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Abstract

The Hartle-Hawking ‘no-boundary’ state is constructed explicitely for the

recently developed supersymmetric minisuperspace model with non-vanishing

fermion number.

Spatially homogeneous models both in gravity and in supergravity have enjoyed some

popularity in recent years as a testing ground for new ideas in quantum cosmology. One

such idea, which has been discussed extensively in the literature, is the proposal by Hartle

and Hawking for the construction of the ‘wave-function of the universe’, including gravity

[1]. According to this proposal the quantum state of the universe is formally given by the

Euclidean path-integral of exp[-action] over all compact 4-geometries, containing a given

compact 3-geometry (the argument of the wave-function) as its only boundary. This is why

it is also called the ‘no-boundary’ state. While this idea of striking (but also deceptive)

simplicity could be partially implemented, e.g. in spatially homogeneous minisuperspace

models, like a closed Friedmann universe with a scalar field [1] or an anisotropic Bianchi

type IX universe with a cosmological constant [2] its use in supersymmetric minisuperspace

models has caused some difficulty.

The supersymmetric Friedmann model without matter was treated successfully [3] but
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lacks sufficient degrees of freedom to permit a physically meaningful discussion of this is-

sue. The inclusion of a spatially homogeneous supersymmetric scalar matter-field has, so

far, led only to explicit solutions of the wormhole-type [3,4]. The first treatments of the

spatially homogenous supersymmetric anisotropic Bianchi type IX model without matter

field concluded that a Hartle-Hawking state would not exist in such a model [5–8], the only

permitted state being that of a ‘worm-hole’ in the completely empty or filled fermion sectors

which had previously been found in [9]. Subsequently it was shown [10] that the particu-

lar SO(3) symmetry of Bianchi type IX permits an alternative homogeneity ansatz for the

Rarita-Schwinger field, and that its application replaces the permitted ‘worm-hole’ state in

the empty or filled fermion sector by a ‘no-boundary’ state in the same sector. In a recent

paper [11] we reexamined the supersymmetric minisuperspace models of Bianchi type in

class A [12] without matter fields and showed that, contrary to previous expectations, they

posses infinitely many physical states. Hence, the question of the existence and form of a

‘no-boundary’ state in such models must be reconsidered. In the present paper we (i) apply

the theory of [11] to the supersymmetric Bianchi type IX model without matter, and with

the conventional homogeneity condition for the Rarita-Schwinger field, and (ii) construct

the Hartle-Hawking ‘no-boundary’-state for that model explicitely. The dependence of that

state on the 3-metric turns out to be the same as in [10] (see also [13]), where the alternative

homogeneity condition was applied. However, the dependence on the spatially homogeneous

Rarita-Schwinger field is completely different from [10]. It turns out to be a state near the

middle of the fermion number spectrum, between the completely empty and the completely

filled fermion sectors. This state has a much better chance to permit an extension to full

supergravity, because it was proven that the physical states in full supergravity cannot ly

in the empty and filled fermion sectors [14]. A brief account of our results has already been

given in a recent conference report [15].

Let us begin recapitulating some notation and results of [11] which are necessary here.

The starting point is the Langrangean ofN = 1 supergravity in the notations defined in [16].

Space-time is assumed to be foliated by space-like 3-surfaces which are homogeneous under
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the action of a 3-dimensional homogeneity group which is here assumed to be SO(3). A

symmetric basis of 1-forms ωp then exists (p = 1, 2, 3), satisfying h1/2dωp = 1
2
δpqεqrsω

r ∧ ωs,

where hpq with h = dethpq are the purely time-dependent components of the spatial 3-

metric, and εqrs are the components of the 3-dimensional Levi-Civita tensor. The volume

of the underlying 3-sphere is V =
∫
ω1 ∧ ω2 ∧ ω3 = 16π2. In the metric representation the

independent variables are given by the spatial components of the tetrad epa(a = 0, 1, 2, 3)

satisfying epaeqa = hpq, and the spatial components of the Grassmannian Rarita-Schwinger

field ψp
α, ψ̄ α̇

p . We shall here adopt the homogeneity conditions epa = ep
a(t), ψp

α = ψp
α(t)

and shall not make use of the alternative homogeneity condition for ψp
α consistent with

SO(3) which was proposed in [10]. Introducing canonical momenta, Poisson brackets and

finally Dirac brackets in order to eliminate the appearing second class constraints one finds

canonical expressions for the supersymmetry generators Sα, S̄α̇ and the Lorentz generators

Jαβ, J̄α̇β̇ of the following form

Sα = −Cα̇βpr

(
1

2
V δpqeq

a + i
2
p+

pa
)
σaαα̇π

r
β

S̄α̇ =
(

1

2
V δpqeq

a − i
2
p+

pa
)
σaαα̇ψp

α (1)

and

Jαβ = +1
2
(σacε)αβ (epap+

p
c − epcp+

p
a)

−1
2
(ψpαπ

p
β + ψpβπ

p
α)

J̄α̇β̇ = −1
2
(εσ̄ac)α̇β̇ (epap+

p
c − epcp+

p
a) . (2)

For all conventions regarding the σ-matrices and εαβ we refer to [16]. The kernel Cα̇αpq is

defined as

Cα̇αpq = − 1
2V h1/2 (ihpqn

a − εpqre
ra) σ̄ α̇α

a (3)

na is the future oriented unit vector normal on the space-like 3-surfaces and its components

are functions of the ep
a. The variables pp+a and the Grassmannian πpα are the ‘Dirac-

conjugates’ of epa and ψp
α in the sense that the only non-vanishing Dirac-brackets are
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{ep
a, p+

q
b}
∗ = δp

qδb
a

{ψp
α, πqβ}

∗ = −δp
qδβ

α . (4)

Canonical quantization is performed in the metric (epa, ψp
α)-representation by putting

p+
p
a = −ih̄(∂/∂ep

a) πpα = −ih̄(∂/∂ψp
α) . (5)

There is an ordering ambiguity in the expression for Sα because the kernel (3) does not

commute with pp+a. Here we shall deviate from ref. [11] and adopt the choice of the ordering

as displayed explicitely in eq. (1), while in [11] we ordered the kernel Cα̇βpr to the right of p+
pa

before quantizing. While, at least so far, no reason of principle is visible to prefer one choice

of ordering over the other (or over any mixed ordering in between), the ordering chosen here

will actually simplify in an essential way the form of eq. (22) below.

With the adopted choice of operator ordering we find the explicit graded generator

algebra

[
Sα, Sβ

]
+

= 0 =
[
S̄α̇, S̄β̇

]
+

(6)[
Sα, S̄α̇

]
+

= −
h̄

2
Hαα̇ (7)[

Hαα̇, Sβ
]
−

= −ih̄εαβD̄
β̇γ̇
α̇ J̄β̇γ̇ (8)[

Hαα̇, S̄β̇

]
−

= ih̄εα̇β̇JβγDα
βγ

= ih̄εα̇β̇

[
Dα

βγJβγ + ih̄Ē γ̇δ̇
α J̄γ̇δ̇ −

ih̄na

V h1/2
σaαγ̇S̄

γ̇
]

(9)

and the well-known commutators with Jαβ, J̄α̇β̇ reflecting Lorentz transformations. The

operator Hαα̇ is here defined by the anti-commutator (7), but we have checked that it

classically differs only by terms proportional to Lorentz generators from H̃αα̇ defined by the

diffeomorphism and Hamiltonian generators Hp and H via H̃αα̇ = σaαα̇(ep
aHp + naH). The

structure functionsDα
βγ, D̄β̇ γ̇

α̇ , Ē γ̇δ̇
α are Grassmannian odd functions of epa, ψp

α. While their

explicit form is not essential, for the following, we shall here list them for completeness and

future reference

Dα
βγ = nbep

cεβδ(σbσ̄c)
γ
δ

[
h−1/2δpqεαρψq

ρ + εpqrσaαα̇C
α̇σ
sq εσρψr

ρ
(
V

2
δstet

a +
i

2
p+

sa
)]

(10)
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Ē γ̇ δ̇
α =

(
i

2V h1/2

) (
naepb + nbepa

)
εαγσ̄

γ̇γ
a σ̄ δ̇β

b ψpβ (11)

D̄β̇ γ̇
α̇ and Eα̇

γδ are given by the matrix-adjoints of these expressions. Due to the different

ordering chosen, the algebra (6)-(9) differs slightly from a corresponding result given in [11],

but both forms are, of course, fully consistent.

As all generators in (6)-(9) appear on the right-hand side the ‘graded’ algebra closes not

only classically, but also quantum mechanically. Due to the Jacobi-identity for commutators

this result is even sufficient to prove that the only remaining commutator [Hαα̇, Hββ̇]− eval-

uates to structure functions multiplied with generators Sγ, S̄γ̇, Jγδ, J̄γ̇δ̇, Hγγ̇ on the right,

i.e. we find that this spatially homogeneous model has a closed generator algebra and is free

from anomalies.

Let us now turn to the physical states of the system in the sense of Dirac [17], i.e. the

states which are annihilated by all the generators Sα, S̄α̇, Jαβ, J̄α̇β̇, Hαα̇. These states ΨF

can be parametrized by the conserved fermion number ψp
α∂/∂ψp

α = F and have the form

Ψ0 = exp
[
V

2h̄
δpqhpq

]
(12)

Ψ2 = S̄α̇S̄
α̇f(hpq) (13)

Ψ4 = SαSαg(hpq)
3∏
r=1

(ψr)
2 (14)

Ψ6 = exp
[
−
V

2h̄
δpqhpq

] 3∏
r=1

(ψr)
2 . (15)

Here the amplitudes f and g appearing in the 2- and 4-fermion sector, respectively, are

functions of the metric hpq only, which makes all states (12)-(15) Lorentz-invariant and serves

to satisfy the Lorentz-constraints. The functions f , g satisfy Wheeler-DeWitt equations,

which are obtained by applying Sα to Ψ2 and S̄α̇ to Ψ4, respectively, and using the algebra

(6)-(9) [9]. In the first case we obtain(
H

(0)
αα̇ −

h̄2

V h1/2
naσaαα̇

)
f(hpq) = 0 (16)

where we have used the identity [S̄α̇, σaαα̇n
a/h1/2] = 0 to factor out S̄α̇ to the left. We dis-

carded the possibility that the right hand side of eq. (16) could be non-zero and proportional
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to a bosonic function annihilated by S̄α̇. The reason is that all such functions are known to

vanish in full supergravity [14]. Here H(0)
αα̇ consists only of the bosonic terms of Hαα̇, i.e. of

those terms which remain if πpα is first brought to the right using its anti-commutation re-

lation with ψp
α, and is then equated to zero. In the 4-fermion sector we find in an analogous

manner

H
(1)
αα̇g(hpq) = 0 , (17)

however, H(1)
αα̇ is now obtained from Hαα̇ by bringing ψp

α to the right, using its anti-

commutation relation with πpα, and then equating it to zero.

To get explicit expressions it is useful to parametrize the spatial metric by hpq =

Ωpi(e2β)ijΩqj where Ωpi is a rotation matrix, depending on three Euler angles, and

(
e2β

)
ij

= e2α diag
(
e2β++2

√
3β−, e2β+−2

√
3β−, e−4β+

)
. (18)

It is important to note that the rotation matrix Ωpi and the parameters α, β+, β− are unique

functions of the tetrad ep
a. The diffeomorphism constraint

ep
aσ̄α̇αa H(0)

αα̇f(hpq) = 0 = ep
aσ̄α̇αa H(1)

αα̇g(hpq) (19)

is then satisfied by taking f(hpq) and g(hpq) as independent of the Euler angles of the rotation

matrices, thus f = f(α, β+, β−), g = g(α, β+, β−). There only remains the Hamiltonian

constraint

naσ̄α̇αa

(
Hαα̇

(0) −
h̄2

V h1/2
nbσbαα̇

)
f(α, β+, β−) = 0 (20)

naσ̄α̇αa Hαα̇
(1)g(α, β+, β−) = 0 . (21)

The latter reads explicitely,[
−
h̄2

V 2

(
∂

∂α

)2

+
h̄2

V 2

(
∂

∂β+

)2

+
h̄2

V 2

(
∂

∂β−

)2

+

(
∂φ

∂α

)2

−

(
∂φ

∂β+

)2

−

(
∂φ

∂β−

)2

+
h̄

V

(
−
∂2φ

∂α2
+
∂2φ

∂β2
+

+
∂2φ

∂β2
−

)]
g(α, β+, β−) = 0 (22)

with the abbreviation
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φ =
1

2
δpqhpq =

1

2
e2α

(
2e2β+ cosh 2

√
3β− + e−4β+

)
. (23)

Due to our judicious choice of ordering in eq. (1) a term proportional to h̄2

V
e−3αg(α, β+, β−)

is avoided in eq. (21), while the corresponding term is present in eq. (20), which we will

not need in the following, however. In fact we shall here only be interested in some special

explicit solutions of eq. (22), as it will turn out that the Hartle-Hawking state we are

looking for is among them. First we note that a very simple solution of eq. (22) is given

by g(hpq) ∼ exp(−V φ(hpq)/h̄), but this solution, inserted in eq. (14), gives Ψ4 = 0, i.e. it

only gives the trivial solution. Remarkably, however, there are four equally simple linearly

independent further solutions of eq. (22) which give nontrivial results for Ψ4. The first of

these is the desired Hartle-Hawking state, namely

g(hpq) = exp
[
−
V

2h̄
e2α(2e2β+(cosh 2

√
3β− − 1)

+ e−4β+ − 4e−β+ cosh
√

3β−)
]
. (24)

The other three states are

g(hpq) = exp
[
−
V

2h̄
e2α(4e2β+(sinh(

√
3β−)

2 + e−4β+

+ 4e−4β+ cosh
√

3β−)
]
. (25)

and the two further expressions obtained by rotating the (β+, β−)-axis around β+ = 0 = β−

twice by 120◦-degrees, respectively. The final form of the Hartle-Hawking state in the 4-

fermion sector, i.e. Ψ4, is obtained as a function of ψp
a and epa by acting with the operator

(SαSα) on g(hpq)Π(ψr)2. To perform this step one should express the invariants α, β+, β−

of the spatial metric in terms of the matrix elements hpq which are functions of the tetrad

via the relation hpq = ep
aeqa.

Let us now discuss the result further. The result (24) coincides in form with the amplitude

of the Hartle-Hawking state in the filled-fermion sector found in [10] by assuming a different

homogeneity condition for the Rarita-Schwinger field. By contrast, here we have assumed the

usual homogeneity condition ψp
α = ψp

α(t) and the amplitude (24), via eq. (17), corresponds
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to a state in the middle of the fermion-number spectrum, namely in the 4-fermion sector.

This change is highly wellcome, because quantum states in the empty and filled fermion

sector are known [14] not to exist in full supergravity, where the existing states are grouped

around the middle of the fermion-number spectrum, corresponding to the Dirac-vacuum

of the gravitino. Therefore the state (14), (24) may now well have a counterpart in full

supergravity.

That eq. (24) indeed gives the Hartle-Hawking state can be seen as follows: First of

all the real exponential form of g(hpq) shows that no classically allowed domain of the

spatial metric is described by this wave-function. (This is an agreement with the known

fact that no empty closed Friedmann universe can exist classically, but may exist as a

quantum fluctuation. However, it is in contrast to the classical possibility of an empty

anisotropic Bianchi-type IX mixmaster universe [18]. Such classically allowed mixmaster

solutions must therefore correspond to other solutions of eqs. (16) or (17)). The spatial metric

therefore exists in this wave-function only due to classically forbidden tunnelling processes.

To exhibit these in a semi-classical way let us write g(hpq) in the form g(hpq) ∼ exp[−V
h̄
I(hpq)]

thereby defining the Euclidean action I = I(α, β+, β−). Then the semi-classical(i.e. most

probable) tunnelling path parametrized by a suitable affine parameter λ satisfies the first-

order differential equations

pα =
∂I

∂α
= −

dα

dλ

pβ± =
∂I

∂β±
=
dβ±

dλ
. (26)

With solutions α(λ), β+(λ), β−(λ) the corresponding 4-metric has the form

ds2 =
(
3
√
V e3αdλ2 + (e2β)pqω

pωq
)
. (27)

Eqs. (27) with I = 1
2
e2α(2e2β+(cosh 2

√
3β−− 1)+ e−4β+ − 4e−β+ cosh

√
3β−) are, in fact, well

known [19]. They have been solved [19] to give the 4-metric of a compact Riemannian 4-space

filling in, without singularity, any given 3-geometry of Bianchi type IX whose metric tensor is

parametrized by α, β−, β+. For our spatially homogeneous model this is the property which
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defines the ‘no-boundary’ state, at least semi-classically.But since eq. (24) also solves the

fully quantum mechanical Wheeler DeWitt equation (21) is an exact quantum amplitude

with the required semiclassical property and hence, indeed the exact Hartle-Hawking state

of the supersymmetric Bianchi-type IX model. The states (25) can be discussed in a similar

manner. However, in these cases, the semiclassical tunnelling paths extending the given

3-geometry turn out to describe non-compact 4-geometries, as one of the scale-parameters

grows without bound in the limit α → −∞, even though the other two scale-parameters

and the metric 3-volume shrink to zero. Hence, these states (and similarly the states Ψ0,

Ψ6 of (12), (15)) do not qualify as ‘no-boundary states’.

In summary, giving an explicit solution of all constraints of a quantized supersymmetric

spatially homogenous cosmological model without matter or cosmological constant we have

found a state in one of the sectors in the middle of the spectrum of fermion numbers which

qualifies as the ‘no-boundary’ state of this system. The explicit form (24) shows that this

state, for values of the overall scale-parameter eα large compared to the Planck-length,

strongly favors isotropic metrics (β+, β− → 0). It will, of course, be interesting to extend

this analysis e.g. by allowing for a cosmological constant [20], or a matter field, or treating

the case of full supergravity [21]. While such extensions are technically more demanding the

present analysis gives clear indications how one may proceed.
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