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Abstract

We investigate electromagnetic e�ects in the framework of chiral perturbation theory. Using a

completely independent method, we con�rm Urech's results for the divergences of the one{loop
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1 Introduction

In the standard model of strong and electroweak interactions, the violation of the isospin sym-

metry has two di�erent origins. First of all, it can be traced back to the mass di�erence of up

and down quark. Secondly, also electromagnetism induces isospin breaking e�ects.

In the con�nement region of the standard model, the usual perturbative methods are not

applicable. In order to obtain testable theoretical predictions also in this case one has to resort

to a so{called low{energy e�ective theory. With an appropriately chosen e�ective Lagrangian,

chiral perturbation theory [1, 2, 3] (which is just the e�ective �eld theory of the standard

model at low energies) is mathematically equivalent [4] to the underlying fundamental theory.

Therefore, chiral perturbation theory presents the natural framework for the discussion of isospin

breaking e�ects in the low energy range.

Isospin violating contributions related tomu 6= md are well under control from the theoretical

point of view. They are fully described by the e�ective �eld theory of the strong interactions.

Up to the chiral order p4, the associated low{energy constants [3] have been determined [5] with

rather good accuracy.

In principle, it is also straightforward to establish the theoretical framework for the descrip-

tion of electromagnetic e�ects. First of all, the photon �eld has to be included as an additional

dynamical degree of freedom. Then one has to construct the most general Lagrangian of the

desired order e2p2n respecting all the symmetries of the standard model. To lowest electromag-

netic order e2p0, only a single term appears [6]. But already at the next{to{leading order e2p2,

there are 14 linear independent terms [7, 8] entering the e�ective Lagrangian . The associated

coupling constants Ki absorb the divergences generated by one{loop graphs with a virtual pho-

ton or a vertex from the Lagrangian of O(e2p0). The divergent parts of the couplings Ki have

been determined in Ref. [7]. However, the �nite parts Kr
i of the electromagnetic low{energy

constants are remaining as free parameters. At this point one encounters the main di�erence

between the strong and the electromagnetic sector. In contrast to the low{energy constants

of the strong interactions, only rough order of magnitude estimates for the Kr
i are presently

available [7, 8].

With the methods sketched above, it is possible to obtain the formal expressions of the

electromagnetic contributions toO(e2p2) for any mesonic observable. So far, only a small number
of applications [7, 8] of this kind has been worked out. It is one of the purposes of the present

paper to add some new results to this list.

In Sect. 2, we brie
y review the construction of the electromagnetic e�ective Lagrangian.

The one-loop renormalization in the electromagnetic sector is discussed in Sect. 3. There, we also

give an alternative determination of eight linear combinations of the renormalization constants

Kdiv
i which serves as an independent test of the general results obtained in Ref. [7]. In Sect. 4

we illustrate the power and the limits of simple order of magnitude estimates for the Kr
i in the

mass spectrum of the pseudoscalar mesons. A complete list of the P`2 form factors including

the (mesonic) electromagnetic contributions of O(e2p2) is presented in Sect. 5. The analogous

expressions for the K`3 form factors fK
+�0

+ (0) and fK
0��

+ (0) are given in Sect. 6. In both cases,

our results are illustrated by numerical estimates discriminating the pure QCD contributions

and the electromagneting ones for certain isospin violating quantities. Finally, our conclusions

are summarized in Sect. 7.
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2 The E�ective Chiral Lagrangian of Electromagnetism

Chiral perturbation theory [1, 2, 3] permits a systematic low{energy expansion of the generating

functional Z[v; a; s; p] of QCD. This quantity is de�ned in terms of the vacuum{to{vacuum

amplitude

eiZ[v;a;s;p] = h0 outj0 iniv;a;s;p (2.1)

associated with the Lagrangian

L = L0
QCD + �q
�(v� + a�
5)q � �q(s� ip
5)q: (2.2)

L0
QCD is the QCD Lagrangian with the masses of the three light quarks q = (qu; qd; qs)

T set to

zero. v�; a�; s; p are external sources represented by hermitian 3 � 3 matrices in 
avour space.

The Green functions of the vector, axial{vector, scalar and pseudoscalar quark currents can

then be obtained by evaluating the functional derivatives of Z[v; a; s; p] at v = a = p = 0,

s =Mquark = diag(mu; md; ms).

The e�ective chiral Lagrangian of QCD consists of a string of terms

Leff = L2 + L4 + L6 + ::: ; (2.3)

organized in powers of momenta and meson masses, respectively. The lowest order term L2 is

the nonlinear sigma model Lagrangian in the presence of external �elds1:

L2 =
F 2

4
hu�u� + �+i: (2.4)

The generating functional Z[v; a; s; p] is given by the expansion of the e�ective meson �eld

theory in the number of loops,

Z = Z2 + Z4 + Z6 + ::: : (2.5)

The leading term coincides with the classical action associated with L2.

At next{to{leading order p4, the generating functional consists of the following terms: one{

loop graphs generated by the vertices of L2, tree graphs involving one vertex from L4 and �nally

a contribution to account for the chiral anomaly.

Also electromagnetic processes where only external photon �elds A� are present can be

treated within this framework. One simply performs the substitution

v� = �eQA�; (2.6)

where

Q =
1

3
diag(2;�1;�1) (2.7)

is the electromagnetic charge matrix.

In those cases where virtual photons are involved, the above approach is, of course, not

su�cient any more. Now the photon �eld has to be included as an additional dynamical degree

1Our notation is the same as in Refs. [6, 8].
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of freedom. In order to construct the pertinent e�ective Lagrangian of electromagnetic order e2,

one introduces spurion �elds QL;R(x) [8] transforming as

QL;R
G! h(�)QL;Rh(�)

y;

QL;R
P! QR;L; (2.8)

under the chiral group G = SU(3)L � SU(3)R and parity P , respectively. The nonlinear re-

alization h(�) of G [9] is de�ned by the action of the chiral group G on the coset space

C = SU(3)L � SU(3)R=SU(3)V :

u(�)
G! gRu(�)h(�)

y = h(�)u(�)gyL;

u(�) 2 C;

gL;R 2 SU(3)L;R: (2.9)

The Goldstone �elds �i (i = 1; : : : ; 8) are coordinates of the coset space C. We use the

parametrization

u = exp(i�=
p
2 F );

� = �y =

0BBBBBB@

�3p
2
+

�8p
6

�+ K+

�� � �3p
2
+

�8p
6

K0

K� �K0 �2�8p
6

1CCCCCCA : (2.10)

Alternatively, one can also de�ne [6] spurions QL;R with the transformation properties

QL

G! gLQLg
y
L; QR

G! gRQRg
y
R: (2.11)

The QL;R are related to QL;R by

QL = uQLu
y;

QR = uyQRu: (2.12)

At the end QL;R will be identi�ed with the charge matrix Q.

To lowest order e2p0, the electromagnetic e�ective Lagrangian contains a single term [6]

Lj
O(e2p0)

= F 4e2Z hQLQRi; (2.13)

with a real and dimensionless coupling constant Z. The e�ective Lagrangians (2.4) and (2.13)

generate the lowest{order contributions to the masses of the pseudoscalar mesons from QCD

and the electromagnetic interaction, respectively:cM2
�� = 2B bm+ 2e2ZF 2;cM2
�0 = 2B bm;cM2
K� = B

�
(ms + bm)� 2"p

3
(ms � bm)

�
+ 2e2ZF 2;

cM2
(�)

K 0

= B

�
(ms + bm) +

2"p
3
(ms � bm)

�
;

cM2
� =

4

3
B

�
ms +

bm
2

�
; (2.14)
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where bm denotes the mean value of the light quark masses,

bm =
1

2
(mu +md); (2.15)

and B is the vacuum condensate parameter contained in �+. The mixing angle

" =

p
3

4

md �mu

ms � bm (2.16)

relates �3, �8 to the (tree{level) mass eigen�elds b�0, b�:
�3 = b�0 � "b�;
�8 = "b�0 + b�: (2.17)

Terms of higher than linear order in " have been neglected. In accordance with Dashen's theorem

[10], the lowest order electromagnetic Lagrangian (2.13) contributes an equal amount to the

squared masses of ��, K�. It does not contribute to the masses of �0, K0, �K0 or �, nor does it

generate �0{� mixing. The relation

M2
�� �M2

�0 = 2e2ZF 2 +O(e2p2); (2.18)

resulting from (2.14) implies Z ' 0:8 as numerical value.

At next{to{leading order e2p2 one �nds the following list of local counterterms [7]:

Lj
O(e2p2)

= F 2e2f1
2
K1 hQ2

L +Q2
Ri hu�u�i

+K2 hQLQRi hu�u�i
�K3 [hQLu�i hQLu

�i+ hQRu�i hQRu
�i]

+K4 hQLu�i hQRu
�i

+K5 h(Q2
L +Q2

R)u�u
�i

+K6 h(QLQR +QRQL)u�u
�i

+
1

2
K7 hQ2

L +Q2
Ri h�+i

+K8 hQLQRi h�+i
+K9 h(Q2

L +Q2
R)�+i

+K10 h(QLQR +QRQL)�+i
�K11 h(QLQR � QRQL)��i
� iK12 h( br�QLQL � QL

br�QL � br�QRQR +QR
br�QR)u

�i
+K13 h br�QL

br�QRi
+K14 h br�QL

br�QL + br�QR
br�QRig; (2.19)

where

br�QL = r�QL +
i

2
[u�;QL] = uD�QLu

y;

br�QR = r�QR �
i

2
[u�;QR] = uyD�QRu: (2.20)
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In order to obtain a linear independent set of terms in (2.19), the Cayley{Hamilton theorem,

PA(A) � 0; (2.21)

has been used. The polynomial function PA is de�ned by PA(�) = det(A� �1). Explicitly, the

identity (2.21) reads:

� A3 + hAiA2 +
1

2
(hA2i � hAi2)A+

1

3
[hA3i � 3

2
hA2i hAi+ 1

2
hAi3] = 0: (2.22)

Replacing A by A�B in (2.22) yields identities which can then be used to derive the relations

hQIu�QIu
�i = 1

2
hQ2

Ii hu�u�i � 2hQ2
Iu�u

�i+ hQIu�i hQIu
�i; I = L;R; (2.23)

and

hQLu�QRu
�i = 1

2
hQLQRi hu�u�i � h(QLQR +QRQL)u�u

�i+ hQLu�i hQRu
�i: (2.24)

Furthermore, the term ihQ2
L � Q2

Rih��i vanishes once QL = QR = Q is inserted. The

expression ih(Q2
L � Q2

R)��i does not contribute because [M; Q] = 0, and ihQLQRih��i is
forbidden by P invariance. Finally, partial integration and the equation of motion allows to

relate

ih( br�QLQR �QR
br�QL � br�QRQL +QL

br�QR)u
�i (2.25)

to

hQLQRi hu�u�i � 3h(QLQR +QRQL)u�u
�i+ 2hQLu�i hQRu

�i+
1

2
h(QLQR � QRQL)��i+O(e2): (2.26)

3 One{Loop Renormalization in the Electromagnetic Sector

One{loop graphs with a virtual photon or one vertex from (2.13) are, in general, divergent. These

divergences associated with polynomial expressions of order e2p2 are absorbed by an appropriate

renormalization of the coupling constants in (2.19). To this end, the Ki are decomposed in two

parts:

Ki = Kr
i (�) + �i�(�): (3.1)

The divergence is contained in the function �(�). In dimensional regularization, this scale

dependent term is given by

�(�) =
�d�4

(4�)2

�
1

d� 4
� 1

2
[ln(4�) + �0(1) + 1]

�
: (3.2)

The renormalized electromagnetic low{energy constants Kr
i (�) are, in principle, measurable

quantities. The constants �i govern the scale dependence of the Kr
i (�),

Kr
i (�2) = Kr

i (�1) +
�i

(4�)2
ln(

�1

�2

); (3.3)
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and they also determine the so{called \chiral logs". In any physical amplitude, the scale de-

pendence always cancels between the loop and the counterterm contributions containing the

renormalized coupling constants.

A complete list of the renormalization constants �i has been worked out in Ref. [7] by

evaluating the divergent part of the generating functional. We have performed an independent

check [8] of the values given there by evaluating the (potentially) divergent parts of several

observables. The requirement that the divergences associated with these quantities should vanish

produces a certain number of conditions to be ful�lled by the �i. We have restricted our analysis

to the masses of the pseudoscalar mesons, the axial{vector decay constants FP and the P`3 form

factors. In this case, only the following linear combinations of the electromagnetic coupling

constants appear:

S1 = K1 +K2; S2 = K5 +K6; S3 = �2K3 +K4;

S4 = K7 +K8; S5 = K9 + 2K10 +K11; S6 = K8;

S7 = K10 +K11; S8 = �K12:

(3.4)

In analogy to (3.1), the associated renormalization constants �i are de�ned by

Si = Sri (�) + �i �(�): (3.5)

The �niteness of the electromagnetic contributions to the meson masses implies the relations

�3 = �2
3
�2 + 3Z;

�4 = �1 +
1

3
�2 �

1

2
Z;

�5 =
1

6
�2 +

3

4
+
11

4
Z;

�6 = Z;

�7 =
1

6
�2 +

3

4
+
5

4
Z: (3.6)

The analogous procedure for FK0 yields the relation

6�1 + 2�2 � 9Z = 0: (3.7)

Combined with the expression for �3, (3.7) also renormalizes the electromagnetic contributions

to F�0 and F� . The requirement that F�� (or FK�) should be �nite implies the relation

12�1 + 10�2 � 18�8 + 9� 27Z = 0: (3.8)

Finally, an inspection of the divergent terms in the K`3 form factor fK
0��

+ (0) gives

�8 = �1
4
: (3.9)

This provides us with the necessary number of equations for the determination of the eight

renormalization constants �1; : : : ;�8:

�1 = �1 +�2 =
3

4
+ Z;
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�2 = �5 +�6 = �9
4
+
3

2
Z;

�3 = �2�3 +�4 =
3

2
+ 2Z;

�4 = �7 +�8 = Z;

�5 = �9 + 2�10 + �11 =
3

8
+ 3Z;

�6 = �8 = Z;

�7 = �10 + �11 =
3

8
+
3

2
Z;

�8 = ��12 = �1
4
: (3.10)

We have also checked the values given in (3.10) by applying them to the P`3 form factors fK
+�0

+ ,

fK
+�0

� , fK
0��

� and f��� .

4 Applications of the Electromagnetic Lagrangian

With the methods described in the previous sections, the electromagnetic contributions of order

e2p2 to any mesonic observable can be calculated. So far, only a few results of this kind have

been worked out completely. In Ref. [7], the diagonal elements of the pseudoscalar mass matrix

have been calculated to O(e2p2). The remaining o�{diagonal term related to �0� � mixing can

be found in Ref. [8]. In the same paper, also the O(e2p2) contributions to the ratio of K`3 form

factors fK
+�0

+ (0)=fK
0��

+ (0) and to the �`3 form factors f
��
� (t) have been given.

For a complete numerical analysis of these results, some information about the electro-

magnetic low{energy constants Sri (�) is needed. Unfortunately, our present knowledge of these

parameters is restricted to crude order of magnitude estimates. This is in sharp contrast to the

O(p4) coupling constants Lri (�) associated with the e�ective Lagrangian of pure QCD which

have been determined [5] rather accurately by using experimental input and large Nc argu-

ments [3]. But even with our limited knowledge about the couplings of the O(e2p2) Lagrangian,
non{trivial results about the possible size of the electromagnetic contributions can be obtained.

This can be seen, for instance, in the mass spectrum of the pseudoscalars: The \magic"

combination [3] of kaon and pion masses

(M2
K0 �M2

K� +M2
�� �M2

�0) �
M2

�

(M2
K �M2

�)M
2
K

; (4.1)

can be expressed through the masses of the three light quarks and an electromagnetic term of

O(e2p2):
m2

d �m2
u

m2
s � bm2

=
�
(M2

K0 �M2
K� +M2

�� �M2
�0)exp � (M2

K0 �M2
K� +M2

�� �M2
�0)EM

�
� M2

�

(M2
K �M2

�)M
2
K

: (4.2)

The purely electromagnetic quantity [7, 8]

(M2
K0 �M2

K� +M2
�� �M2

�0)EM = e2M2
K

�
1

(4�)2

�
3 ln

M2
K

�2
� 4 + 2Z ln

M2
K

�2

�
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+
4

3
Sr2(�)� 8Sr7(�) + 16ZLr5(�)

�
+ O(e2M2

�)

(4.3)

gives the deviation from Dashen's limit [10]. The unknown combination of low{energy constants

Sr2(�)�6Sr7(�) determines the size of this deviation. Chiral dimensional analysis [1, 11] suggests
the upper bound

jSri (M�)j <�
1

(4�)2
= 6:3 � 10�3 (4.4)

for the coupling constants of the e�ective Lagrangian. The resulting bounds

� 7

(4�)2
� Sr2(M�)� 6Sr7(M�) � 7

(4�)2
: (4.5)

imply the range

1:5 � 10�3 <� 1=Q2 :=
m2

d �m2
u

m2
s � bm2

<� 2:4 � 10�3: (4.6)

for the combination of quark masses occuring in (4.2). This estimate has to be compared with

the value for 1=Q2 in Dashen's limit (corresponding to a vanishing electromagnetic contribution

(4.3)):

1=Q2jDashen = 1:72 � 10�3: (4.7)

Values for 1=Q2 rather close to the upper bound of (4.6) have been obtained by certain model

calculations [12, 13] which might also be supported by the present experimental data on � ! 3�

decays.

The size of the parameter Q constitutes an important ingredient for the determination of

mu=md and ms=md [14]. The potentially large deviation of Q from its value in the Dashen limit

led to some doubts [15] about the validity of the standard results [14] for these quark mass

ratios. However, taking into account also the additional constraints from the mass splitting of

the baryons [16, 17] and from an analysis of �� �0 mixing [3], the possible e�ects [8, 18] on the

determination of mu=md and ms=md are not too dramatic.

5 P`2 Form Factors

In this section we investigate the contributions of order e2p2 to the P`2 form factors F�(X).

These quantities are de�ned by the hadronic matrix elements

h0j�q(0)
�
5Xyq(0)j�; pi= i
p
2p�F�(X); (5.1)

where we have used a covariant normalization of one{particle states,

hp0jpi = (2�)3 2p0 �(3)(~p 0 � ~p ): (5.2)

The index � denotes a pseudoscalar mass eigenstate and the 3�3 matrixX picks out the desired

component of the axial vector current. For the form factors associated with the non{vanishing
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matrix elements we �nd the following expressions2:

F�� := F�+

�
�1 + i�2

2

�
= F��

�
�1 � i�2

2

�
= F

�
1 +

4

F 2
[Lr4(�)(M

2
� + 2M2

K) + Lr5(�)M
2
� ]

� 1

4(4�)2F 2

�
2M2

�� ln
M2

��

�2
+ 2M2

�0 ln
M2

�0

�2
+M2

K� ln
M2

K�

�2
+M2

K0 ln
M2

K0

�2

�

+
2e2

9
[6Sr1(�) + 5Sr2(�)� 9Sr8(�)] +

e2

2(4�)2

"
3 ln

M2
�

�2
� 6� 2 ln

m2



�2

#)
; (5.3)

FK� := FK+

�
�4 + i�5

2

�
= FK�

�
�4 � i�5

2

�
= F

�
1 +

4

F 2
[Lr4(�)(M

2
� + 2M2

K) + Lr5(�)M
2
K ]

� 1

8(4�)2F 2

�
2M2

�� ln
M2

��

�2
+M2

�0 ln
M2

�0

�2

+ 4M2
K� ln

M2
K�

�2
+ 2M2

K0 ln
M2

K0

�2
+ 3M2

� ln
M2

�

�2

#

+
8
p
3 "

3F 2
Lr5(�)(M

2
� �M2

K)�
p
3 "

4(4�)2F 2

"
M2

� ln
M2

�

�2
�M2

� ln
M2

�

�2

#

+
2e2

9
[6Sr1(�) + 5Sr2(�)� 9Sr8(�)] +

e2

2(4�)2

"
3 ln

M2
K

�2
� 6� 2 ln

m2



�2

#)
; (5.4)

FK0 := FK0

�
�6 + i�7

2

�
= F �K0

�
�6 � i�7

2

�
= F

�
1 +

4

F 2
[Lr4(�)(M

2
� + 2M2

K) + Lr5(�)M
2
K ]

� 1

8(4�)2F 2

�
2M2

�� ln
M2

��

�2
+M2

�0 ln
M2

�0

�2

+ 2M2
K� ln

M2
K�

�2
+ 4M2

K0 ln
M2

K0

�2
+ 3M2

� ln
M2

�

�2

#

� 8
p
3 "

3F 2
Lr5(�)(M

2
� �M2

K) +

p
3 "

4(4�)2F 2

"
M2

� ln
M2

�

�2
�M2

� ln
M2

�

�2

#

+
4e2

9
[3Sr1(�) + Sr2(�)]

�
; (5.5)

F�0

�
�3p
2

�
= F

�
1 +

4

F 2
[Lr4(�)(M

2
� + 2M2

K) + Lr5(�)M
2
� ]

2See also Ref. [3] for the results in the limit e = 0.
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� 1

4(4�)2F 2

�
4M2

�� ln
M2

��

�2
+M2

K� ln
M2

K�

�2
+M2

K0 ln
M2

K0

�2

�
+

e2

9
[12Sr1(�) + 10Sr2(�) + 9Sr3(�)]

�
; (5.6)

F�0

�
�8p
2

�
= F

(
"� M2

�̂0�̂

M2
� �M2

�

+
4"

F 2
[Lr4(�)(M

2
� + 2M2

K) + Lr5(�)M
2
� ]

� "

2(4�)2F 2

�
2(M2

� �M2
K) + (2M2

� +M2
K) ln

M2
K

�2

�
+

p
3 e2

9
[2Sr2(�) + 3Sr3(�)]�

p
3 e2

2(4�)2
Z

�
1 + ln

M2
K

�2

�)
; (5.7)

F�

�
�3p
2

�
= F

(
�" + M2

�̂0 �̂

M2
� �M2

�

� 4"

F 2
[Lr4(�)(M

2
� + 2M2

K) + Lr5(�)M
2
� ]

� "

2(4�)2F 2

�
2(M2

� �M2
K)� 2M2

� ln
M2

�

�2
+ (2M2

� � 3M2
K) ln

M2
K

�2

�
+

p
3 e2

9
[2Sr2(�) + 3Sr3(�)]�

p
3 e2

2(4�)2
Z

�
1 + ln

M2
K

�2

�)
; (5.8)

F�

�
�8p
2

�
= F

�
1 +

4

F 2
[Lr4(�)(M

2
� + 2M2

K) + Lr5(�)M
2
� ]

� 3

4(4�)2F 2

�
M2

K� ln
M2

K�

�2
+M2

K0 ln
M2

K0

�2

�
+

e2

3
[4Sr1(�) + 2Sr2(�) + Sr3(�)]

�
: (5.9)

The quantityM2
�̂0 �̂ in (5.7) and (5.8) is the o�{diagonal element of the �

0�� mass matrix in the
basis of the tree{level mass eigen�elds b�0; b�. Its explicit form can be found in Ref. [8]. In all our

formulas, terms of higher than linear order in the isospin breaking parameters "; e2 have been

neglected. The electromagnetic infrared divergence occuring in (5.3) and (5.4) has been taken

into account by introducing the small photon mass m
 . Taken for themselves, the expressions

given above are not observable quantities but only (major) parts in a full analysis of P`2 decays.

The infrared divergences are absorbed by adding the corresponding P`2
 contributions [19].

Furthermore, the leptonic part together with the associated electromagnetic corrections has to

be included [20]. However, for our present purposes, the information contained in (5.3{5.9) will

be su�cient.

To get a feeling for the possible size of the electromagnetic contributions to isospin violating

quantities we build the ratio

R :=
FK0F��

FK�F�0(�3=
p
2)

= 1 +
4"p
3

�
FK

F�
� 1 +

1

4(4�)2F 2

�
M2

� �M2
K +M2

� ln
M2

K

M2
�

��
� e2

3
[2Sr2(�) + 3Sr3(�)] +

3e2

2(4�)2

�
Z

�
1 + ln

M2
K

�2

�
� ln

M2
K

M2
�

�
: (5.10)
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In this speci�c combination of the form factors (5.3{5.6), the infrared divergent terms cancel.

The only remaining uncertainty in (5.10) is the electromagnetic low{energy constant 2Sr2(�) +

3Sr3(�). At this point, we completely disregard the question if it will ever be possible to determine

the quantity R with a su�cient experimental accuracy. We just want to compare the size of the

electromagnetic and the QCD part contained in (5.10). With

" = (1:00� 0:07) � 10�2; (5.11)

extracted from the mass splitting in the baryon octet [14, 16, 17] and FK=F� = 1:22 [21], we

�nd

(R� 1)QCD = 4:4 � 10�3: (5.12)

Assuming the validity of (4.4), we expect an electromagnetic contribution within the range

� 3:2 � 10�3 <� (R� 1)EM <� � 1:2 � 10�3; (5.13)

where the lower (upper) bound corresponds to 2Sr2(M�) + 3Sr3(M�) =
+
(�)5=(4�)

2. We conclude

from (5.12) and (5.13) that, in general, isospin violating terms of electromagnetic origin can be

of equal importance as the corresponding QCD pieces proportional to the quark mass di�erence

md �mu.

6 K`3 Form Factors

Finally, we discuss the K`3 form factors fK
+�0

+ (0) and fK
0��

+ (0) including the electromagnetic

contributions of O(e2p2). Our results are given by

fK
+�0

+ (0) = 1 +
1

2
HK��0(0) +

3

2
HK��(0) +HK0��(0)

+
p
3

 
"� M2

�̂0 �̂

M2
� �M2

�

!
+
p
3 "

�
5

2
HK�(0) +

1

2
HK�(0)

�

� e2

(4�)2

"
2 + ln

m2



M2
K

+
1

4
ln
M2

K

�2
+ 2(4�)2Sr8(�)

#
; (6.1)

and

fK
0��

+ (0) = 1 +HK0��(0) +
1

2
HK��0(0) +

3

2
HK��(0)

+
p
3 " [HK�(0)�HK�(0)]

� e2

(4�)2

"
2 + ln

m2



M2
�

+
1

4
ln
M2

�

�2
+ 2(4�)2Sr8(�)

#
: (6.2)

The function HPQ(t) was de�ned in [22], where also fK
+�0

+ (t), fK
0��

+ (t) in the limit e = 0 were

presented.

In the ratio

rK� =
fK

+�0

+ (0)

fK
0��

+ (0)
= 1 +

p
3

 
"� M2

�̂0 �̂

M2
� �M2

�

!
+

3e2

4(4�)2
ln
M2

K

M2
�

; (6.3)
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the infrared divergent terms cancel. As in the previous example (5.10), only 2Sr2(�) + 3Sr3(�)

(contained in M2
�̂0 �̂) remains as an unknown parameter. Disentangling the QCD and the elec-

tromagnetic contribution to (6.3) one �nds [8]

(rK� � 1)QCD = 2:1 � 10�2; (6.4)

and

0 <� (rK� � 1)EM <� 0:2 � 10�2; (6.5)

respectively, where (6.5) is again based on (4.4). In spite of our ignorance of the exact val-

ues of the electromagnetic coupling constants, we have obtained a rather precise result: The

electromagnetic contribution to rK� � 1 can increase the pure QCD value by at most 10 %.

Let us also compare the theoretical results (6.4) and (6.5) with the present experimental

data. Dividing the rates ofK+ ! �0e+�e andK
0 ! ��e+�e by the relevant phase space integrals

(including those electromagnetic corrections which are sensitive to the lepton kinematics [23])

one �nds [22]

jf
K+�0

+ (0)

fK
0��

+ (0)
j2 = 1:057� 0:019; (6.6)

which implies

(rK� � 1)exp = (2:8� 0:9) � 10�2: (6.7)

This means that the error in the present data is still much larger than the theoretical uncertainty

due to electromagnetism.

7 Conclusions

We have used the machinery of chiral perturbation theory including a systematic treatment

of the electromagnetic interaction [7]. Within this theoretical framework, a one{loop{analysis

allows the computation of the pure QCD contributions to O(p4) and of the electromagnetic part
to O(e2p2) for any observable in the sector of pseudoscalar mesons. The low{energy constants

associated with the O(p4) e�ective Lagrangian of strong interactions are well known parameters.
For the coupling constants of the O(e2p2) electromagnetic Lagrangian, only order of magnitude
estimates based on chiral dimensional analysis are presently available.

This situation might change by future precision measurements of isospin breaking observ-

ables or, on the theoretical side, by a determination of the relevant low{energy constants using

chiral models or even lattice calculations (for examples in the strong sector see Ref. [24] and

the citations therein). Such an improvement of our knowledge about the O(e2p2) coupling con-

stants would also drastically increase the value of our formal expressions for the electromagnetic

contributions to several isospin breaking quantities.

We have performed a one{loop analysis of all P`2 and the K`3 form factors fK
+�0

+ (0) and

fK
0��

+ (0). Our results allow a discussion of the magnitude of isospin violating e�ects due to pure

QCD, that is the di�erence of the up and down quark masses, and those originating from QED

isospin violation. There is no general feature, the size of the respective contributions depends

strongly on the observed quantity.

For example, in the speci�c combination of P`2 form factors R � 1 (de�ned in (5.10)), the

isospin violating e�ects of electromagnetic origin can be of equal size as the QCD ones. Similarly,

it has been found [7, 8] that sizable deviations from Dashen's limit [10] for the pseudoscalar
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meson masses cannot be excluded. On the other hand, for the ratio rK� = fK
+�0

+ (0)=fK
0��

+ (0) of

K`3 form factors we have obtained the rather precise result that the electromagnetic contribution

to rK� � 1 can at most be 10 % of the corresponding QCD value, which is quite similar in the

case of the �`3 form factors f��� (t) [8].

At present, the experimental errors are still much larger than the uncertainties induced

by electromagnetic isospin violating contributions. But our analysis shows quite clearly that if

isospin violating e�ects due to mu 6= md are considered with one{loop accuracy, one also has

to take into account electromagnetic e�ects up to O(e2p2).
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