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Abstract. Local supersymmetry leads to boundary conditions for fermionic �elds in

one-loop quantum cosmology involving the Euclidean normal en
A0

A to the boundary and

a pair of independent spinor �elds  A and e A0

. This paper studies the corresponding

classical properties, i.e. the classical boundary-value problem and boundary terms in the

variational problem. If
p
2 en

A0

A  A� e A0 � �A
0

is set to zero on a 3-sphere bounding at

Euclidean 4-space, the modes of the massless spin- 1
2
�eld multiplying harmonics having

positive eigenvalues for the intrinsic 3-dimensional Dirac operator on S3 should vanish on

S3. Remarkably, this coincides with the property of the classical boundary-value problem

when spectral boundary conditions are imposed on S3 in the massless case. Moreover, the
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Boundary terms for massless fermionic �elds

boundary term in the action functional is proportional to the integral on the boundary of

�A
0

enAA0  A.
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Boundary terms for massless fermionic �elds

Locally supersymmetric boundary conditions have been recently studied in quantum cos-

mology to understand its one-loop properties. They involve the normal to the boundary

and the �eld for spin 1
2
, the normal to the boundary and the spin- 3

2
potential for gravitinos,

Dirichlet conditions for real scalar �elds, magnetic or electric �eld for electromagnetism,

mixed boundary conditions for the 4-metric of the gravitational �eld (and in particular

Dirichlet conditions on the perturbed 3-metric). The aim of this letter is to describe the

corresponding classical properties in the case of massless spin- 1
2
�elds.

For this purpose, we consider at Euclidean 4-space bounded by a 3-sphere of radius

a. The spin-1
2
�eld, represented by a pair of independent spinor �elds  A and e A0

, is

expanded on a family of 3-spheres centred on the origin as [1-3]

 A =
��

3

2

2�

1X
n=0

(n+1)(n+2)X
p=1

(n+1)(n+2)X
q=1

�pqn

h
mnp(� )�

nqA + ernp(� )�nqAi (1)

e A0

=
��

3

2

2�

1X
n=0

(n+1)(n+2)X
p=1

(n+1)(n+2)X
q=1

�pqn

hemnp(� )�
nqA0

+ rnp(� )�
nqA0

i
: (2)

With our notation, � is the Euclidean-time coordinate, the �pqn are block-diagonal matrices

with blocks

�
1 1

1 �1
�
, the �� and �-harmonics obey the identities described in [1,3]. Last

but not least, the modes mnp and rnp are regular at � = 0, whereas the modes emnp and

ernp are singular at � = 0 if the spin-1
2
�eld is massless. Bearing in mind that the harmonics

�nqA and �nqA
0

have positive eigenvalues 1
2

�
n + 3

2

�
for the 3-dimensional Dirac operator

on the bounding S3 [3], the decomposition (1-2) can be re-expressed as

 A =  A(+) +  A(�) (3)
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e A0

= e A0

(+) +
e A0

(�) : (4)

In (3-4), the (+) parts correspond to the modes mnp and rnp, whereas the (�) parts

correspond to the singular modes emnp and ernp, which multiply harmonics having negative

eigenvalues �1
2

�
n + 3

2

�
for the 3-dimensional Dirac operator on S3. If one wants to �nd

a classical solution of the Weyl equation which is regular 8� 2 [0; a], one is thus forced to

set to zero the modes emnp and ernp 8� 2 [0; a] [1]. This is why, if one requires the local

boundary conditions [3]

p
2 en

A0

A  A � e A0

= �A
0

on S3 (5)

such a condition can be expressed as [3]

p
2 en

A0

A  A(+) = �A
0

1 on S3 (6)

� e A0

(+) = �A
0

2 on S3 (7)

where �A
0

1 and �A
0

2 are the parts of the spinor �eld �A
0

related to the �- and �-harmonics

respectively. In particular, if �A
0

1 = �A
0

2 = 0 on S3 as in [2,3], one �nds

1X
n=0

(n+1)(n+2)X
p=1

(n+1)(n+2)X
q=1

�pqn mnp(a) en
A0

A �Anq = 0 (8)

1X
n=0

(n+1)(n+2)X
p=1

(n+1)(n+2)X
q=1

�pqn rnp(a) �
A0

nq = 0 (9)

where a is the 3-sphere radius. Since the harmonics appearing in (8-9) are linearly in-

dependent, these relations lead to mnp(a) = rnp(a) = 0 8n; p. Remarkably, this simple
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calculation shows that the classical boundary-value problems for regular solutions of the

Weyl equation subject to local or spectral conditions on S3 share the same property pro-

vided �A
0

is set to zero in (5): the regular modes mnp and rnp should vanish on the

bounding S3.

To study the corresponding variational problem for a massless fermionic �eld, we

should now bear in mind that the spin- 1
2
action functional in a Riemannian 4-geometry

takes the form [2,3]

IE =
i

2

Z
M

h e A0

�
rAA0 A

�
�
�
rAA0

e A0

�
 A
ip

det g d4x + bIB : (10)

This action is real, and the factor i occurs by virtue of the convention for Infeld-van der

Waerden symbols used in [2,3]. In (10) bIB is a suitable boundary term, to be added to en-

sure that IE is stationary under the boundary conditions chosen at the various components

of the boundary (e.g. initial and �nal surfaces, as in [1]). Of course, the variation �IE of

IE is linear in the variations � A and � e A0

. De�ning � � 2
i
and �bIB � IB , variational

rules for anticommuting spinor �elds lead to

�
�
�IE

�
=

Z
M

h
2� e A0

�
rAA0 A

�ip
det g d4x�

Z
M

h�
rAA0

e A0

�
2� A

ip
det g d4x

�
Z
@M

h
enAA0

�
� e A0

�
 A
ip

det h d3x +

Z
@M

h
enAA0

e A0

�
� A

�ip
det h d3x

+ �IB (11)

where IB should be chosen in such a way that its variation �IB combines with the sum of

the two terms on the second line of (11) so as to specify what is �xed on the boundary
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(see below). Indeed, setting � = �1 and using the boundary conditions (5) one �nds

enAA0
e A0

=
�p
2
 A � � enAA0�A

0

on S3 : (12)

Thus, anticommutation rules for spinor �elds [1] show that the second line of equation (11)

reads

�I@M � �
Z
@M

h�
� e A0

�
enAA0 A

ip
det h d3x+

Z
@M

h
enAA0

e A0

�
� A

�ip
det h d3x

= �

Z
@M

enAA0

h�
��A

0

�
 A � �A

0

�
� A

�ip
det h d3x : (13)

Now it is clear that setting

IB � �

Z
@M

�A
0

enAA0  A
p
det h d3x ; (14)

enables one to specify �A
0

on the boundary, since

�
h
I@M + IB

i
= 2�

Z
@M

enAA0

�
��A

0

�
 A
p
det h d3x : (15)

Hence the action integral (10) appropriate for our boundary-value problem is

IE =
i

2

Z
M

h e A0

�
rAA0 A

�
�
�
rAA0

e A0

�
 A
ip

det g d4x

+
i�

2

Z
@M

�A
0

enAA0  A
p
det h d3x : (16)

Note that, by virtue of (5), equation (13) may also be cast in the form

�I@M =
1p
2

Z
@M

h e A0

�
��A0

�
�
�
� e A0

�
�A0

ip
det h d3x ; (17)
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which implies that an equivalent form of IB is

IB �
1p
2

Z
@M

e A0

�A0

p
det h d3x : (18)

The local boundary conditions studied at the classical level in this paper, have been

applied to one-loop quantum cosmology in [2-4]. Interestingly, our work seems to add

evidence in favour of quantum amplitudes having to respect the properties of the classical

boundary-value problem. In other words, if fermionic �elds are massless, their one-loop

properties in the presence of boundaries coincide in the case of spectral [1,3,5] or local

boundary conditions [2-4], while we �nd that classical modes for a regular solution of

the Weyl equation obey the same conditions on a 3-sphere boundary with spectral or local

boundary conditions, provided the spinor �eld �A
0

of (5) is set to zero on S3. We also hope

that the analysis presented in Eqs. (10)-(18) may clarify the spin- 1
2
variational problem

in the case of local boundary conditions on a 3-sphere (cf. the analysis in [6] for pure

gravity).
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