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1. Introduction

Recent evidence suggests that, in many cases, string theories that appear very

di�erent perturbatively may in fact be equivalent when non-perturbative e�ects

are taken into account [1-4]. For example, the heterotic string compacti�ed to six

dimensions on T 4 is conjectured to be equivalent to the type II string compacti�ed

on K3 [1]. Soon after the heterotic string was discovered, it was conjectured by

Green and Witten that the heterotic string with gauge group SO(32) and the

type I string with the same gauge group might be equivalent; indeed, they have

the same low-energy e�ective �eld theory. The heterotic string spectrum contains

spinor representations of SO(32), but there are no such representations in the

perturbative spectrum of the type I string, so such representations would have

to arise as solitons of the type I theory. It was pointed out in [3] that if such a

relation were to hold, then the strong coupling limit of one should correspond to

the weak coupling limit of the other. This is certainly the case at the level of the

low-energy e�ective �eld theories [3]. In this paper further evidence supporting

this conjecture, and the conjectured self-duality of type IIB strings [1,3], will be

provided.

Evidence supporting the conjectured equivalence of type II and heterotic strings

in six dimensions was presented in [5,6], where it was shown that the heterotic string

emerges as a non-singular soliton of the type II string compacti�ed on K3 with the

correct zero-mode structure. It is believed that the type II string should also arise

as a soliton of the six-dimensional heterotic string, but the zero-mode analysis of the

natural solution in this context has so far proved problematic [6]. Such situations

in which the strong coupling limit of one string theory is the weak coupling limit

of another `dual' string theory were discussed earlier by Du� [7], who called the

phenomenon string-string duality. In the same spirit, it will be shown here that

the ten-dimensional heterotic string arises as a soliton of the type I string, which

is evidence in favour of the conjectured heterotic/type I equivalence. To complete

the picture, it would be desirable to obtain the type I string as a soliton of the
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heterotic string theory, but as yet no such soliton is known.

The heterotic string in four dimensions is believed to be self-dual: the strong

coupling limit is described by a dual heterotic string with electric and magnetic

charges interchanged, generalising to string theory the conjectured Montonen-

Olive self-duality of N = 4 supersymmetric Yang-Mills. This is a consequence

of the conjectured SL(2;Z) S-duality of the theory [8]. In [1], it was conjec-

tured that the type IIB superstring in ten dimensions also has an SL(2;Z) duality

symmetry. This would imply that this theory is also self-dual, as the SL(2;Z)

symmetry includes a transformation that interchanges weak and strong coupling

regimes. However, whereas the four-dimensional heterotic string duality inter-

changes electric and magnetic charges, this ten-dimensional duality interchanges

Neveu-Schwarz/Neveu-Schwarz (NS-NS) and Ramond-Ramond (RR) charges. It

will be shown here that the weakly coupled type IIB string has a solitonic string

that is interchanged with the fundamental type IIB string by duality and which

corresponds to the fundamental string of the dual strongly coupled theory. This

constitutes further evidence in favour of the conjectured self-duality of the type

IIB string.

2. Solitons of Heterotic and Type I Strings

The heterotic string low-energy e�ective action includes the bosonic termsZ
d10x

p�ge�2�
�
R + 4@��@

��� 1

4
F I
��F

I�� � 1

12
H���H

���

�
(2:1)

while the corresponding action for the type I string is [3]Z
d10x

p�g
�
e�2� (R + 4@��@

��)� 1

4
e��F I

��F
I�� � 1

12
H���H

���

�
(2:2)

with di�erent dilaton dependence. The substitution

g�� ! e�g�� ; �! �� (2:3)

in the heterotic action (2.1) gives the type I action (2.2). The dilaton sign ip
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implies that the heterotic string coupling constant is inversely related to the type I

string coupling constant, so that the weak coupling limit of one indeed corresponds

to the strong coupling limit of the other [3].

The heterotic string has a neutral string soliton given by [9]

ds2 =

�
1�

�a
r

�6�
(�dt2 + d�2) +

�
1 �

�a
r

�6��5=3
dr2 + r2

�
1�

�a
r

�6�1=3

d
2
7

e2� = 1 �
�a
r

�6
; H = 6a6e2� � �7

(2:4)

where � is the coordinate parameterising the string, � denotes the Hodge dual, d
2
7

is the line element on the unit seven-sphere and �7 is its volume form. This is the

extremal limit of the black string solutions of [10] and is singular on the horizon

r = a. It also preserves half of the ten-dimensional supersymmetry and saturates

the corresponding Bogomolnyi bound [9]. The solution describes the space-time

outside a fundamental string source [9] and might be thought of as a soliton which

should be identi�ed with the fundamental string.

There is also a neutral string solution of the type I string action (2.2) given by

ds2 = A1=2(�dt2 + d�2) +A�1=6
�
A�2dr2 + r2d
2

7

�
e�2� = A; A � 1 �

�a
r

�6
; H = 6a6e�2� � �7

(2:5)

This is related to (2.4) by the conformal rescaling of the metric and dilaton sign

ip (2.3). The metric is the special case � = �1=2 of the rescaled metric

~g�� = e2��g�� (2:6)

and the singularity or otherwise of this class of metrics will now be considered.

The metric

d~s2 = A�+1(�dt2 + d�2) +A�+1=3
�
A�2dr2 + r2d
2

7

�
(2:7)

(with A given by (2.5)) has a potential singularity at r = a. To investigate the
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behaviour near r = a, it is convenient to follow [11-13] and de�ne a new coordinate

� =
6(r � a)

a
(2:8)

so that the metric becomes

d~s2 = ��+1(�dt2+d�2)[1+O(�)]+��+1=3
�
a2

36
��2d�2 + a2d
2

7

�
[1+O(�)] (2:9)

Further de�ning

� =
1

6
a ln� (2:10)

and suppressing the O(�) terms, the metric tends asymptotically to

d~s2 � e
6

a
(�+1)�(�dt2 + d�2) + e

6

a
(�+1=3)�

�
d�2 + a2d
2

7

�
(2:11)

as r! a, �! �1. Asymptotically, the dilaton is given by

� � 3

a
� (2:12)

so that there is a linear dilaton (in these coordinates) which blows up as r ! a,

� ! �1. Thus there is a dilaton singularity as well as a potential curvature

singularity at r = a, so that the solution can only be regarded as non-singular if

r = a is an in�nite geodesic distance from all points with r > a.

There are a number of di�erent cases, depending on the value of �. The

asymptotic metric is a warped product of two-dimensional Minkowski-space M2

with coordinates t; � and a cylindrical `throat' C8 = R� S7 which has a seven-

sphere cross-section of radius a. If � < �1 the conformal factors blow up both

M2 and C8 as � ! �1, while if �1 < � < �1=3 the throat opens up (like the

bell of a trumpet) and the M2 shrinks. If � > �1=3 both C8 and M2 contract,

so that the throat pinches o�. If � < �1=3, then it follows from the asymptotic
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form of the metric (2.11) that the distance along a space-like geodesic lying entirely

within C8 from any point with �nite � to � = �1, which corresponds to r = a, is

in�nite. Thus a solution with � < �1=3, and in particular the type I solution (2.5)

with � = �1=2, has non-singular spatial sections of constant t; �. For � � �1=3,
it is a �nite distance to r = a along space-like geodesics, so that the solution is

singular. In the special case � = �1=3, the asymptotic metric is the standard

metric on S7 � AdS3, where AdS3 is three-dimensional anti-de Sitter space [12].

In this case, ~g�� is the so-called 5-brane metric and the string soliton has a non-

singular geometry which interpolates between d = 10 Minkowski space M10 and

the S7 �AdS3 string solution with linear dilaton, but has a dilaton that diverges

on r = a [12].

Although r = a cannot be reached along space-like geodesics of �nite length for

� < �1=3, there remains the possibility of the singularity being reached by time-

like or null geodesics of �nite length. In fact, the singularity can be reached by a

�nite-length time-like geodesic if � > �2=3 [14]. For a time-like radial geodesic

r(t), the proper time � is de�ned by

d� 2 = A�+1dt2 �A��5=3dr2 (2:13)

and energy conservation implies that

A�+1 dt

d�
= � (2:14)

for some constant �. This implies

�
�2

A�+1 � 1

�
d� 2 = A��5=3dr2 (2:15)

Near r = a; � = 0, A � � and if � > �1, then (2.15) implies

d�

d�
� a

6�
���1=3 (2:16)

so that the proper time along the geodesic from the singularity � = 0 to some
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small value � = � is

� � a

6�

�Z
0

d�

�1=3��
(2:17)

and this is �nite if � > �2=3. In particular, for the open string soliton (2.5),

� = �1=2 and the singularity can be reached along time-like geodesics.

The heterotic string action (2.1) also has a �ve-brane solution [15,16]

ds2 = �dt2 + dxidxi +B�2dr2 + r2d
2
3

e�2� = B; B = 1�
�a
r

�2
; H = 2a2�3

(2:18)

where xi (i = 1; : : : 5) are coordinates on the �ve-brane, d
2
3 is the line element on

the unit three-sphere and �3 is its volume form. This is a stable non-singular soliton

that saturates a Bogomolnyi bound and interpolates between the Minkowski space

M10 and the S3 compacti�cation to d = 7 Minkowski space with a linear dilaton

[11]. Consider the rescaled metric (2.6), which in this case is given by

d~s2 = B��
��dt2 + dxidxi +B�2dr2 + r2d
2

3

�
(2:19)

and has a potential singularity at r = a. To investigate the behaviour near r = a,

it is convenient to again follow [11-13] and de�ne new coordinates

� =
2(r � a)

a
; � =

1

2
a ln� (2:20)

so that suppressing the O(�) terms, the metric tends asymptotically to

d~s2 � e�
2�

a
�
��dt2 + dxidxi + d�2 + a2d
2

3

�
(2:21)

as r! a, �! �1. Asymptotically, the dilaton is given by � � � 1
a� so that there

is a linear dilaton which blows up as r ! a, �! �1. From the asymptotic form

(2.21), the distance to r = a along space-like geodesics is �nite if � < 0. Thus

although the �ve-brane is a non-singular solution of the heterotic string (� = 0),

it is singular in the open string metric (� = �1=2) and the �ve-brane metric

(� = �1=3).
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3. Solitons of the Type IIB String

The massless bosonic �elds of the type IIB string consist of the graviton �g�� ,

the NS-NS anti-symmetric tensor gauge �eld b1��, the RR one b2��, a four-form with

self-dual �eld strength G����� and a complex scalar � =  + ie��, where � is the

dilaton. There is no action that gives the full low-energy �eld equations, but for

solutions with G����� = 0, the remaining bosonic low-energy �eld equations can

be obtained by varying the action

Z
d10x

p��g
�
�R + 4tr@�S@�S�1 � 1

12
tr
�Ht

���S H���
��

(3:1)

where �g�� is the canonical Einstein metric and

S =
1

�2

 
j�j2 �1

�1 1

!
; H��� =

 
H1

���

H2
���

!
; � = �1 + i�2; H i = dbi

(3:2)

The type IIB supergravity �eld equations are invariant under SL(2;R) which

leaves G and �g�� invariant and acts on the remaining �elds by

S ! �S�t; H ! ��1H (3:3)

where � is a 2 � 2 matrix in SL(2;R). In the string metric g�� = e�=2�g��, the

action is [17]

Z
d10x

p�g
�
e�2�

�
R + 4@��@

�� � 1

12
(H1)2

�
� 1

2
@� @

� � 1

12
(H2 +  H1)2

�
(3:4)

and the dilaton doesn't couple to the RR �elds  , H2 [17]. Note that there is a

consistent truncation to a type I action given by setting H1 = 0,  = 0.

There are solutions to the �eld equations derived from (3.4) with  = 0 and

either H1 = 0 or H2 = 0. The action that gives the �eld equations with  = 0
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and H2 = 0 is precisely the heterotic string action (2.1) with F = 0 and H = H1,

while the one that gives the �eld equations with  = 0 and H1 = 0 is precisely

the type I string action (2.2) with F = 0 and H = H2. This immediately implies

that the type IIB theory has two string and two �ve-brane solutions [1,2,4,10].

There is a singular NS-NS string and non-singular �ve-brane given by (2.4), (2.18)

respectively withH = H1, and there is a RR string given by (2.5) withH = H2 and

a singular RR �ve-brane given by (2.19) with H = H2 and � = �1=2. The action
of the SL(2;Z) transformation given by (2.19) with � =

 
0 1

�1 0

!
interchanges

H1 and H2 while �! �� (with  = 0) so that the two string solutions and the

two �ve-brane solutions are interchanged.

4. Charged Strings, Zero Modes and String-String Duality

Before considering the zero modes of the ten-dimensional solutions, it will be

useful to �rst discuss the six-dimensional solutions [5,6]. The toroidally compact-

i�ed six-dimensional heterotic string has an abelian U(1)24 gauge symmetry at

generic points in the O(4; 20)=O(4)�O(20) moduli space. The fundamental string

solution [9] has two Killing vectors acting without �xed points (generating transla-

tions in time t and along the string) so that there is an O(6; 22) solution generating

group: acting on the solution with this group generates new solutions. A subgroup

O(4; 1) � O(1; 20) preserves the boundary conditions and an O(4) � O(20) sub-

group of this acts trivially [18]. Acting with transformations in the 24-dimensional

cosetO(4; 1)=O(4)�O(1; 20)=O(20) generates the charged strings solutions of [5,19]
which carry U(1)24 electric charge. They also carry an electric current proportional

to the charge per unit length, so that these strings are accompanied by both electric

and magnetic �elds. These solutions are parameterised by the 24 electric charge

densities, and there are 24 collective coordinates conjugate to these charges. These

coordinates are periodic, since the charges are quantised, and they are represented

by 24 world-sheet bosonic coordinates, which are chiral (right-moving) because the

charge and current densities are equal [19]. In addition, there are the expected four
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bosonic zero modes corresponding to translations in the four dimensions transverse

to the string, and four fermionic ones corresponding to the unbroken supersymme-

tries; these are represented by left-moving world-sheet spinors. The type II theory

compacti�ed on K3 � T 2 has a string soliton with the same zero mode structure

[5,6], which justi�es identifying it with the heterotic string. In particular, the

neutral string soliton has charged string generalisations parameterised by the 24

electric charge densities, which equal the current densities, so that the correspond-

ing world-sheet theory has 24 chiral bosons [5]. The type II origin of these zero

modes was discussed in [6].

The situation is di�erent at the special points in the O(4; 20)=O(4) � O(20)

moduli space at which the gauge symmetry is enhanced to Ĝ = U(1)4 �G where

G is a rank 20 non-abelian group. The low-energy e�ective �eld theory has a

non-abelian gauge symmetry, but there are solutions in which only gauge �elds

taking values in a 24-dimensional Cartan subalgebra are non-trivial. The e�ective

theory for such solutions is the abelian theory considered above, so that there is a

24 parameter space of charged string solutions. As there is such a space for every

Cartan subalgebra, there is a charged string carrying each of the dG � dim(Ĝ)

charges. There should be a chiral bosonic zero mode conjugate to each of these

charges, but only 24 of them are expected to constitute a mutually commuting set.

Recall that the chiral sector of the heterotic string can be formulated using the

right-moving sector of a Wess-Zumino-Witten (WZW) model (of level one) instead

of the usual chiral bosons or fermions [20], so that here the natural structure to

expect for the world-sheet theory describing the extra heterotic zero modes is a

chiral Ĝ WZW model (in addition to the usual bosonic translation zero-modes

and the fermionic modes corresponding to unbroken supersymmetry). The extra

dG � 24 zero modes can also be understood in terms of the type II string. At

the special points in moduli space certain solitonic states become massless [3,4],

and the soliton has zero-modes in which these extra massless �elds are excited.

The solitonic states that become massless are six-dimensional black holes resulting

from p-brane solitons of the ten-dimensional theory wrapped around K3 homology
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cycles, and they become massless at points in moduli space at which the homology

cycles collapse to zero area [3,4].

The fundamental heterotic string solution of the SO(32) or E8 � E8 heterotic

string and the heterotic soliton of the SO(32) type I string have a zero mode struc-

ture similar to that of the six-dimensional heterotic string at enhanced symmetry

points. Solutions of the e�ective N = 1 supergravity theory coupled to 16 abelian

vector multiplets are solutions of the full theory in which only 16 of the 496 gauge

�elds, taking values in a Cartan subalgebra, are non-zero. For any choice of Cartan

subalgebra, acting on the fundamental heterotic string solution (2.4) with the so-

lution generating transformations in the coset O(16; 1)=O(16) gives charged string

solutions [19] parameterised by 16 electric charges. The collective coordinates cor-

responding to these 16 charges are 16 periodic chiral bosons. Repeating this with

di�erent choices of Cartan subalgebra, one obtains charged strings carrying any of

the 496 types of charge, and the corresponding chiral bosonic zero-modes should

be described by a level one WZW model with group SO(32) or E8 � E8. These,

together with the eight bosonic zero modes corresponding to transverse transla-

tions and the eight fermionic zero modes corresponding to the unbroken super-

symmetries give a zero-mode structure described by the Green-Schwarz light-cone

heterotic string with the heterotic degrees of freedom described by a chiral WZW

model, as in [20].

Acting on this 496-dimensional space of charged string generalisations of

(2.4) with the �eld transformation (2.3) (for gauge group SO(32)) gives a 496-

dimensional space of charged string solutions of the type I string action (2.2) gen-

eralising the solution (2.5). These solutions have the same singularity structure as

(2.5) and have equal charge and current densities. The zero mode structure is that

of the SO(32) heterotic string: it is described by a light-cone string with 8 bosons,

8 fermions and an SO(32) WZW model, justifying the identi�cation of this soliton

with the heterotic string.

It remains an open question as to whether singular solutions can be acceptable
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as solitons and, if so, what types of singularity can be allowed. The form of a solu-

tion of an e�ective theory can only be trusted down to length scales corresponding

to the masses of the lightest �elds that have been integrated out, and including

such massive �elds can drastically change the short-distance structure of a solution

and in some cases remove the singularity. Thus even if a solution is singular, the

singularity might be removed by including extra �elds in the e�ective theory. In

six dimensions, the solitons considered in [5,6] are non-singular. However, in ten

dimensions the solution (2.5) has non-singular space-like sections, but has a sin-

gularity at r = a that can be reached along a �nite time-like geodesic, so that the

question arises as to whether it should be regarded as a soliton. It was argued in

[4] that, in the case of the type IIB string, both strings and both �ve-branes should

be included in the Bogomolnyi spectrum, despite the singularity of some of them

as solutions of the weakly coupled e�ective theory. Since the uncharged sector

of the type I theory is contained within the type IIB theory, a similar argument

implies that the string and �ve-brane should both be included in the Bogomolnyi

spectrum of the type I string. More speci�cally, the arguments of [4] imply that

the weakly coupled type I or IIB string should have a string-like Bogomolnyi state

carrying the same charges as (2.5) and so which should be approximately described

by the solution (2.5) at large distances, and have the same zero-mode structure.

However, at short distances, and in particular near r = a, the identi�cation of the

Bogomolnyi state with the classical solution (2.5) is no longer trustworthy, and

other e�ects might be expected to come into play.

The singular solution (2.4) of the heterotic string or type IIB string is the

solution generated by an elementary string source, and so should not be regarded

as giving rise to any new states. The string soliton (2.5) of the type I string has the

zero mode structure of a heterotic string and in the strong coupling limit becomes

an elementary excitation of the dual theory, which is the heterotic string theory.

Similarly, the RR string soliton of type IIB is an elementary excitation of the dual

type IIB theory that emerges at strong coupling, while the NS-NS string becomes

a soliton of the dual theory. Indeed, the SL(2;Z) duality implies that the zero-
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mode structure of the RR string soliton should be exactly that required for it to

be identi�ed with the fundamental string of the strongly coupled dual theory. It is

interesting that in these theories, the strongly coupled dual theory appears to be

obtained by a string/string duality rather than a string/�ve-brane duality of the

type proposed in [21].

Note Added: After this work was completed, a related paper appeared [22] dis-

cussing similar issues.
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