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Abstract

We present the calculation of the two-loop spin splitting functions P
(1)
ij (x) (i; j = q; g) con-

tributing to the next-to-leading order corrected spin structure function g1(x;Q
2). These

splitting functions, which are presented in the MS scheme, are derived from the order �2s
contribution to the anomalous dimensions 
mij (i; j = q; g). The latter correspond to the local

operators which appear in the operator product expansion of two electromagnetic currents.

Some of the properties of the anomalous dimensions will be discussed. In particular we �nd

that in order �2s the supersymmetric relation 
mqq + 
mgq � 
mqg � 
mgg = 0 is violated.
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1 Introduction

During the last few years there has been a great deal of activity in the area of polarized

lepton-hadron physics both from the experimental as well as the theoretical side. This interest

started with the discovery of the EMC-experiment [1] that the Ellis-Ja�e sum rule [2], which

represents the �rst moment of the spin structure function g1(x;Q
2), was violated by the

combined SLAC-EMC data [1, 3]. This discrepancy between theory and experiment, also

called the \spin crisis", came as a great surprise because one expected that sum rules derived

in the context of the constituent quark model, which is valid at low energy scales, should also

hold at large energy scales characteristic of the current quark (parton) regime. In particular

the constituent quark model assumes that the spin of the proton can be mainly attributed

to its valence quarks and the sea quark contribution is negligible small. This assumption

leads to a value of the Ellis-Ja�e sum rule which is appreciably larger than the one found by

experiment. Although more recent experiments [4, 5, 6] lead to a result which is closer to the

theoretical prediction the discrepancy is still large enough to warrant explanation.

Many theorists have tried to explain the above discrepancy (for recent reviews see [7]) in

the framework of perturbative and also non-perturbative QCD. From this theoretical work

one can draw the conclusion that the interpretation of the spin structure function g1(x;Q
2),

using the ideas of the operator product expansion (OPE) and the QCD improved parton

model, is not as simple as that given to the structure functions which show up in unpolar-

ized lepton-hadron scattering. In particular the axial vector operator is renormalized due

to the Adler-Bell-Jackiw anomaly. Therefore the interpretation that the polarized parton

densities represent the spin carried by the corresponding partons does not hold anymore.

Fortunately this operator cancels in the Bjorken sum rule [8] so that the latter has a more

reliable theoretical basis. It is therefore no surprise that its result is in agreement with recent

data [4, 5, 6]. The above theoretical work also led to many di�erent parametrizations of the

parton densities in terms of which the spin structure function g1(x;Q
2) can be expressed.

One of the key issues is the role of the gluon density which can account for the negative

contribution to the Ellis-Ja�e sum rule depending on the chosen scheme. However if one

wants to give a complete next-to-leading order (NLO) description of g1(x;Q
2), and not only

its �rst moment, one needs a full knowledge of the order �s coe�cient functions, which are

known (see e. g. [9, 10, 11]) and the order �2s corrected Altarelli-Parisi (AP) spin splitting

functions Pij (i; j = q; g). The lowest order AP-splitting functions P
(0)
ij have been calculated

in [12] and [13] respectively using di�erent methods. In [12] the operator product expansion

(OPE) techniques are applied to obtain the anomalous dimensions of the composite opera-

tors appearing in the spin dependent part of the current-current correlation function. The

latter appears in the expression for the deep inelastic cross section. The authors in [13]

have used the parton model approach. The NLO (order �2s) splitting functions P
(1);S
qq and

P
(1)
qg have been computed in [9] using the standard techniques of perturbative QCD. They

emerge while performing mass factorization on the order �2s corrected parton cross sections

of the processes 
�q and 
�g which contribute to the deep inelastic spin structure function.

Unfortunately the remaining splitting functions P
(1)
gq and P

(1)
gg could not be obtained in this

way since they do not show up in the mass factorization of order �2s corrected parton cross

sections. This can be traced back to the phenomenon that there is no direct coupling of

the virtual photon 
� or any other electroweak vector boson to the gluon. Therefore P
(1)
gq

and P
(1)
gg will appear in the mass factorizaton of the order �3s corrected parton cross sections
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which are very di�cult to calculate. In order to avoid the above complication we will resort

to the standard OPE techniques to calculate the missing splitting functions which are de-

rived from the inverse Mellin transform of the anomalous dimensions of composite operators.

The paper is organized as follows. In section 2 we introduce our notations and present a

short discussion of the composite twist-2 operators contributing to the spin structure function

g1(x;Q
2). Here we also derive the general form of the renormalized and unrenormalized

operator matrix elements (OME) where the operators are sandwiched between polarized

quark and gluon states. The calculation of the OME's is presented in section 3, from which

one extracts the anomalous dimensions and the AP splitting functions which are presented

in the MS scheme. Further we give the lowest order coe�cient functions of g1(x;Q
2) in the

same scheme. The properties of the anomalous dimensions are discussed in section 4. In

Appendix A one can �nd the operator vertices needed for the computation of the operator

matrix elements in section 3. The tensorial reduction of the Feynman integrals which show

up in the calculation is discussed in Appendix B.

2 Operators contributing to the spin structure function

g1(x;Q
2)

In this section we specify the composite operators which appear in the light-cone expansion of

two electromagnetic currents. Furthermore we present the operator matrix elements (OME's)

as a power series in the strong coupling constant. The coe�cients of the perturbation series

are determined by the renormalization group (Callan-Symanzik) equations. We will write the

OME's in the most general way so that they can be used to extract the anomalous dimensions

of the composite operators. The light-cone expansion of two electromagnetic currents is given

in [12] and reads as follows

J�(z)J�(0)
z2!0
' (�g��2+ @�@�)

1

z2 � i"z0

1X
m=0

X
i

Cm
i;1(z

2 � i"z0; �
2; g)

z�1 � � �z�mO
�1����m
i (0)� (g��1g��22� g��1@�@�2 � g��2@�@�1

+g��@�1@�2)
1X

m=2

X
i

Cm
i;2(z

2 � i"z0; �
2; g)z�3 � � �z�mO

�1����m
i (0)

�i�����1@
� 1

z2 � i"x0

1X
m=1

X
i

Em
i;1(z

2 � i"z0; �
2; g)

� z�2 � � �z�mR
�2����m
i (0): (2.1)

In the above we only consider the contribution of twist-2 operators. The index i of the locally

gauge invariant operators O
�1����m
i and R

�2����m
i stands for the representation of the 
avour

group SU(nf ). Notice that the operators are also irreducible representations of the Lorentz

group which means that they are traceless and symmetric in the Lorentz indices �1 � � ��m.

The Wilson coe�cient functions, denoted by Cm
i;k (k = 1; 2) and Em

i;1, can be expressed into

a perturbation series in the gauge (strong) coupling constant g. Notice that all the above

quantities are renormalized which is indicated by the renormalization scale �. The product
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of the two electromagnetic currents appear in the hadronic tensor de�ned in polarized deep

inelastic lepton-hadron scattering which is given by

W��(p; q; s) =
1

4�

Z
d4z eiqzhp; sjJ�(z)J�(0)jp; si

= WS
��(p; q) + iWA

��(p; q; s): (2.2)

Here p and s denote the momentum and spin of the hadron respectively and q stands for the

virtual photon momentum. The symmetric part of the hadronic tensor is given by

WS
��(p; q) = (�g�� +

q�q�

q2
)F1(x;Q

2) + (p� �
p q

q2
q�)(p� �

p q

q2
q�)

F2(x;Q
2)

p q
; (2.3)

while the antisymmetric part is equal to

WA
��(p; q; s) = �

m

p q
�����q

�

�
s�g1(x;Q

2) + (s� �
s q

p q
p�) g2(x;Q

2)

�
; (2.4)

with the properties s � p = 0, s2 = 1 and m denotes the mass of the hadron. The Bjorken

scaling variable is given by x = Q2=(2p q) and Q2 = �q2 > 0. The spin averaged structure

functions are denoted by Fk(x;Q
2)(k = 1; 2). In polarized electroproduction one has in

addition the longitudinal spin structure function g1(x;Q
2) and the transverse spin structure

function g2(x;Q
2). The twist-2 operators O

�1����m
i (0) corresponding to the spin averaged

structure functions are given in the literature and their anomalous dimensions have been

calculated up to two-loop order [14]{[17]. The twist-2 operators contributing to the spin

structure functions are given by [12]

R
�1����m
NS;q (z) = in S

�
( � (z)
5


�1D�2 � � �D�m
1

2
�i (z)� (traces)

�
; (2.5)

R
�1����m
S;q (z) = in S

�
( � (z)
5


�1D�2 � � �D�m (z)� (traces)
	
; (2.6)

R
�1����m
S;g (z) = in S

�
1

2
��1��
Tr(F�
(z)D

�2 � � �D�m�1F�m
� (z))� (traces)

�
: (2.7)

The symbol S in front of the curly brackets stands for the symmetrization of the indices

�1 � � ��m and �i is the 
avour group generator of SU(nf). The quark and the gluon �eld

tensor are given by  (z) and F a
��(z) respectively and F�� = F a

��T
a where T a stands for

the generator of the colour group SU(N) (N = 3). The covariant derivative is given by

D� = @� + igT aAa
�(x) where A

a
�(z) denotes the gluon �eld. From eqs. (2.5){(2.7) one infers

that with respect to the 
avour group one can distinguish the local operators in a non-singlet

part represented by RNS;q and in a singlet part consisting of RS;q and RS;g.

In the Bjorken limit (Q2 !1; x = Q2=(2p q) �xed) the current-current correlation func-

tion in (2.2) is dominated by the light cone z2 = 0 so that it is justi�ed to make a light cone

expansion for the product of the two electromagnetic currents. When Q2 ! 1 the lead-

ing contribution of g1(x;Q
2) consists of the twist-2 operators listed in (2.5){(2.7) whereas

g2(x;Q
2) also receives contributions of twist-3 operators which are not given in the expansion

in eq. (2.1). Since we are only interested in the longitudinal spin structure function g1(x;Q
2)

we can limit ourselves to the renormalization of the twist-2 operators mentioned in (2.5){

(2.7). Inserting the light cone expansion for J�(z)J�(0) in (2.2) one can derive the following

relation Z 1

0
dx xm�1g1(x;Q

2) =
X
i

Am
i (p

2; �2; g) ~Em
i;1(Q

2; �2; g) ; m odd: (2.8)
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The left-hand side of the above equation stands for the Mellin transform of g1(x;Q
2) and the

right-hand side is given by the operator matrix element (OME).

hp; sjR�1����m
i (0)jp; si = imAm

i (p
2; �2; g)S f(s�1p�2 � � �p�m)� (traces)g ; (2.9)

with i =NS,S, and ~Em
i stands for the coe�cient function.

~Em
i (Q

2; �2; g) = �
1

4
(Q2)m

�

�
@

@q2

�m�1 Z
d4zeiqz

1

z2 � i"z0
Em
i;1(z

2 � i"z0; �
2; g): (2.10)

The Q2-evolution of the spin structure function is determined by the anomalous dimensions

of the composite operators in eqs. (2.5){(2.7). They are obtained from the renormalized

partonic OME's

hj; p; sjR�1����m
k;i jj; p; si = Am

k;ij(p
2; �2; g)S f(s�1p�2 � � �p�m1 )� (traces)g ; (2.11)

where now the quark and gluon operators are sandwiched between quark and gluon states.

The indices in (2.11) stand for k = NS; S and i = q; g; j = q; g. The Am
k;ij are derived from

the Fourier transform into momentum space of the connected Green's functions

h0jT ( ��j(x)R
�1����m
k;i (0)�j(y)j0ic; (2.12)

where the external lines are amputated. The �elds �i(x) stand either for the quark �elds  (x)

or for the gluon �elds Aa
�(x). The renormalized partonic OME's satisfy the Callan-Symanzik

equations �
�
@

@�
+ �(g)

@

@g
+ �(�; g)

@

@�
+ 
mNS;qq(g)

�
A
(m)
NS;qq(p

2; �2; g; �) = 0; (2.13)

and �
(�

@

@�
+ �(g)

@

@g
+ �(�; g)

@

@�
)�ij + 
mS;ij(g)

�
A
(m)
S;jk(p

2; �2; g; �) = 0: (2.14)

Here �(g) denotes the �-function which in QCD is given by the following series expansion

�(g) = ��0
g3

16�2
� �1

g5

(16�2)2
+ � � � (2.15)

�0 =
11

3
CA �

4

3
Tf nf ; (2.16)

�1 =
34

3
C2
A � 4CFTfnf �

20

3
CATfnf : (2.17)

Further �(�; g) is the renormalization group function which controls the variation of the

OME's under the gauge constant �. Choosing the general covariant gauge one obtains in

QCD the following result

�(�; g) = ��z�
g2

16�2
+ � � � ; (2.18)

where z� is given by

z� =

�
�
10

3
� (1� �)

�
CA +

8

3
Tf : (2.19)
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Furthermore the colour factors of SU(N) are de�ned by CA = N , CF = (N2 � 1)=(2N),

Tf = 1=2 and nf stands for the number of light 
avours. The anomalous dimensions are

given by the series expansion


mk;ij = 

(0);m
k;ij

g2

16�2
+ 


(1);m
k;ij

 
g2

16�2

!2

+ � � � (2.20)

Notice that for the subsequent part of this paper we do not need higher order terms in

�(g), �(�; g) and 
mk;ij. As an alternative to using the renormalized OME's the anomalous

dimensions can also be derived from the operator renormalization constants Zm
k;ij which relate

the bare operators R̂i;k to the renormalized operators Ri;k
1. The renormalization of the non-

singlet operator proceeds as

R̂
�1����m
NS;q (z) = Zm

NS;qq("; g)R
�1����m
NS;q (z): (2.21)

Since the singlet operators in (2.6) and (2.7) mix among each other the operator renormal-

ization constant becomes a matrix and we have

R̂
�1����m
S;i (z) = Zm

S;ij("; g)R
�1����m
S;j (z): (2.22)

Now the anomalous dimensions also can be obtained from


mNS;qq = �(g; ")Z�1NS;qq

d

dg
ZNS;qq;


mS;ij = �(g; ") (Z�1S )il
dZS;lj

dg
; (2.23)

where

�(g; ") =
1

2
"g + �(g): (2.24)

Here " = n � 4 indicates that we will use n-dimensional regularization to regularize the

ultraviolet singularities occurring in Zk;ij which are represented by pole terms of the type 1="p.

The computation of the OME's proceeds in the following way. First one adds the operators

(2.5){(2.7) to the QCD e�ective lagrangian by multiplying them by sources J�1����m(z). The

calculation simpli�es considerably if the sources are chosen to be equal to J�1����m(z) =

��1 � � ���m with �2 = 0. In this way one eliminates the trace terms on the right-hand side of

eq. (2.11). The Feynman rules for the quark and gluon operator vertices are given in Appendix

A. Starting from the bare lagrangian, which is expressed in the bare coupling constant and

bare �elds and operators, one obtains the following general form for the unrenormalized

OME's. For the non-singlet OME we have

ÂNS;qq = 1 +

 
ĝ2

16�2

!
S"

 
�p2

�2

!"=2 �


(0)
NS;qq

1

"
+ a

(1)
NS;qq + " b

(1)
NS;qq

�

+

 
ĝ2

16�2

!2

S2"

 
�p2

�2

!" ��
1

2
(


(0)
NS;qq)

2 � �0

(0)
NS;qq

�
1

"2

+

8<
:1

2


(1)
NS;qq � 2�0 a

(1)
NS;qq + 


(0)
NS;qqa

(1)
NS;qq � �̂

0
@d a(1)NS;qq

d�̂

1
A z�

9=
; 1

�

+a
(2)
NS;qq

i
�̂=1

: (2.25)

1Notice that in the subsequent part of the paper the unrenormalized quantities will be indicated by a hat.
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Here S" is a factor which originates from n-dimensional regularization. It is de�ned by

S" = e
"
2
(
e�ln 4�): (2.26)

The singlet quark OME can be written as

ÂS;qq = ÂNS;qq + ÂPS;qq ; (2.27)

where the pure singlet (PS) part is given by

ÂPS;qq =

 
ĝ2

16�2

!2

S2"

 
�p2

�2

!" �
1

2


(0)
S;qg


(0)
S;gq

1

"2

+

�
1

2


(1)
PS;qq + 


(0)
S;qga

(1)
S;gq

�
1

"
+ a

(2)
PS;qq

#
; (2.28)

so that 

(1)
S;qq = 


(1)
NS;qq + 


(1)
PS;qq.

The other OME's can be expressed in the renormalization group coe�cients as

ÂS;qg =

 
ĝ2

16�2

!
S"

 
�p2

�2

!"=2 �


(0)
S;qg

1

"
+ a

(1)
S;qg + " b

(1)
S;qg

�

+

 
ĝ2

16�2

!2

S2"

 
�p2

�2

!" ��
1

2


(0)
S;qg

�


(0)
S;qq + 


(0)
S;gg

�
� �0 


(0)
S;qg

�
1

"2

+

(
1

2


(1)
S;qg � 2�0 a

(1)
S;qg + 


(0)
S;qg a

(1)
S;gg + 


(0)
S;qq a

(1)
S;qg � �̂

 
da

(1)
s;qg

d�̂

!
z�

)
1

"

+a
(2)
S;qg

i
�̂=1

; (2.29)

ÂS;gq =

 
ĝ2

16�2

!
S"

 
�p2

�2

!"=2 �


(0)
S;gq

1

"
+ a

(1)
S;gq + " b

(1)
S;gq

�

+

 
ĝ2

16�2

!2

S2"

 
�p2

�2

!" ��
1

2


(0)
S;gq

�


(0)
S;qq + 


(0)
S;gg

�
� �0 


(0)
S;gq

�
1

"2

+

(
1

2


(1)
S;gq � 2�0 a

(1)
S;gq + 


(0)
S;gq a

(1)
S;qq + 


(0)
S;gg a

(1)
S;gq � �̂

 
da

(1)
s;gq

d�̂

!
z�

)
1

"

+a
(2)
S;gq

i
�̂=1

; (2.30)

ÂS;gg = 1 +

 
ĝ2

16�2

!
S"

 
�p2

�2

!"=2 �


(0)
S;gg

1

"
+ a

(1)
S;gg + " b

(1)
S;gg

�

+

 
ĝ2

16�2

!2

S2"

 
�p2

�2

!" ��
1

2

�


(0)
S;gg

�2
+

1

2


(0)
S;gq 


(0)
S;qg � �0 


(0)
S;gg

�
1

"2

+

8<
:1

2


(1)
S;gg � 2�0 a

(1)
S;gg + 


(0)
S;gg a

(1)
S;gg + 


(0)
S;gq a

(1)
S;qg � �̂

0
@da(1)S;gg

d�̂

1
A z�

9=
; 1

"

+a
(2)
S;gg

i
�̂=1

: (2.31)
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Notice that in the above we have suppressed the Mellin index m. The expressions have been

written in such a way that the anomalous dimensions take their values in the MS scheme.

Furthermore we have in lowest order the identity 

(0)
S;qq = 


(0)
NS;qq. The above form of the

unrenormalized OME's Âk;ij follows from the property that the renormalized OME's Ak;ij

satisfy the Callan Symanzik equations (2.13), (2.14). These equations can be solved order

by order in perturbation theory which provides us with the expressions presented at the end

of this section. We only have to show that the latter follow from the renormalization of the

OME's in (2.25){(2.31).

The renormalization of the OME's proceeds as follows. First replace the bare coupling

constant ĝ by the renormalized one g(�) = g. Up to order ĝ4 it is su�cient to substitute in

the above OME's

ĝ = g

 
1 +

g2

16�2
�0 S"

1

"

!
; (2.32)

where �0 is given by (2.16). Next one has to perform gauge constant renormalization. Notice

that in the next section we will calculate the one-loop OME's in a general covariant gauge.

The Feynman propagator in this gauge is given by

D��(k) =
1

k2 + i�

�
�g�� + (1� �)

k�k�

k2 + i�

�
; (2.33)

where � is the gauge constant. The two-loop OME's are computed in the Feynman gauge so

that we have put in eqs. (2.25){(2.31) �̂ = 1.

Since the quarks and gluons are massless one has to put the external momenta p of the Feyn-

man graphs o�-shell. This implies that the OME's are no longer S-matrix elements and they

become gauge (�) dependent. Therefore we also have to perform gauge constant renormal-

ization which proceeds as follows. Replace the bare gauge constant �̂ by the renormalized

one.

�̂ = Z��: (2.34)

In the covariant gauge one has the property Z� = ZA where ZA is the gluon �eld renormal-

ization constant. Hence Z� is given by

Z� = 1 +
g2

16�2
z�

1

"
; (2.35)

where z� is given in (2.19). After these two renormalizations the only ultraviolet divergences

left in the OME's are removed by operator renormalization. Choosing the MS scheme the

operator renormalization constants are given by (see (2.21), (2.22))

ZNS;qq = 1 +

 
g2

16�2

!
S"

�
1

"


(0)
NS;qq

�

+

 
g2

16�2

!2

S2"

��
1

2

�


(0)
NS;qq

�2
+ �0


(0)
NS;qq

�
1

"2
+

1

2"


(1)
NS;qq

�
; (2.36)

ZS;qq = ZNS;qq + ZPS;qq; (2.37)

with

ZPS;qq =

 
g2

16�2

!2

S2"

��
1

2


(0)
S;qg


(0)
S;gq

�
1

"2
+

1

2"


(1)
PS;qq

�
; (2.38)
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ZS;qg =

 
g2

16�2

!
S"

�
1

"


(0)
S;qg

�
(2.39)

+

 
g2

16�2

!2

S2"

��
1

2


(0)
S;qg

�


(0)
S;gg + 


(0)
S;qq

�
+ �0 


(0)
S;qg

�
1

"2
+

1

2"


(1)
S;qg

�
;

ZS;gq =

 
g2

16�2

!
S"

�
1

"


(0)
S;gq

�
(2.40)

+

 
g2

16�2

!2

S2"

��
1

2


(0)
S;gq

�


(0)
S;gg + 


(0)
S;qq

�
+ �0 


(0)
S;gq

�
1

"2
+

1

2"


(1)
S;gq

�
;

ZS;gg = 1 +

 
g2

16�2

!
S"

�
1

"


(0)
S;gg

�

+

 
g2

16�2

!2

S2"

��
1

2

�


(0)
S;gg

�2
+
1

2


(0)
S;gq


(0)
S;qg + �0 


(0)
S;gg

�
1

"2

+
1

2"


(1)
S;gg

�
; (2.41)

Notice that the anomalous dimensions 

(l)
k;ij (k =NS,S, l = 0; 1) are gauge independent so

that Zk;ij have to be gauge independent too. The renormalized operator matrix elements are

derived from

ANS;qq(p
2; �2; g; �) = Z�1NS;qq(g

2; ")ÂNS;qq(p
2; �2; ĝ; �̂)jĝ!Zgg; �̂!Z�� (2.42)

and

AS;ij(p
2; �2; g; �) = (Z�1S )il(g

2; ")ÂS;lj(p
2; �2; ĝ; �̂)jg!Zgg; �̂!Z�� (2.43)

with the results

ANS;qq = 1 +
g2

16�2

"
1

2


(0)
NS;qq ln

 
�
p2

�2

!
+ a

(1)
NS;qq

#

+

 
g2

16�2

!2 "�
1

8

�


(0)
NS;qq

�2
�
1

4
�0 


(0)
NS;qq

�
ln2
 
�
p2

�2

!

+

8<
:1

2


(1)
NS;qq � �0a

(1)
NS;qq +

1

2


(0)
NS;qqa

(1)
NS;qq �

1

2
�

0
@da(1)NS;qq

d�

1
A z�

9=
; ln

 
�
p2

�2

!

a
(2)
NS;qq + 2�0 b

(1)
NS;qq � 


(0)
NS;qqb

(1)
NS;qq + �

�
d

d�
b
(1)
NS;qq

�
z�

�
�=1

; (2.44)

AS;qq = ANS;qq + APS;qq;

APS;qq =

 
g2

16�2

!2 "
1

8


(0)
S;qg


(0)
S;gq ln

2

 
�
p2

�2

!

+

�
1

2


(1)
PS;qq +

1

2


(0)
S;qga

(1)
S;gq

�
ln

 
�
p2

�2

!

8



+a
(2)
PS;qq � 


(0)
S;qgb

(1)
S;gq

i
; (2.45)

AS;qg =

 
g2

16�2

!"
1

2


(0)
S;qg ln

 
�
p2

�2

!
+ a

(1)
S;qg

#

+

 
g2

16�2

!2 "�
1

8


(0)
S;qg

�


(0)
S;qq + 


(0)
S;gg

�
�
1

4
�0 


(0)
S;qg

�
ln2
 
�
p2

�2

!

+

�
1

2


(1)
S;qg � �0a

(1)
S;qg +

1

2


(0)
S;qga

(1)
S;gg +

1

2


(0)
S;qqa

(1)
S;qg

�
1

2
�

�
d

d�
a
(1)
S;qg

�
z�

9=
; ln

 
�
p2

�2

!

+ a
(2)
S;qg + 2�0a

(1)
S;qg � 


(0)
S;qqb

(1)
S;qg � 


(0)
S;qgb

(1)
S;gg

+ �

�
d

d�
b
(1)
S;qg

�
z�

3
5
�=1

; (2.46)

AS;gq =

 
g2

16�2

!"
1

2


(0)
S;gq ln

 
�
p2

�2

!
+ a

(1)
S;gq

#

+

 
g2

16�2

!2 "�
1

8


(0)
S;gq

�


(0)
S;qq + 


(0)
S;gg

�
�
1

4
�0 


(0)
S;gq

�
ln2
 
�
p2

�2

!

+

�
1

2


(1)
S;gq � �0a

(1)
S;gq +

1

2


(0)
S;gqa

(1)
NS;qq +

1

2


(0)
S;gga

(1)
S;gq

�
1

2
�

�
d

d�
a
(1)
S;gq

�
z�

9=
; ln

 
�
p2

�2

!

+ a
(2)
S;gq + 2�0a

(1)
S;gq � 


(0)
S;gqb

(1)
S;qq � 


(0)
S;ggb

(1)
S;gq

+ �

�
d

d�
b
(1)
S;gq

�
z�

3
5
�=1

; (2.47)

AS;gg = 1 +

 
g2

16�2

!"
1

2


(0)
S;gg ln

 
�
p2

�2

!
+ a

(1)
S;gg

#

+

 
g2

16�2

!2 "�
1

8

�


(0)
S;gg

�2
+ 


(0)
S;gq


(0)
S;qg �

1

4
�0 


(0)
S;gg

�
ln2
 
�
p2

�2

!

+

�
1

2


(1)
S;gg � �0a

(1)
S;gg +

1

2


(0)
S;gga

(1)
S;gg +

1

2


(0)
S;gqa

(1)
S;qg

�
1

2
�

�
d

d�
a
(1)
S;gg

�
z�

9=
; ln

 
�
p2

�2

!

9



+ a
(2)
S;gg + 2�0b

(1)
S;gg � 


(0)
S;ggb

(1)
S;gg � 


(0)
S;gqb

(1)
S;qg

+ �

�
d

d�
b
(1)
S;gg

�
z�

3
5
�=1

: (2.48)

The above renormalized OME's satisfy the Callan Symanzik equations in (2.13), (2.14) which

proves that the ansatz for the unrenormalized OME's in (2.25){(2.31) is correct. This is also

corroborated by the expressions for the operator renormalization constants Zk;ij in (2.36){

(2.41) which after insertion in eqs. (2.23), (2.24) provides us with the anomalous dimensions

in (2.20).

The above renormalization procedure was originally introduced by F.J. Dyson [18]. There

exists an alternative possibility invented by Bogoliubov, Parasiuk, Hepp and Zimmermann

(BPHZ) [19]. In the latter one renormalizes each Feynman graph independently using the

counter-term method. These counter-terms appear in the e�ective lagrangian which is ex-

pressed into the renormalized (coupling- and gauge-) constants, �elds and operators. The

BPHZ-method has been used in the literature [14]{[17] to derive the anomalous dimensions

of the spin averaged operators O�1����m (i=NS,S) in (2.1). The advantage of this method is

that the gauge dependent terms given by �
�

d
d� a

(1)
k;ij

�
z� in (2.25){(2.31) are automatically

subtracted. We will come back to this method at the end of section 3. The reason for the

algebraic exercise given above can be explained as follows. Since the lowest order coe�cients



(0)
k;ij and a

(1)
k;ij can be very easily determined from the one-loop OME's one immediately can

predict the double pole terms in the unrenormalized OME's (2.25){(2.30). The coe�cient of

the single pole term can be also computed except for the second order anomalous dimensions



(1)
k;ij . By equating the predicted form of the two-loop OME's in (2.25){(2.30) to the explicitly

computed result in the next section one immediately can infer the results for 

(1)
k;ij .

3 Calculation of the order �2

s
contribution to the spin split-

ting functions

In this section we �rst give an outline of the procedure of the calculation of the OME's de�ned

in (2.11). Then we present the analytical result for the OME's and extract from them the

splitting functions (anomalous dimensions).

The calculation of the OME's proceeds as follows. Using the operator vertices in Appendix

A and applying the standard Feynman rules we have computed the connected Green's func-

tions, which are given by the graphs in �gs. 1-6, up to two-loop order. The latter also involves

the calculation of the diagrams which contain the self energies of the quark and the gluon

in the external legs. These diagrams are not explicitly drawn in the �gures but are included

in our calculation. The computation of the one-loop graphs has been done in the general

covariant gauge because one has to renormalize the gauge constant � even if one chooses the

Feynman gauge � = 1. The two-loop graphs have been calculated in the Feynman gauge

which is su�cient to that order. The OME's are then obtained by multiplying the connected

Green`s function by the inverse of the external quark and gluon propagators. Since the ex-

ternal momenta are put o� shell only ultraviolet divergences appear in the OME's which are

regularized by using the method of n-dimensional regularization. This implies that we have

10



to �nd a suitable prescription for the 
5-matrix which appears in the quark operators Rk;q

for k = NS (2.5) and k = S (2.6). Here we will adopt the reading point method as explained

in [20]. One can also adopt the method of `t Hooft and Veltman [21], which is equivalent

to the one given by Breitenlohner and Maison [22] (see also [23]). The disadvantage of the

last method is that the non-singlet axial vector operator R
(1)
NS;q (2.5) gets renormalized in

spite of the fact that it is conserved. This has to be undone by introducing an additional

renormalization constant [23]. However for continuity this procedure has to be extended to

higher spin non-singlet operators Rm
NS;q (2.5) (m > 1) otherwise the anomalous dimension

of Rm
NS;q will become unequal to the anomalous dimension of the spin averaged non-singlet

operator Om
NS;q (see (2.1)). Notice that the same procedure has to be also carried out for

some of the singlet operators Rm
S;q (2.6). Using the reading point method [20] one can omit

the additional renormalization constant. Anyhow we have checked that both methods lead

to the same result.

As has been already mentioned in section 2 the Feynman rules for the operator vertices in

Appendix A have been derived multiplying the operators R
�1����m
k;i by the sources J�1����m =

��1 � � ���m with �2 = 0. To simplify further we can choose s = p, where s is the spin

vector in (2.4), without any loss of essential information. The operator matrix elements Âm
k;ij

(2.25){(2.31) are then given by

Âm
k;iq(p

2; �2; g; ")(�p)m =
1

4
Tr
n
Ĝm
k;iq(p;�; �

2; g; ")
5p=
o
; (3.49)

with k = NS; S and i = q; g and

Âm
S;ig(p

2; �2; g; ")(�p)m =
1

2�p
"�����

�p� Ĝ
m��
S;ig (p;�; �

2; g; "): (3.50)

Here Ĝm
k;ij stand for the unrenormalized Green`s functions which are multiplied by the inverse

of the external quark and gluon propagators.

We will now give a short outline of the calculation of Âm
k;ij . Let us �rst start with the

non-singlet OME Âm
NS;qq. The Green`s function Ĝ

m
NS;qq, which is determined by the one-loop

graphs in �g. 1a,b and by the two-loop graphs in �g. 2, consists out of Feynman integrals

where the numerators are given by a string of 
-matrices. One of the 
 - matrices represents

the 
5-matrix. The latter is then anticommuted with the other 
-matrices until it appears

on the right side of the string next to the 
5 in (3.49). Then we set 
25 = 1 and simplify the

trace by contracting over dummy Lorentz-indices. Finally we perform the trace in (3.49). In

this way one obtains the identity

Âm
NS;qq(p

2; �2; ") =
�
Âm
NS;qq(p

2; �2; ")
�
spin�averaged

; (3.51)

without any additional renormalization constant. Notice that the calculation of Am
NS;qq (spin

averaged OME) has been already done in the literature so that it will not be repeated here.

Except for the non-singlet operator Âm
NS;qq the remaining spin OME's di�er from their spin

averaged analogues. Since we need the one-loop OME's as presented in �g. 1, for the renor-

malization of the two-loop OME's given by �gs. 2-6 we have to calculate the former ones

up to the non-pole term ak;ij de�ned in eqs. (2.25){(2.31). The one-loop terms bk;ij which

are proportional to " = n � 4, do not play any role in the determination of the anomalous

dimension and they will not be presented in this paper.
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Starting with the one-loop contribution to Âm
S;gq (�g. 1c) we have to perform tensorial

reduction of the tensor integrals appearing in Ĝm
S;gq. These tensor integrals arise because

the integration momentum q� appears in the numerators of the integrand. Examples of

such one-loop integrals are given by eqs. (B.1){(B.3). The result will be that Ĝm
S;gq gets

terms of the form "������p�
�p=
�, "
������
�
�
�, "

����p���
��=
�, where the Levi-

Civita tensor "���� originates from the two-gluon operator vertex in (A.4). Performing the

trace in (3.49) provides us with a second Levi-Civita tensor so that we have to contract over

two and three dummy Lorentz-indices. The contraction has to be performed in 4 dimensions

since the operator vertices have a unique meaning in 4 dimensions only. Next we discuss the

calculation of the one-loop contribution to Âm
S;qg (3.50) (�g. 1d,e). To this OME we apply

the reading point method [20] and put the 
5 on the right hand side of the trace from the

start. In this way we reproduce the Adler-Bell-Jackiw anomaly which can be traced back to

the triangular fermion loop in �g. 1d. Notice that �g. 1e leads to a zero result because the

external momentum p appears twice in the Levi-Civita tensor. The Green`s function Ĝ
m��
S;qg

will then become proportional to "������p�. The latter will be contracted with the Levi-

Civita tensor in (3.50) where the contraction is performed in 4 dimensions. The one-loop

graphs contributing to Âm
S;gg are presented in �gs. 1f, g. Because of the Levi-Civita tensor

coming from the two-gluon operator vector in (A.4) Ĝ
m;��
S;gg will, after tensorial reduction,

become proportional to "������p� . Like in the case of Âm
S;qg the contraction with the Levi-

Civita tensor in (3.50) has to take place in 4 dimensions.

Before we proceed with the two-loop graphs we want to emphasize that �rst the tensorial

reduction has to be made before one can perform the contraction between the two Levi-

Civita tensors. Both operations do not commute and lead to di�erent results for the OME's.

This holds for the one as well as two-loop calculation. If one contracts the Levi-Civita

tensors in n dimensions both operations commute. However then the Lorentz indices of the

operator vertices in Appendix A have to be generalized to n dimensions which is a non-unique

procedure.

The calculation of the two-loop graphs in �gs. 3-6 proceeds in an analogous way as in the

one-loop case. However here there arise some extra complications. First of all we encounter

the two-loop scalar Feynman integrals which have already been performed in [24] to calculate

the spin averaged OME Âm
S;gg . To check these integrals and the tensorial reduction algorithm

we have recalculated all spin averaged anomalous dimensions (splitting functions) and we

found complete agreement with the results published in the literature [14]{[17].

The second complication shows up in the tensorial reductions of the two-loop tensor Feynman

integrals where the numerator now reveals the presence of two integration momenta q1 and

q2. A more detailed explanation of how the tensor integrals are reduced into scalar integrals

is presented in Appendix B. The third complication arises because of the appearance of a

trace of six 
-matrices out of which two are contracted with the integration momenta q1 and

q2. Such graphs (see e.g. �g. 3 and �gs. 5.11) are calculated by the following procedure.

First one performs tensorial reduction of the Feynman integrals as indicated in Appendix B.

This will lead to an increase of the pairs of 
-matrices having the same Lorentz-index. Then

one can eliminate these pairs using the standard rules for 
-algebra in n dimensions. This

is possible without ever touching the 
5 matrix because it is put at the right hand side of

the string of 
-matrices. After this procedure one ends up with the expression Tr(a=b=c=d=
5)

which is uniquely de�ned (irrespective of the 
5-scheme). The same holds for the other graphs
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which do not contain fermion loops. The �nal result is that all Green`s functions Ĝm
k;ij get

the same form as observed for the one-loop case. Four dimensional contraction of the two

Levi-Civita tensors yields the OME's Â
(m)
k;ij in (3.49), (3.50). Before �nishing the technical

part of this section we give a comment on the algebraic manipulation programs which are

used to calculate Âm
k;ij . The matrix elements (including the full tensorial reduction) were

calculated using the package FeynCalc [25] which is written in Mathematica [26]. The two-

loop scalar integrals were performed by using a program written in FORM [25] which was

called in FeynCalc.

If one performs the inverse Mellin transform of the OME's the results for the one-loop

calculation can be summarized as follows (see eqs. (2.21){(2.27)). First we have the lowest

order splitting functions which are already known in the literature [12, 13].

P
(0)
NS;qq = P

(0)
S;qq = CF

"
8

�
1

1� x

�
+
� 4� 4x+ 6�(1� x)

#
; (3.52)

P
(0)
S;qg = Tf [16x� 8] ; (3.53)

P
(0)
S;gq = Cf [8� 4x] ; (3.54)

P
(0)
S;gg = CA

"
8

�
1

1� x

�
+

+ 8� 16x+
22

3
�(1� x)

#
� Tf

�
8

3
�(1� x)

�
; (3.55)

where the colour factors in SU(N) are given by CF = (N2� 1)=(2N); CA = N and Tf = 1=2

(N = 3 in QCD). The non-pole terms a
(1)
k;ij appearing in expressions (2.25){(2.31) read as

follows

a
(1)
NS;qq = a

(1)
S;qq = CF

"
�4

�
ln(1� x)

1� x

�
+

+ 2(1 + x) ln(1� x)� 2
1 + x2

1� x
ln x

�4 + 2x+ (1� �)

 
2�

�
1

1� x

�
+

!
+ �(1� x) (7� 4�(2)) ; (3.56)

a
(1)
S;qg = Tf [(4� 8x)(lnx + ln(1� x))� 4] ; (3.57)

a
(1)
S;gq = CF [(�4 + 2x)(lnx+ ln(1� x)) + 2� 4x] ; (3.58)

a
(1)
S;gg = CA

"
�4

�
ln(1� x)

1� x

�
+

+ (�4 + 8x) ln(1� x) +

�
�

4

1� x
� 4 + 8x

�
ln x

�(1� �)

�
1

1� x

�
+

+ 2 + �(1� x)

�
67

9
� 4�(2) + (1� �)�

1

4
(1� �)2

�#

�Tf

�
20

9
�(1� x)

�
: (3.59)

In the above expressions the distributions
�
lnk(1�x)

1�x

�
+
are de�ned by

Z 1

0
dx

 
lnk(1� x)

1� x

!
+

f(x) =

Z 1

0
dx

 
lnk(1� x)

1� x

!
(f(x)� f(1)): (3.60)

Notice that in the general covariant gauge only a
(1)
k;qq (k=NS,S) and a

(1)
S;gg depend on the gauge

parameter �.
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The two-loop contributions to the unrenormalized OME's are given by the inverse Mellin

transforms (see eqs. (2.25){(2.31))

ÂPS;qq =
g4

(16�2)2
S2"

 
�p2

�2

!"

CF Tf B
qq
Ff ; (3.61)

ÂS;qg =
g4

(16�2)2
S2"

 
�p2

�2

!" h
T 2
f B

qg
ff + CF Tf B

qg
Ff + CA Tf B

qg
Af

i
; (3.62)

ÂS;gq =
g4

(16�2)2
S2"

 
�p2

�2

!" h
CACF B

gq
AF + CF Tf B

gq
Ff + C2

F B
gq
FF

i
; (3.63)

ÂS;gg =
g4

(16�2)2
S2"

 
�p2

�2

!" h
CA Tf B

gg
Af + CF Tf B

gg
Ff + C2

AB
gg
AA

i
; (3.64)

B
qq
Ff =

8

"2

�
4 (1+ x) lnx + 10 (1� x)

�

+
8

"

�
4 (1 + x)Li2(1� x) + 3 (1 + x) ln2 x+ 4 (1 + x) ln x ln(1� x)

+10 (1� x) ln(1� x) + (7� 5 x) lnx� 5 (1� x)

�
;

B
qg
ff =

64

"2

�
1

3
(1� 2 x)

�
+
32

"

�
�
2

9
(4� 5 x) +

1

3
(1� 2 x) lnx

�
;

B
qg
Ff =

4

"2

�
� 8 (1� 2 x) ln(1� x) + 4 (1� 2 x) lnx+ 6

�

+
4

"

�
� 12 (1� 2 x) Li2(1� x) + 4 (1� 2 x) �(2)� 6 (1� 2 x) ln2(1� x)

� 8 (1� 2 x) lnx ln(1� x) + 3 (1� 2 x) ln2 x+ 2 (4 x+ 3) ln(1� x)

�(8 x+ 5) ln x� 12 + 13 x

�
;

B
qg
Af =

16

"2

�
�2 (1� 2 x) ln(1� x) + 4 (1 + x) lnx+

1

3
(25� 14 x)

�

+
8

"

�
12 Li2(1� x) + 2(2 x+ 1)Li2(�x)� 2 (1� 4 x) �(2)

� 3(1� 2 x) ln2(1� x) + 2 (2 x+ 1) lnx ln(1 + x) + 8 (1 + x) ln x ln(1� x)

+(6 x+ 5) ln2 x+
2

3
(11 x+ 14) lnx+

1

3
(73� 62 x) ln(1� x)�

1

9
(44� x)

�
;

B
gq
AF =

8

"2

�
1

3
(25 x� 14) + 2 (2� x) ln(1� x)� 2 (x+ 4) lnx

�

+
4

"

�
� 12 xLi2(1� x)� 2 (x+ 2)Li2(�x)� 2 (4� x) �(2)� 2 (x+ 2) lnx ln(1 + x)

+ 3 (2� x) ln2(1� x)� (3 x+ 10) ln2 x� 2 (5x+ 2) ln x ln(1� x)

�
1

3
(50� 73 x) ln(1� x) +

1

3
(17 x+ 8) lnx+

1

9
(109� 119 x)

�
;
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B
gq
Ff =

32

"2

�
1

3
(x� 2)

�
+

16

"

�
1

9
(10� 11x) +

1

3
(x� 2) ln(1� x) +

2

3
(x� 2) lnx

�
;

B
gq
FF =

4

"2

�
3 x� 4 (x� 2) ln(1� x) + 2 (x� 2) ln x

�

+
2

"

�
12 (x� 2) Li2(1� x) + 8 (2� x) �(2)+ 6 (2� x) ln2(1� x) + 3 (x� 2) ln2 x

+4 (x� 2) lnx ln(1� x)� 2 (4� 7 x) ln(1� x) + 7 x lnx+ 9� 14 x

�
;

B
gg
Af =

32

"2

(
�

�
1

1� x

�
+

+ 2 x� 1�
11

9
�(1� x)

)

+
8

"

(
�
8

3

�
ln(1� x)

1� x

�
+

+

�
16

3
x�

8

3

�
ln(1� x) + 3

�
1

1� x

�
+

+

�
6 x�

8

3 (1� x)
� 2

�
ln x�

26

3
x+

20

3
+

�
271

27
�
8

3
�(2)

�
�(1� x)

�
;

B
gg
Ff =

8

"2

�
4 (1+ x) lnx + 10 (1� x)

�

+
4

"

�
8 (1 + x) Li2(1� x) + 8 (1+ x) ln x ln(1� x) + 6 (1+ x) ln2 x

+20 (1� x) ln(1� x) + (6� 14 x) lnx+ 22 (x� 1) + �(1� x)

�
;

B
gg
AA =

4

"2

(
16

�
ln(1� x)

1� x

�
+

+ 16 (1� 2 x) ln(1� x) + 22

�
1

1� x

�
+

�8

�
3 +

1

1� x

�
ln x+ 20 x� 42 + �(1� x)

�
121

9
� 8 �(2)

��

+
2

"

�
�32 (1 + x)Li2(1� x) +

�
�16 x�

8

1 + x
� 8

�
Li2(�x)

+

 
�16 x+ 4

�
1

1� x

�
+

�
4

1 + x

!
�(2) +

�
�16 x�

8

1 + x
� 8

�
ln x ln(1 + x)

+ 24

 
ln2(1� x)

1� x

!
+

+
88

3

�
ln(1� x)

1� x

�
+

+ (�48 x+ 24) ln2(1� x)

+

�
�48 x+

8

1� x
� 24

�
ln x ln(1� x) +

�
2

1 + x
� 32�

10

1� x

�
ln2 x

+

�
208

3
x�

320

3

�
ln(1� x) +

�
�14 x+

88

3 (1� x)
� 38

�
ln x� 43

�
1

1� x

�
+

+
119

3
�

29

3
x+ �(1� x)

�
88

3
�(2) + 10 �(3)�

1663

27

��
:

Here the function Li2(y) stands for the dilogarithm which can be found in [28]. After sub-

stitution of the one-loop order coe�cients �0 (2.15), z� (2.19), the Mellin transforms of P
(0)
k;ij�

= 

(0);m
k;ij

�
(3.52){(3.55) and a

(1)
k;ij (3.56){(3.59) into the algebraic expressions for Âk;ij in

(2.25){(2.31) one can equate the latter with the results obtained for Âk;ij as presented above

in (3.61){(3.64). From this one infers the two-loop contribution to the anomalous dimensions

which are the unknown coe�cients in eqs. (2.25){(2.31). After performing the inverse Mellin

15



transform we get the splitting functions. The non-singlet splitting function P
(1)
NS;qq is the

same as obtained in the spin-averaged case (see e.g. [16, 17]). In order to obtain the singlet

splitting function P
(1)
S;qq one has to add to P

(1)
NS;qq the quantity P

(1)
PS;qq given below.

P
(1)
PS;qq = CF Tf

h
�16(1 + x) ln2 x� 16(1� 3x) ln x+ 16(1� x)

i
: (3.65)

Furthermore we have the singlet splitting functions

P
(1)
S;qg = 4CA Tf [�8(1 + 2x)Li2(�x)� 8�(2)� 8(1 + 2x) lnx ln(1 + x)

+ 4(1� 2x) ln2(1� x)� 4(1 + 2x) ln2 x

�16 (1� x) ln(1� x) + 4 (1 + 8x) ln x� 44 x+ 48]

+4CF Tf

h
8 (1� 2x)�(2)� 4 (1� 2x) ln2(1� x)

+ 8 (1� 2x) ln x ln(1� x)� 2 (1� 2x) ln2 x

+16 (1� x) ln(1� x)� 2(1� 16x) ln x+ 4 + 6x] ; (3.66)

P
(1)
S;gq = CACF

h
16 (2 + x)Li2(�x) + 16 x �(2)+ 8 (2� x) ln2(1� x)

+ 16 (2+ x) ln x ln(1 + x) + 8 (2 + x) ln2 x

+ 16 (x� 2) ln x ln(1� x) +

�
80

3
+

8

3
x

�
ln(1� x)

+8 (4� 13 x) lnx+
328

9
+
280

9
x

�

+C2
F

h
8 (x� 2) ln2(1� x)� 4 (x� 2) ln2 x � 164 + 128 x

�8 (x+ 2) ln(1� x)� 4 (20 + 7 x) lnx]

+CFTf

�
�
32

9
(4 + x) +

32

3
(x� 2) ln(1� x)

�
; (3.67)

P
(1)
S;gg = C2

A

"�
64x+

32

1 + x
+ 32

�
Li2(�x) +

 
64x� 16

�
1

1� x

�
+

+
16

1 + x

!
�(2)

+

�
8

1� x
�

8

1 + x
+ 32

�
ln2 x+

�
64x+

32

1 + x
+ 32

�
ln x ln(1 + x)

+

�
64x�

32

1� x
� 32

�
ln x ln(1� x) +

�
232

3
�
536

3
x

�
ln x

+
536

9

�
1

1� x

�
+

�
388

9
x�

148

9
+ �(1� x)(24�(3)+

64

3
)

#

+CATf

"
�
160

9

�
1

1� x

�
+

�
32

3
(1 + x) ln x�

448

9
+
608

9
x

�
32

3
�(1� x)

�

+CFTf

h
�16(1 + x) ln2 x+ 16(x� 5) ln x� 80(1� x)

�8�(1� x)] : (3.68)
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For practical purposes, and the discussion of the results obtained above in the next section,

it is also useful to present the one- and two-loop anomalous dimensions which are related to

the splitting functions via the Mellin transform


mk;ij = �

Z 1

0
dx xm�1 Pk;ij(x): (3.69)

The one-loop contribution to the anomalous dimensions become



(0);m
NS;qq = 


(0);m
S;qq = CF

�
8S1(m� 1) +

4

m
+

4

m+ 1
� 6

�
; (3.70)



(0);m
S;qg = Tf

�
8

m
�

16

m+ 1

�
; (3.71)



(0);m
S;gq = CF

�
4

m+ 1
�

8

m

�
; (3.72)



(0);m
S;gg = CA

�
8S1(m� 1)�

8

m
+

16

m+ 1
�
22

3

�
+
8

3
Tf : (3.73)

The two-loop non-singlet anomalous dimension 

(1);m
NS;qq is the same as found for the spin

averaged operator (see e.g. [15, 16]). To obtain the singlet anomalous dimension 

(1);m
S;qq one

has to add 

(1);m
NS;qq the quantity 


(1);m
PS;qq which reads



(1);m
PS;qq = CFTf 16

�
2

(m+ 1)3
+

3

(m+ 1)2
+

1

(m+ 1)
+

2

m3
�

1

m2
�

1

m

�
: (3.74)

Furthermore we have the singlet anomalous dimensions



(1);m
S;qg = 16CATf

"
�
S21(m� 1)

m
+

2S21(m� 1)

m+ 1
�
2S1(m� 1)

m2
+
4S1(m� 1)

(m+ 1)2

�
S2(m� 1)

m
+
2S2(m� 1)

m+ 1
�
2 ~S2(m� 1)

m
+
4 ~S2(m� 1)

m+ 1

�
4

m
+

3

m+ 1
�

3

m2
+

8

(m+ 1)2
+

2

m3
+

12

(m+ 1)3

�

+8CFTf

"
2S21(m� 1)

m
�

4S21(m� 1)

m+ 1
�
2S2(m� 1)

m
+
4S2(m� 1)

m+ 1

�
10

m
+

5

m+ 1
+

7

m2
+

8

(m+ 1)2
�

2

m3
+

4

(m+ 1)3

�
; (3.75)



(1);m
S;gq = 8CACF

"
�
2S21(m� 1)

m
+
S21(m� 1)

m+ 1
+

16S1(m� 1)

3m
�

5S1(m� 1)

3(m+ 1)

+
2S2(m� 1)

m
�
S2(m� 1)

m+ 1
+

4~S2(m� 1)

m
�
2 ~S2(m� 1)

m+ 1
�

56

9m

�
20

9(m+ 1)
+

28

3m2
�

38

3(m+ 1)2
�

4

m3
�

6

(m+ 1)3

�

+4C2
F

"
4S21(m� 1)

m
�

2S21(m� 1)

m+ 1
�
8S1(m� 1)

m
+
2S1(m� 1)

m+ 1
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+
8S1(m� 1)

m2
�
4S1(m� 1)

(m+ 1)2
+
4S2(m� 1)

m
�
2S2(m� 2)

m+ 1

+
39

m
�

30

m+ 1
�

28

m2
�

5

(m+ 1)2
+

4

m3
�

2

(m+ 1)3

�

+32CFTf

�
�
2S1(m� 1)

3m
+
S1(m� 1)

3 (m+ 1)
+

7

9m

�
2

9 (m+ 1)
�

2

3m2
+

1

3 (m+ 1)2

�
; (3.76)



(1);m
S;gg = 4C2

A

�
134

9
S1(m� 1) +

8S1(m� 1)

m2
�

16S1(m� 1)

(m+ 1)2

+
8S2(m� 1)

m
�

16S2(m� 1)

m+ 1
+ 4S3(m� 1)

� 8S1;2(m� 1)� 8S2;1(m� 1) +
8 ~S2(m� 1)

m
�
16 ~S2(m� 1)

m+ 1

+ 4 ~S3(m� 1)� 8 ~S1;2(m� 1)�
107

9m
+

241

9 (m+ 1)

+
58

3m2
�

86

3 (m+ 1)2
�

8

m3
�

48

(m+ 1)3
�
16

3

�

+32CATf

�
�5S1(m� 1)

9
+

14

9m
�

19

9 (m+ 1)
�

1

3m2
�

1

3 (m+ 1)2
+

1

3

�

+8CFTf

�
�

10

m + 1
+

2

(m+ 1)2
+

4

(m+ 1)3
+ 1 +

10

m
�

10

m2
+

4

m3

�
; (3.77)

where we have introduced the following notations

Sk(m� 1) =
m�1X
i=1

1

ik
;

~Sk(m� 1) =
m�1X
i=1

(�1)i

ik
;

Sk;l(m� 1) =
m�1X
i=1

1

ik
Sl(i);

~Sk;l(m� 1) =
m�1X
i=1

1

ik
~Sl(i):

To check our results for the two-loop splitting functions (anomalous dimensions) we have

also used the BPHZ method [19] as mentioned at the end of section 2. Here we renormalized

the OME's graph by graph and found �nally the same results as listed in (3.65){(3.67). As

already mentioned in the beginning the above splitting functions and anomalous dimensions

have been calculated in the MS scheme. If one prefers another scheme the corresponding

anomalous dimensions are related to the MS ones in the following way


NS;qq = �
NS;qq + �(g)ZNS
dZ�1NS

dg
; (3.78)


S;ij = Zil�
lm

�
Z�1

�
mj

+ �(g)Zil
d (Z�1)lj

dg
; (3.79)
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where �
k;qq (k = NS; S) denotes the anomalous dimension in the MS scheme and ZNS , Zij
are �nite operator renormalization constants. Up to order g2 they can be expressed as follows

ZNS = 1+
g2

16�2
zqq; (3.80)

Z =

 
1 + g2

16�2
zqq

g2

16�2
zqg

g2

16�2
zgq 1 + g2

16�2
zgg

!
: (3.81)

Substitution of eqs. (3.80), (3.81) into eqs. (3.78), (3.79) yields



(1)
NS;qq = �


(1)
NS;qq + 2�0zqq; (3.82)



(1)
S;qq = �


(1)
S;qq + 2�0zqq + zqg�


(0)
S;gq � �


(0)
S;qgzgq; (3.83)



(1)
S;qg = �


(1)
S;qg + 2�0Zqg + zqg

�
�

(0)
S;gg � �


(0)
S;qq

�
+ �


(0)
S;qg (zqq � zgg) ; (3.84)



(1)
S;gq = �


(1)
S;gq + 2�0zgq + zgq

�
�

(0)
S;qq � �


(0)
S;gg

�
+ �


(0)
S;gq (zgg � zqq) ; (3.85)



(1)
S;gg = �


(1)
S;gg + 2�0zgg + zgq�


(0)
S;qg � �


(0)
S;gqzqg : (3.86)

Before �nishing this section we want to make a comment on the spin splitting functions

and the anomalous dimensions calculated above. Two of them, i.e., P
(1)
PS;qq (


(1)
PS;qq) and

P
(1)
S;qg (


(1)
S;qg) have been already calculated in the literature [9]. They were obtained via

mass factorization of the partonic cross sectoin of the subprocesses 
� + q ! q + q + �q and


�+ g ! g + q + �q including the virtual corrections to 
�+ g ! q + �q. The result for P
(1)
PS;qq

(3.65) agrees with eq. (3.37) in [9]. However the expression for P
(1)
S;qg in (3.66) di�ers from

the one obtained in eq. (3.38) of [9] by a �nite renormalization, i.e.,

P
(1)
S;qg([9])� P

(1)
S;qg(3:66) = P

(0)
S;qg 
 zqq; (3.87)

with

zqq = �16CF (1� x); (3.88)

and 
 denotes the convolution symbol

(f 
 g)(x) =

Z 1

0
dx1

Z 1

0
dx2 �(x� x1x2) f(x1) g(x2): (3.89)

This �nite renormalization is due to a di�erent 
5-prescription used in [9].

The above splitting functions, which are calculated in the MS scheme, have to be combined

with the quark and gluon coe�cient functions (2.10) computed in the same scheme in order

to perform a complete next-to-leading order analysis. The quark coe�cient function can be

found in [9, 11] and it equals to

~Eq(x;Q
2; �2) = �(1� x) +

g2

16�2
CF

"(
4

�
1

1� x

�
+
� 2� 2 x

+3 �(1� x)g ln
Q2

�2
+ 4

�
ln(1� x)

1� x

�
+

� 2 (1 + x) ln(1� x)

�2
1 + x2

1� x
ln x� 3

�
1

1� x

�
+

+ 4 + 2 x� �(1� x)(9 + 4�(2))

#
:(3.90)
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The gluon coe�cient function (see e.g. [9, 29]) gets the form

~Eg(x;Q
2; �2) =

g2

16�2
Tf

"
(8 x� 4) ln

Q2

�2
+ (8 x� 4) ln(1� x)

�(8 x� 4) lnx+ 12� 16 x] : (3.91)

The Mellin transforms of ~Ek (k = q; g) become

~Em
q (Q

2; �2) = 1 +
g2

16�2
CF

"�
3�

2

m
�

2

m+ 1
� 4S1(m� 1)

�
ln
Q2

�2

+

�
2

m
+

2

m+ 1
+ 3

�
S1(m� 1) + 4S1;1(m� 1)

�4S2(m� 1) +
6

m
� 9

�
; (3.92)

~Em
g (Q

2; �2) =
g2

16�2
Tf

"�
8

m+ 1
�

4

m

�
ln
Q2

�2
+

�
4

m
�

8

m+ 1

�
S1(m� 1)

+
4

m
�

8

m+ 1

�
: (3.93)

Notice that the �rst moment ~E1
q = 1 � 3(g2=(16�2))CF agrees with eq. 6 of [10]. Further-

more we have ~E1
g = 0 (see [11]). Both properties are characteristic of our choice of the


5-prescription and the fact that the anomalous dimensions are calculated in the MS scheme.

4 Properties of the spin anomalous dimensions

In this section we will discuss some of the properties of the splitting functions and anomalous

dimensions which have been calculated in the last section. Let us start with the �rst moments

of the spin anomalous dimensions in the MS scheme.



(0);1
NS;qq = 0 


(1);1
NS;qq = 0; (4.94)



(0);1
S;qq = 0 


(1);1
S;qq = 24CF Tf ; (4.95)



(0);1
S;qg = 0 


(1);1
S;qg = 0; (4.96)



(0);1
S;gq = �6CF 


(1);1
S;gq = �6C2

F �
142

3
CA CF +

8

3
CF Tf ; (4.97)



(0);1
S;gg = �2 �0 = �

�
22

3
CA �

8

3
Tf

�
; (4.98)



(1);1
S;gg = �2 �1 = �

68

3
C2
A + 8CF Tf +

40

3
CA Tf ; (4.99)

where �0 and �1 are the �rst and second order coe�cients in the perturbation series of the

�-function (2.15).

In the above we have assumed that there is one 
avour only in the fermion loops of the OME

graphs. If there are more light 
avours the Tf in the above expressions have to be multiplied

by the number of light 
avours indicated by nf (see (2.16), (2.17)). The vanishing of the �rst
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moment of the non-singlet anomalous dimension follows from the conservation of the axial

vector current R
�
NS;qq(x). The value of the singlet anomalous dimension 


(1);1
S;qq was already

calculated in [29]. It is due to the anomaly of the singlet axial vector current R
�
S;q(x) which

contributes via the triangular fermion loops to 

(1);1
S;qq in second order perturbation theory. The

vanishing of 

(1);1
S;gq was shown on general grounds in [30], see also [31]. From the last reference

we also infer (see eq. (22) in [31]) that 

(1);1
S;gg = �2�1 , provided the anomalous dimension is

calculated in the MS scheme. Finally we want to investigate an interesting relation which is

conjectured for an N = 1 supersymmetric Yang-Mills �eld theory. It can be derived from

QCD by putting the colour factors CF = CA = N and Tf = N=2 [32]. The relation reads as

follows. First de�ne

�
 = 
S;qq + 
S;gq � 
S;qg � 
S;gg: (4.100)

For an N = 1 supersymmetric Yang-Mills �eld theory one has

�
 = 0; (4.101)

provided �
 is calculated in a renormalization scheme which preserves the supersymmetric

Ward identities. In many cases one has shown that at least up to two loops n-dimensional

reduction is a regularization method which respects the supersymmetric Ward identities.

Therefore a renormalization scheme where the pole terms plus the additional constants 
E
(Euler constant) and ln 4� are subtracted (MS scheme) will respect these Ward identities

too. In lowest order, where there is no di�erence between n-dimensional regularization and

n-dimensional reduction, the above relation holds for the spin as well as spin averaged anoma-

lous dimensions. If one assumes that the two-loop anomalous dimensions calculated in the

two regularization schemes (n-dimensional reduction and n-dimensional regularization) are

related to each other via a �nite renormalization one can derive the following relation [33]

� 

(1);m
RED � � 


(1);m
REG =

�
2 �0 � 


(0);m
S;qg � 


(0);m
S;gq

� �
� a

(1);m
RED � � a

(1);m
REG

�
; (4.102)

with

� a(1) = a
(1)
S;qq + a

(1)
S;gq � a

(1)
S;qg � a

(1)
S;gg ; (4.103)

where the terms a
(1)
S;ij;REG and a

(1)
S;ij;RED are the non-pole parts of the OME's in (2.25){

(2.31) which are calculated using n-dimensional regularization and n-dimensional reduction

respectively. Equation (4.102) can be easily derived from eqs. (3.82){(3.86) by putting �
(0) =

0 and zij = aS;ij;REG{aS;ij;RED. If one makes the additional assumption ��
(1) = ��

(1)
RED =

0 (4.101) relation (4.102) turns out to be valid for the two-loop spin averaged anomalous

dimensions which is checked in [33].

In the case of the spin anomalous dimensions we obtain the following results

a
(1)
S;qq;REG � a

(1)
S;qq;RED = N [�2 + 2 x+ �(1� x)] ; (4.104)

a
(1)
S;qg;REG � a

(1)
S;qg;RED = 0; (4.105)

a
(1)
S;gq;REG � a

(1)
S;gq;RED = 0; (4.106)

a
(1)
S;gg;REG � a

(1)
S;gg;RED = N

�
1

3
�(1� x)

�
: (4.107)
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If we assume that � 

(1)
RED = 0 then (from (4.102))

� 

(1);m
REG = 4�

8

m2
+

8

(m+ 1)2
�
28

3

1

m
+
44

3

1

m+ 1
; (4.108)

which is in disagreement with the result of our calculation derived from eqs. (3.74) (3.77)

which is equal to

� 

(1);m
REG = 4 +

548

3

1

m
�

532

3

1

m+ 1
�

104

m2
�

88

(m+ 1)2
: (4.109)

We tried to explain the di�erence between the prediction in (4.108), which is based on su-

persymmetry, and the result (4.109) obtained by our calculations. Therefore we investigated

the �ndings in [33] for the spin averaged anomalous dimensions and found a surprising result.

Since all external legs of the OME's are put o� shell one can split Ĝm
k;iq (3.49) and Ĝ

m;�;�
k;ig

(3.50) into a so-called physical and unphysical part. In the case of Ĝm
k;iq the former part is

proportional to �= whereas the latter part is multiplied by p= . This property holds for the

spin as well as spin averaged operators. In the spin case Ĝ
m;��
S;ig has a physical part only

which is proportional to "������p� . However for the spin averaged case one also encoun-

ters unphysical parts in the OME's. Here the physical part is the coe�cient of the tensor

g�� � (��p� + p���)=(�p) + ����p
2=(�p)2. Limiting ourselves to the physical parts of

the non-pole terms a
(1)
S;ij we �nd the following results. The spin averaged OME's satisfy the

relation (Feynman gauge)

�a
(1)
RED = 0; (4.110)

whereas the spin OME's lead to

�a
(1)
RED = N [�4 + 4 x] : (4.111)

Property (4.110) was not mentioned in [33]. However it might explain why �

(1)
RED = 0 for

the spin averaged case since the physical part of the unrenormalized one-loop OME's already

satisfy the supersymmetric relation. Hence we have the suspicion that because of (4.111),

�

(1)
RED 6= 0 for the spin anomalous dimensions which explains the discrepancy between (4.108)

and (4.109). Notice that (4.111) is obtained in the MS scheme. Therefore we have made an

oversubtraction so that �a
(1)
RED = 0. If we now assume that after this subtraction �


(1)
RED = 0

and recalculate �a
(1)
REG (Feynman gauge) by keeping the physical part only we obtain 2

�a
(1)
REG = N

�
�6 + 6 x+

2

3
�(1� x)

�
; (4.112)

and from (4.102)

�

(1);m
REG = 4�

24

m2
+

24

(m+ 1)2
�
100

3

1

m
+
116

3

1

m+ 1
: (4.113)

By comparing (4.109) with (4.113) we observe again a discrepancy between our calculation

and the prediction obtained from the supersymmetric relation except for m = 1 where we

2Notice that the gauge dependent terms cancel in �a
(1);m
RED � �a

(1);m
REG .
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have agreement. The reason for the violation of the supersymmetric relation (4.101) in the

case of the spin anomalous dimensions is not known to us. It cannot be attributed to an

error in the scalar Feynman integrals because they were also used to recalculate the spin

averaged anomalous dimensions which we found to be in agreement with the results quoted

in the literature. It might be due to our 
5-prescription. However di�erent 
5-prescriptions

are related via �nite renormalizations and the discrepancy between (4.109) and (4.108) or

(4.113) cannot be explained by such an e�ect. Finally we want to emphasize that to our

knowledge the formal proof of the supersymmetric relation �
 = 0 is still lacking in the

literature.

Appendix A: The operator vertices

In this appendix we present the twist-2 operator vertices. All momenta are 
owing into the

operator vertex.

A.1 Quark-(gluon) operator vertices

The quark-antiquark vertex is equal to

O(p) = ��=
5(�p)
m�1; (A.1)

where p denotes the momentum of the incoming quark line.

The quark-quark-gluon vertex is given by

O�
a (p; q) = �g Ta�

��=
5

m�2X
i=0

(�p)m�i�2(��q)i; (A.2)

where p and q are the momenta of the incoming quark and antiquark respectively.

The quark-quark-gluon-gluon vertex equals

O
��
ab (p; q; r; s) = g2�����=
5

�

2
4TaTb

0
@(�1)mm�3X

j=0

jX
i=0

(�1)j(�p)i(�q)m�j�3((�p) + (�s))j�i

1
A

�TbTa

0
@m�3X

j=0

jX
i=0

(�1)j(�p)m�j�3(�q)j((�q) + (�s))j�i

1
A
3
5 : (A.3)

A.2 Gluon-operator vertices

The 2-gluon vertex is given by

O
��
ab (p) = i"���p(1� (�1)m)(�p)m�1�ab: (A.4)

The 3-gluon vertex is equal to

O
���
abc (p; q; r) = g(1� (�1)m) fabcO

���(p; q; r); (A.5)
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with

O���(p; q; r) = �("��p��� � "��p���)(�p)m�2 � ("���q�� + "���q��)(�q)m�2

�("���r�� � "���r��)(�r)m�2

+
m�3X
i=0

(��p)i(�q)m�i�3��("�p�q�� + "���q(�p))

�
m�3X
i=0

(��r)i(�p)m�i�3��("�p�r�� + "���p(�r))

�
m�3X
i=0

(��r)i(�q)m�i�3��("��qr�� � "���q(�r)): (A.6)

The 4-gluon vertex equals

O
����
abcd (p; q; r; s) = i g2 (1� (�1)m) [fabefcdeO

����(p; q; r; s)

+facefbdeO
����(p; r; q; s)� fadefbceO

����(r; q; p; s)] ; (A.7)

where

O����(p; q; r; s) = ("������ � "������)((�r) + (�s))m�2

���("���s�� � "���s��)
m�3X
i=0

((�r) + (�s))i(�s)m�i�3

+��("��r��� � "��r���)
m�3X
i=0

((�p) + (�q))m�i�3(�(�r))i

+��
m�3X
i=0

((�r) + (�s))m�i�3(�(�p))i("���p�� � "���p��)

+��
m�3X
i=0

((�r) + (�s))m�i�3(�(�q))i("���q�� � "���q��)

+����
m�4X
j=0

jX
i=0

(�p)m�j�4((�p) + (�q))j�i(�(�s))i("��ps�� + "���s(�p))

�����
m�4X
j=0

jX
i=0

(�q)m�j�4((�p) + (�q))j�i(�(�s))i("��qs�� + "���s(�q))

�����
m�4X
j=0

jX
i=0

(�p)m�j�4(�(�r))i((�p) + (�q))j�i("��pr�� + "���p(�r))

+����
m�4X
j=0

jX
i=0

(�q)m�j�4(�(�r))i((�p) + (�q))j�i("��qr�� + "���q(�r)): (A.8)

Appendix B: The tensorial reduction

In this appendix we present a more detailed explanation of the tensorial reduction of the

tensor Feynman integrals into scalar integrals.
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According to the reading point method [20] we can put the 
5-matrix at the right end of

the traces. Then one can perform all straightforward simpli�cations of the 
-matrix algebra

inside the traces. Furthermore we leave the 
5-matrix untouched except that at the end

we take Tr
�

�
�
�
�
5

�
= �4 i ����� In the case of the one-loop integrals the tensorial

reduction can be very easily achieved via the standard Feynman parameter techniques. Since

we do not need tensor integrals beyond rank two it is su�cient to list the following integrals

Iij =

Z
dnq

(2�)n
(�q)m

[q2]
i
[(q � p)2]

j

= i Sn
(�p2)n=2

(p2)i+j
(�p)m

�
�
i+ j � n

2

�
�(i)�(j)

Z 1

0
dx xm xn=2�1�i(1� x)n=2�1�j ; (B.1)

I
�
ij =

Z
dnq

(2�)n
q� (�q)m

[q2]
i
[(q � p)2]

j

= i Sn
(�p2)n=2

(p2)i+j
(�p)m

1

�(i)�(j)

Z 1

0
dx xm xn=2�1�i(1� x)n=2�1�j

�

�
�(i+ j �

n

2
)xp� +

1

2

��
i+ j �

n

2

�
(1� 2 x)

+�(i+ j � 1�
n

2
)((1� x)(1� j)� x(1� i))

�
��p2

�p

#
; (B.2)

I
��
ij =

Z
dnq

(2�)n
q� q� (�q)m

[q2]i [(q � p)2]j

= i Sn
(�p2)n=2

(p2)i+j
(�p)m

1

�(i)�(j)

Z 1

0
dx xm xn=2�1�i(1� x)n=2�1�j

�

�
�(i+ j �

n

2
)x2p�p� +

1

2
�

�
i+ j � 1�

n

2

�
x(1� x)g��p2+

+
��p� + p���

2�p
p2
�
�

�
i+ j �

n

2

�
(x� 2 x2)

+�

�
i+ j � 1�

n

2

�
(�x(1� x) j + x2(i� 1))

+
����

4 (�p)2
(p2)2

�
�

�
i+ j �

n

2

�
(1� 4 x+ 4 x2)

+2 �(i+ j � 1�
n

2
)
�
(1� x)2(1� j) + x2(1� i) + x(1� x)(i+ j � 1)

�

+�

�
i+ j � 2�

n

2

�n
(1� x)2(j � 1)(j � 2) + x2(i� 1)(i� 2)

�2 x(1� x)(i� 1)(j � 1)g] ; (B.3)

where Sn is the spherical factor Sn = �
n
2 =(2�)n.

The tensorial reduction of the two-loop tensor Feynman integrals is much more complicated

and has been performed by using the program FeynCalc [31]. The numerators of the two-loop

Feynman integrals have the following structure.

Ai = f�1����ki
~fi�1����k (q1; q2); (B.4)

where q1 and q2 denote the integration momenta. Explicit forms of f
�1����k
i and ~fi;�1����k(q1; q2)
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are ("����p��� = "p��� , etc.)

f1(q1; q2) = "q1q2�p; ~f1(q1; q2) = "q1q2�p; (B.5)

f�2 (q1; q2) = "q1p��; ~f2;�(q1; q2) = "q2p��; (B.6)

f
��
3 (q1; q2) = "q1q2�� ; ~f3;��(q1; q2) = Tr(q=1q=2�=p=
�
�
5): (B.7)

The tensor integrals can be represented as

I�;��;���;����(�; p) =

Z
dnq1

(2�)n

Z
dnq2

(2�)n
K(q1; q2;�; p)

�
n
q�i ; q

�
i q

�
j ; q

�
i q

�
j q

�
k ; q

�
i q

�
j q

�
k q

�
l

o
; (B.8)

where i = 1; 2 and j = 1; 2. Further we have the de�nition

K(q1; q2;�; p) =
(�q1)

a(�q2)
b(�(p� q1))

c(�(p� q2))
d(�(q1 � q2))

e

(q21)
f (q22)

g((q1 � p)2)h((q2 � p)2)i((q1 � q2)2)j
: (B.9)

Notice that the integers a� g can take positive as well as negative integer values. By virtue

of Lorentz covariance the integral I(�; p) can now be written as

I�;��;���;����(�; p) =
X
s

n
T�
s ; T

��
s ; T���

s ; T����
s

o

�

Z
dnq1

(2�)n

Z
dnq1

(2�)n

X
r

fr(p
2; n)Kr(q1; q2;�; p); (B.10)

with

T�
s = fp�; ��g ; (B.11)

T��
s =

n
g��; p�p�; ����

o
; (B.12)

T���
s =

n
g��p�; � � � ; ������

o
; (B.13)

T����
s =

n
g��g��; � � � ; ��������

o
; (B.14)

where the Kr are of the same type as the K in (B.8) (but with di�erent indices a-j) and the

fr(p
2; n) are simple polynomial-like functions determined by the tensorial reduction.

In this way all Lorentz indices are transformed away from the integration momenta to the

external momentum p and the lightlike vector �. The advantage of the tensorial reduction

method is revealed when one evaluates e.g. the expression ~f3;�� (B.7). This gets simpli�ed

to Tr(�=p=
�
�
5) = �4 i "�p��. Hence one can avoid any 
5-prescription dependence arising

from the non-unique way of calculating a trace of six 
-matrices plus the 
5-matrix in n

dimensions. The explicit reduction formalae, which are too lengthy to be presented here, are

obtained by using projection methods. They are incorporated in the program FeynCalc 3.0

[25]. The scalar integrals which appear on the right hand side of (B.10) are calculated in [10]

using the algebraic manipulation program FORM [27]. The two-loop integrals including the

tensorial reduction have been checked by recalculating the spin averaged splitting functions

which have been computed in the past (see [14]-[17]) and we found full agreement.
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Figure captions.

Fig. 1 One-loop graphs contributing to the spin OME's; (a), (b): A
(1)
NS;qq, A

(1)
S;qq ; (c): A

(1)
S;gq;

(d), (e): A
(1)
S;qg; (f), (g): A

(1)
S;gg. Graphs with external self-energies and with triangular

fermion-loops where the arrows are reversed have been included in the calculation but

are not shown in the �gure. Graphs which are not symmetric with respect to the vertical

line through the operator vertex have to be counted twice.

Fig. 2 Two-loop graphs contributing to the spin non-singlet OME A
(2)
NS;qq. Graphs with

external self-energies have been included in the calculation but are not drawn in the

�gure. Graphs which are not symmetric with respect to the vertical line through the

operator vertex have to be counted twice.

Fig. 3 Two-loop graphs contributing to the spin pure-singlet OME A
(2)
PS;qq. Graphs with

triangular fermion loops where the arrows are reversed have been included in the cal-

culation but are not shown in the �gure. Graphs which are not symmetric with respect

to the vertical line through the operator vertex have to be counted twice.

Fig. 4 Two-loop graphs contributing to the spin singlet OME A
(2)
S;qg. Graphs with triangular

fermion loops where the arrows are reversed and diagrams containing external self

energies have been included but are not shown in the �gure. Graphs which are not

symmetric with respect to the vertical line through the operator vertex have to be

counted twice.

Fig. 5 Two-loop graphs contributing to the spin singlet OME A
(2)
S;gq . Graphs with external

self-energies have been included in the calculation but are not drawn in the �gure.

Graphs which are not symmetric with respect to the vertical line through the operator

vertex have to be counted twice.

Fig. 6 Two-loop graphs contributing to the spin singlet OME A
(2)
S;gg. Graphs with external

self-energies and diagrams with ghost and triangular fermion loops where the arrows are

reversed have been included in the calculation but are not drawn in the �gure. Graphs

which are not symmetric with respect to the vertical line through the operator vertex

have to be counted twice.
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Figure 1:

Figure 2:
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Figure 3:

Figure 4:
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Figure 5:
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Figure 6:
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