Klein reduction where Aµ is considered as a U(1)–gauge field. The scalar curvature

R for the metric (10) turns out to be

R = R(γ) −
1

4
G11FµνF

µν −
2

G11
1/2
∇2G11

1/2 , (12)

where Fµν = ∂µAν − ∂νAµ and ∇2 = 1√
−γ∂µ

√
−γγµν∂ν. By replacing (12) into (3) and

integrating by parts we get the reduced Lagrangian

L =
√
−γG11

1/2eφ
(
R(γ) −

1

4
G11FµνF

µν +
1

G11
∂µG11∂

µφ−
1

4

1

G11
HµνH

µν + ∂µφ∂
µφ

)
(13)

where Hµν = Hµν1 = ∂µBν1 − ∂νBµ1. (A general discussion on the dimensional reduction of

various tensor fields can be found in [17]). We have takenHµνρ = 0 since in three dimensions
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Bµν has no physical degrees of freedom. Let us note that the Lagrangian (13) is invariant

under the transformation

G11 →
1

G11
,

Hµν → Fµν ,

φ → φ− lnG11 ,

γµν → γµν , (14)

which, in terms of G11, G1µ, Gµν , B1µ and φ may be written as

G11 →
1

G11
, Bµ1 →

Gµ1

G11
,

G1µ →
Bµ1

G11

, Gµν → Gµν −
G1µ

2 −Bµ1
2

G11

,

φ → φ− lnG11 , (15)

and it is easily be recognized as the abelian duality transformation.

Let us further assume that M3 has also an abelian spece-like isometry generated by

ξ2 = ∂
∂θ2

so that M3 = M2 × S1. We will further assume that the two Killings (ξ1, ξ2) of M4

are orthogonal to the surface M2. Thus, the metric (9) can be written as

ds2 = G11dθ
2
1 + 2G12dθ1dθ2 +G22dθ

2
2 +Gijdx

idxj , (16)

where i, j, ... = 0, 3 and G11, G12, G22, Gij are functions of xi only. We may write the metric

above as

ds2 = G11(dθ1 +Adθ2)2 + V dθ2
2 +Gijdx

idxj , (17)

where

A =
G12

G11
, V =

G11G22 −G2
12

G11
. (18)

By further reducing (13) with respect to ξ2 and using the fact that the only non-vanishing

components of Fµν and Hµν are

Fi2 = ∂iA ,

Hi2 = ∂iB , (19)

with B = B21, we get

L =
√
−G(2)G11

1/2V 1/2eφ
(
R(G(2))−

1

2
(∂A)2G11

V
−

1

8
(∂ ln

G11

V
)2

−
1

2
(∂B)2 1

G11V
−

1

8
(∂ lnG11V )2 + (∂φ̃)2

)
, (20)
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where φ̃ = φ + 1
2

lnG11V and (∂φ)2 = ∂iφ∂
iφ. Let us now introduce the two complex

coordinates τ , ρ [18] defined by

τ = τ1 + iτ2 =
G12

G11
+ i

√
G

G11
, (21)

ρ = ρ1 + iρ2 = B21 + i
√
G , (22)

where G = G11G22 − G12
2 is the determinant of the metric on the 2-torus T 2 = S1 × S1,

so that τ , ρ turn out to be the complex and Kähler structure on T 2. In terms of τ , ρ, the

Lagrangian (20) is written as

L =
√
−G(2)eφ̃ ( R(G(2)) + 2

∂τ∂τ̄

(τ − τ̄ )2
+ 2

∂ρ∂ρ̄

(ρ− ρ̄)2
+ (∂φ̃)2

)
, (23)

where R(G(2)) is the curvature scalar of M2. The Lagrangian above is clearly invariant under

the SL(2, IR)× SL(2, IR) ' O(2, 2, IR) transformation

τ → τ ′ =
aτ + b

cτ + d
, ad− bc = 1,

ρ → ρ′ =
αρ+ β

γρ+ δ
, αδ − γβ = 1 . (24)

There also exist discrete symmetries acting on the (τ, ρ) space which leave φ̃ invariant. One

of these interchanges the complex and Kähler structures

D : τ ↔ ρ , φ̃→ φ̃ . (25)

In terms of the fields G11 , G12 , G22, and B12 the above transformation is written as

G11
D
→

1

G11
, G12

D
→

B21

G11
,

B21
D→
G12

G11
, G22

D→ G22 −
G12

2 − B21
2

G11
, (26)

which may be recognized as the factorized duality.

Other discrete symmetries are [4]

W : (τ, ρ)↔ (τ,−ρ̄) , φ̃→ φ̃ , (27)

as well as

R : (τ, ρ)↔ (−τ̄ , ρ) , φ̃→ φ̃ , (28)
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with R = DWDW . The W ,R discrete symmetries leave invariant the fields Gij, G11, G22

and φ while

G12
W→ G12 , B21

W→ −B21 ,

G12
R
→−G12 , B21

R
→ −B21 . (29)

Let us note that there exists another Lagrangian which leads to the same equations as

(23). In can be constructed by using the fact that in 3-dimensions, two-forms like Fµν and

Hµν can be written as

F µν =
1
√

3

ηµνρ
√
−γ

Fρ ,

Hµν =
1
√

3

ηµνρ
√
−γ

Hρ . (30)

The Bianchi identities for Fµν , Hµν are then imply

∇µF
µ = 0 , ∇µH

µ = 0. (31)

Thus, we may express (13) as

L∗ =
√
−γG11

1/2eφ
(
R +

1

2
G11FµF

µ +G11
−1/2ε−φψ∇µF

µ (32)

+
1

2

1

G11

HµHµ +G11
−1/2ε−φb∇µH

µ + ∂µφ∂
µφ
)
,

where the constraints (31) have been taken into account by employing the auxiliary fields

(b, ψ). The equations of motions for the Hµ, Fµ give

Fµ = G11
−3/2e−φ∂µψ ,

Hµ = G11
1/2e−φ∂µb , (33)

so that L∗ is written as

L∗ =
√
−γG11

1/2eφ
(
R(γ) −

1

2

1

G11
2 e
−2φ∂µψ∂

µψ

−
1

2
e−2φ∂µb∂

µb+ ∂µφ∂
µφ
)
. (34)

If we further reduce it with respect to ξ2, we get

L∗ =
√
−G(2)G11

1/2V 1/2eφ ( R(G(2)) +
1

2

∂V

V

∂G11

G11
−

1

2

1

G11
2e
−2φ(∂ψ)2

+
1

2
e−2φ(∂b)2 + (∂φ)2

)
. (35)
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The two Lagrangians L, L∗ given by (20) (or (23)) and (35), respectively lead to the same

equations of motions. L is invariant under SL(2, IR)×SL(2, IR) while the symmetries of L∗

are less obvious. In order the invariance properties of both L, L∗ to become transparent, we

adapt the following parametrization

G11 = e−φσ , V = e−φ
µ2

σ
(36)

Gij = e−φ
λ2

σ
ηij , (37)

where ηij = (−1, 1). The metric (17) is then written as

ds2 = e−φσ(dθ1 +Adθ2)
2 + e−φ

1

σ
(µ2dθ2

2 + λ2ηijdx
idxj) . (38)

As a result, L, L∗ turn out to be

L = µ

(
2∂ lnµ∂(

e−φ/2λµ1/2

σ1/2
)−

1

2

σ2

µ2
(∂A)2−

1

2
(∂ ln

σ

µ
)2 (39)

−
1

2

e2φ

µ2
(∂B)2 −

1

2
(∂ ln e−φµ)2

)
,

and

L∗ = µ
(

2∂µ∂ lnλ−
1

2

1

σ2
(∂σ)2 −

1

2

1

σ2
(∂ψ)2 −

1

2
(∂φ)2 −

1

2
e−2φ(∂b)2

)
. (40)

Note that (A,ψ) and (B, b) are related through the relations

∂iA = −
1
√

3
εij

µ

σ2
ηjk∂kψ , (41)

∂iB = −
1
√

3
εije

−2φµηjk∂kb , (42)

where ε12 = 1 is the antisymmetric symbol in two-dimensions.

Let us now define, in addition to the (τ, ρ) fields given in eqs. (21,22), the complex fields

(S, Σ)

S = b+ ieφ , Σ = ψ + iσ . (43)

Then L,L∗ may be expressed as

L = µ

(
2∂ lnµ∂(

e−φ/2λµ1/2

σ1/2
) + 2

∂τ∂τ̄

(τ − τ̄ )2
+ 2

∂ρ∂ρ̄

(ρ − ρ̄)2

)
(44)

L∗ = µ

(
2∂µ∂ lnλ+ 2

∂S∂S̄

(S − S̄)2
+ 2

∂Σ∂Σ̄

(Σ− Σ̄)2

)
. (45)
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Thus, there exist four SL(2, IR)/U(1)–sigma models, L is invariant under the SL(2, IR)×

SL(2, IR) transformations (24) and L∗ is invariant under

S →
kS +m

nS + `
, Σ→

κΣ + η

νΣ + θ
. (46)

These transformation do not affect µ. There also exist discrete Z2 transformations, besides

those that have already been noticed in eqs. (25,27,28), namely

D′ : (S,Σ) ↔ (Σ, S) (47)

W ′ : (S,Σ) ↔ (S,−Σ̄) (48)

R′ : (S,Σ) ↔ (−S̄,Σ) . (49)

Moreover, the transformations

N : (τ, ρ)↔ (S,Σ) , λ↔ e−φ/2
µ1/2

σ1/2
λ , (50)

N ′ : (τ, ρ)↔ (Σ, S) , λ↔ e−φ/2
µ1/2

σ1/2
λ , (51)

indentify the two Lagrangians and thus, may be considered as the string counterpart of the

Kramer-Neugebauer symmetry [19]. Note that L,L∗ may also be written as

L = µ

(
2∂ lnµ∂(

e−φ/2λµ1/2

σ1/2
)−

1

4
Tr(h1

−1∂h1)
2 −

1

4
Tr(h2

−1∂h2)
2

)
(52)

L∗ = µ

(
2∂µ∂λ−

1

4
Tr(g1

−1∂g1)
2 −

1

4
Tr(g2

−1∂g2)2
)
. (53)

where the 2×2 matrices h1, h2, g1 and g2 are

h1 =

 σ
µ

σ
µ
A

σ
µ
A σ

µ
A2 + µ

σ

 , h2 =

 eφ

µ
eφ

µ
B

eφ

µ
B eφ

µ
B2 + µ

eφ

 , (54)

g1 =

 1
σ

1
σ
ψ

1
σ
ψ 1

σ
ψ2 + σ

 , g2 =

 e−φ e−φb

eφb eφb2 + e−φ

 . (55)

The Lagrangian L is invariant under the infinitesimal transformations

δσ =
√

2
1

σ
Aε+1 − 2ε01 , δA = −

1
√

2
(
σ2

µ2
− A2)ε+1 − 2Aε01 +

√
2ε−1 ,

δφ = −
√

2Bε+2 + 2ε02 , δB = −
1
√

2
(
e2φ

µ2
− B2)ε+2 − 2Bε02 +

√
2ε−2 , (56)

while L∗ is invariant under

δσ = −
√

2ψσε+3 + 2σε03 , δψ = −
1
√

2
(

1

σ2
− ψ2)ε+3 − 2ψε03 +

√
2ε−3 ,

δφ =
√

2bε+4 − 2ε04 , δb = −
1
√

2
(e2φ − b2)ε+4 − 2bε04 +

√
2ε−4 . (57)
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The above infinitesimal transformations are generated by a set of four Killing vectors (K(i)
a , a =

1, 2, 3, i = 1, 2, 3, 4) which can easily be written down by recalling that the metric

ds2 = dx2 + e2xdy2 (58)

has a three-parameter group of isometries generated by

K+ = −
√

2y∂x −
1
√

2
(e−2x − y2)∂y ,

K0 = 2(∂x − y∂y) ,

K− =
√

2∂y , (59)

which satisfy the SL(2) commutation relations

[K+, K0] = 2K+ , [K−, K0] = −2K− , [K−, K+] = −K0 . (60)

Among these Killing vectors, let us consider K(3)
0 which scales both ψ and σ as

K
(3)
0 : (ψ, σ)→ (αψ, ασ). (61)

In view of eq. (41), A is also scaled as

A→
1

α
A , (62)

so that (A, σ) is transformed into ( 1
α
A,ασ) which is generated by −K(1)

0 . However, L is not

invariant unless we also scale the conformal factor λ as
√
αλ. Let us denote the generator

of constant Weyl transformations by k. Then we have the relation

K
(1)
0 +K

(3)
0 = k . (63)

In the same way, one may see that K(2)
0 , K

(4)
0 which transform (B, φ) and (b, φ) as (e−αB, φ+

α), (eα, φ+ α) respectively satisfy

K
(2)
0 +K

(4)
0 = k. (64)

As a result, the algebra turns out to be

[K(1)
+ , K

(1)
0 ] = 2K(1)

+ , [K(1)
− , K

(1)
0 ] = −2K(1)

− , [K(1)
− , K

(1)
+ ] = K

(1)
0 ,

[K
(2)
+ , K

(2)
0 ] = 2K

(2)
+ , [K

(2)
− , K

(2)
0 ] = −2K

(2)
− , [K

(2)
− , K

(2)
+ ] = K

(2)
0 ,

[K
(3)
+ , k−K(1)

0 ] = 2K
(3)
+ , [K

(3)
− , k−K(1)

0 ] = −2K
(3)
− , [K

(3)
− , K

(3)
+ ] = k−K(1)

0 ,

[K(4)
+ , k−K(2)

0 ] = 2K(4)
+ , [K(4)

− , k−K(2)
0 ] = −2K(4)

− , [K(4)
− , K

(4)
+ ] = k−K(2)

0

(65)

10



If we define the generators (hi, ki, fi) by

hi = K
(i)
0 , fi = K

(i)
+ , ei = K

(i)
− , (66)

then the algebra (65) may be writen as

[hi, hj] = 0 ,

[hi, ej] = Aijej ,

[hi, fj] = −Aij ,

[ei, fj] = δijhj , (67)

where the Cartan martix Aij is

Aij =

 aij 0

0 aij

 , aij =

 2 −2

−2 2

 . (68)

In addition, one may verify the Serre relation

(adei)
1−Aij (ej) = 0 , (adfi)

1−Aij (fj) = 0 . (69)

As a result, the algebra generated by the successive applications of the transformations

(56,57) is the affine Kac-Moody algebra ô(2, 2) with a central term corresponding to constant

Weyl rescalings of the 2-dimensional background metric. The central term survives in higher

dimensions as well, since its emergence is related to the existence of two alternative effective

Lagrangians after reducing the 3-dimensional theory down to two dimensions over an abelian

isometry. It is the interplay of the symmetries of these Lagrangians which produce the Kac-

Moody algebra.
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