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Black hole singularities: a numerical approach
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The singularity structure of charged spherical collapse is studied by considering the evolution of the gravity-

scalar �eld system. A detailed examination of the geometry at late times strongly suggests the validity of the

mass-ination scenario [3]. Although the area of the two-spheres remains �nite at the Cauchy horizon, its
generators are eventually focused to zero radius. Thus the null, mass-ination singularity generally precedes

a crushing r = 0 singularity deep inside the black hole core. This central singularity is spacelike.

PACS: 04.40.Nr, 02.60.Cb, 97.60Lf, 04.20Dw

The radiative tail of gravitational collapse decays as an
inverse power of time leaving behind a black hole char-
acterized only by its mass, charge and angular momen-
tum [1]. The simplicity of the external �eld at late times
contrasts with the highly dynamical interior which lies
beneath the event horizon [2{5].
It is generally accepted that the \tunnel" through a

charged or rotating black hole is destroyed by pertur-
bations which propagate into the hole after its forma-
tion [6,7]. The manner in which this occurs has been
studied in great detail using simpli�ed models [2{5], and
the results suggest that the Cauchy horizon (CH) inside
a charged (or rotating) black hole is transformed into a
singularity at which the \Coulomb" component of the
Weyl curvature diverges. The null generators of the CH
contract slowly under transverse irradiation, so it is an-
ticipated that this null singularity eventually gives way
to a central spacelike singularity deep inside the black
hole core. It should be noted that this spacelike singu-
larity is not expected to precede the CH as some authors
have argued [8,9]. Indeed, geodesic observers falling into
the black hole at late times will generally encounter only
the null singularity.
Some disquiet exists regarding this picture of the

black hole interior. Yurtsever [8] has argued, on general
grounds, that complete destruction of the CH should be
expected once generic perturbations are considered. He
bases his discussion on experience with colliding plane
wave spacetimes | he has shown that plane wave Cauchy
horizons are replaced by spacelike singularities in the
presence of generic plane-symmetric perturbations [10].
Gnedin and Gnedin [9], on the other hand, have per-
formed a numerical integration of the spherical Einstein-
Maxwell-scalar �eld equations. They established the ex-
istence of a spacelike singularity inside a charged black
hole coupled with scalar matter. Their analysis stressed
the behaviour of the central (r = 0) singularity, however
they did not consider the possibility that it intersects the
Cauchy horizon.
This letter reports on an independent numerical in-

vestigation. We �nd evidence that the analytic models

demonstrate the essential features of black hole internal
structure.
The general spherical line element can be written as

ds2 = �ggdv2 � 2gdvdr + r2(d�2 + sin2 �d�2) ; (1)

where g = g(r; v), g = g(r; v) and v is advanced time.
We solve the �eld equations G�� = 8�(E��+T��) where

E�
� = (e2=8�r4) diag(�1;�1; 1; 1) (2)

is the standard electromagnetic contribution to the
stress-energy, and

4�T�� = �;��;� � 1

2
g�� (�;�

;) (3)

is the stress energy for a massless, minimally coupled
scalar �eld �. It is convenient to write h = � and then
introduce the scalar h(r; v) by

(rh);r = h : (4)

The �eld equations can now be written as

(ln g);r = r�1(h� h)2 ; (5)

(rg);r = g(1� e2=r2) ; (6)

while the wave equation � = 0 becomes

h;v � g

2
h;r =

1

2r
(h� h)(g[1� e2=r2]� g) : (7)

The pioneering numerical integration of these equa-
tions, with e = 0, was performed by Goldwirth and Pi-
ran [11]. We have employed a similar algorithm. Us-
ing the method of characteristics Eq. (7) is recast as
a set of 2n ordinary di�erential equations, where n is
the number of radial grid points. The radial integrals in
Eq. (4)-Eq. (6) are discretized according to the trapezium
rule, while we use a Runge-Kutta scheme for the ordi-
nary di�erential equations. The resulting code is locally
second order accurate, and has been tested on Reissner-
Nordstr�om spacetime and the exact self-similar solutions
in [12]. The details will appear elsewhere.
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To aid the comparison to previous work [3,4] we intro-
duce the mass function

m(x�) =
r

2

�
1 + e2=r2 � g=g

�
: (8)

Moreover the sole non-vanishing Newman-Penrose Weyl
scalar

�	2 =
1

2
C��

�� = [m(x�) � e2=r]r�3 ; (9)

is simply expressed in terms of this mass function and
provides a direct measure of curvature near the CH.
Characteristic initial data are supplied on a pair of

intersecting null hypersurfaces as shown in Fig. 1. The
spacetime is Reissner-Nordstr�om when v < v0. After
this advanced time we consider the evolution of a charged
black hole with infalling scalar matter. Since our primary
interest is the black hole interior it is useful to choose the
outgoing null hypersurface, �, coincident with the event
horizon. This is achieved by �rst setting gj� = �1, then
specifying rj� such that

lim
v!1

rj� = constant : (10)

FIG. 1. A spacetime diagram showing the setting of the

numerical integration. The spacetime is Reissner-Nordstr�om

for v < v0. Scalar �eld falls into the black hole across the

event horizon, �. PEH is the past event horizon, located at

v = �1. AH is the outer apparent horizon, and IAH is the

inner apparent horizon of the charged black hole. A couple

of lines of constant r are shown in light gray. The Cauchy
horizon (CH) is a singular hypersurface which contracts to

meet the central singularity at r = 0. All singularities are

indicated by thick lines in the diagram.

The dynamical equations (4)-(7) are supplemented by
one further equation along each outgoing null hypersur-
face:

dg

dv
= g

�
d lng

dv
� 1

2r3
�
g(r2 � e2)� g

��
+ 2r

�
d�

dv

�2

:

(11)

This is Raychaudhuri's equation for the outgoing null
rays, and is conserved by the evolution. Using the char-
acteristic equation dr=dv = �g=2 to obtain gj�, it is
straightforward to integrate Eq. (11) along �, with the
appropriate initial conditions at v = v0, for �j�.
Beneath the event horizon of the black hole outgoing

null rays contract rapidly (see Fig. 2). Consequently an
initially uniform radial grid becomes highly non-uniform
at late times, leading to signi�cant errors in g. We have
employed a non-uniform grid along the initial ingoing
null ray to alleviate this problem, making the radial grid
points more dense in the vicinity of the event horizon.
A signi�cant increase in (accurate) integration time is
obtained by this method, and the internal mass function
[de�ned in Eq. (8)] reaches values up to about 1050 times
the external black hole mass before errors become signif-
icant.
We have integrated the equations for several choices of

initial data along �, and have obtained the same qualita-
tive behaviour. Table I summarizes the results obtained
for the two initial data sets characterized by

rj� =

�
r+ � �v�p

r+ � � exp (�pv2) (12)

where � > 0 and p > 0 are real parameters. It is conve-
nient to �x dimensions such that the asymptotic Bondi
mass is unity, thus the radius of the event horizon ap-
proaches r+ = 1+

p
1� e2 as v !1. The inverse power-

law data along � is taken as representative of the physi-
cal situation where the ux of radiation across the event
horizon exhibits such a decay [13]. We have included the
second data set to emphasize that the non-linear instabil-
ity of the inner horizon is present even for perturbations
having compact support on the event horizon. This re-
sult should be expected based on linear analysis of the
problem [7].

TABLE I. Late time behaviour of the metric along char-
acteristics labelled by u. Multiplicative factors which depend

only on u have been omitted. The constants , �, and � are

discussed in the text.

Initial data g(u; v) g(u; v) m(u; v)

r+ � �v�p e�v v�(p+1+�) v�(p+1+�)ev

r+ � �e(�pv
2) e�v e�2�v e(�2�)v

In Reissner-Nordstr�om spacetime all outgoing null
geodesics which originate inside the black hole intersect
the CH within a �nite a�ne parameter. However, the
presence of the scalar �eld modi�es the causal structure
of the spacetime so that some outgoing null rays termi-
nate at r = 0 in a �nite coordinate time v (i.e. before
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intersecting the CH). This important result is demon-
strated in Fig. 2, which shows the radius as a function of
external advanced time along a selection of outgoing null
rays. In this coordinate system the lightcones tip over at
r = 0 indicating that the singularity at this hypersurface
is spacelike.

FIG. 2. The null rays in the rv-plane. The inner-most rays
terminate at r = 0 in a �nite advanced time, however there

exist many geodesics which approach a �nite radius at large

v. Subsequent �gures show g and g along the �ve outermost
rays indicated by di�erent line types. The initial data is ex-

ponential with � = 0:26, p = 1 and e2 = 0:4.

Generally we have found the outgoing null rays to be-
long to two distinct classes, those which reach r = 0 and
those which do not. The latter geodesics are of great-
est interest to us here and below. Each member of this
class approaches a �xed radius at late times, indicating
the existence of a CH in these solutions. Notice that
the �nal radius is di�erent for each geodesic; the CH is
not a stationary null hypersurface, as it is in Reissner-
Nordstr�om spacetime, rather it contracts slowly under
transverse irradiation. Moreover, the CH is the locus of
a null, precursory singularity which precedes the crushing
singularity at the origin (see Fig. 1). Gnedin and Gnedin
examined only the central singularity in [9], overlooking
the existence of the null portion.
One might worry that the cumulative e�ect of infalling

scalar �eld could eventually focus all outgoing null rays to
zero radius. To allay such doubts we have examined the
expansion rate g = �2 dr=dv along outgoing null rays.
Typically g reaches a maximumalong each geodesic, then
it exhibits a period of exponential decay followed by a less
pronounced, but de�nite, approach to zero which is char-
acteristic of the initial data (see Fig. 3). Table I gives the
form of g for large v, demonstrating that the assumptions
used in asymptotic calculations are valid [5,14].
Our initial conditions along � reect the relaxation

of the external gravitational �eld to Reissner-Nordstr�om
spacetime at late times. It seems reasonable that this

property should continue to hold inside the event hori-
zon as far as some imprecisely de�ned radius, where
non-linear gravitational e�ects become important. This
expectation is indeed realized in our numerical simula-
tions, justifying the assumption used in [15] to analyti-
cally estimate the e�ects of the scalar �eld on the charged
black hole interior. We �nd a thick (in terms of r) layer
where the presence of scalar matter produces only slight
deviations from an exact Reissner-Nordstr�om solution.
This e�ect is most pronounced in the function g at late
times; near to the event horizon g ' �1 as in Reissner-
Nordstr�om spacetime, however it rapidly approaches zero
beyond this region.

FIG. 3. These plots show ln jgj along a selection of outgoing

null rays which intersect the CH. The top graph shows ln jgj

against ln jvj for the inverse power data in Table I. The late
time fall-o� is clearly a power law too. The graph is ln jgj

against v for the exponential data. The linear relation in this

graph indicates an exponential fall-o� at late times. The cusp
in these �gures corresponds to a change in the sign of g where

the outgoing null ray intersects the outer apparent horizon of

the black hole.

Figure 4 shows ln jgj plotted against advanced time
along selected null rays. At late times g � e�v, where
 depends only on the charge e. We �nd  ' �� as pre-
dicted by analytic models [4], where �� =

p
1� e2=(1�p

1� e2)2 is the surface gravity of the inner horizon of a
static black hole with equivalent mass and charge. This
result holds to within about 10%.
While a suitable coordinate transformation can render

the metric non-singular [4], the exponential decrease in
g is reected in the growth of curvature as the CH is ap-
proached. In fact C���C��� ' 48m2(u; v)=r6(u; v) �
g2(u; v)e2v along outgoing null rays. (u labels the out-
going null hypersurfaces on which we have examined the
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functions.) For a black hole of about one solar mass
we have been able to follow the evolutions to curvatures
around Planck levels.

FIG. 4. ln jgj against advanced time along the outgoing
null rays. The asymptotic form g � e�v is in remarkable

agreement with predictions based on simpli�ed models.

Analytic models have relied heavily on the results of
linear perturbation theory to provide information about
energy uxes along the CH. Therefore, we have exam-
ined the ux of scalar �eld parallel to the CH in our
solutions, �nding qualitative agreement with perturba-
tive analyses. It is straightforward to see this remarkable
feature directly from Raychaudhuri's equation (11) and
the results in Table I. If l� = dx�=dv is a lightlike gener-
ator of the outgoing characteristics then the ux of scalar
matter across these surfaces is

F := 4�T��l
�l� = (d�=dv)2 : (13)

Since r ! constant and jgj decays exponentially at late
times, Eq. (11) implies that

F ' Ag + B dg=dv as v !1 ; (14)

where A and B generally depend on the outgoing null
surface considered. Now, if the ux across the event
horizon at late times is Fj� � v�p�1 then F � Fj� v��
with � > 0, along null rays which intersect the CH. The
value of � (lying in the range 0:3 < � < 0:75 for the
cases we examined) depends on the charge, and di�ers
from predicted values [7,15] by more than the numer-
ical uncertainty. Generally, if Fj� decays faster than
exp[�2�+v] for large v, then F � exp[�2�v] where � '
�+ =

p
1� e2=(1 +

p
1� e2)2 (to within less than 10%).

The striking agreement with predictions of linearized the-
ory [7] suggests that perturbative arguments [5,15] are
actually valid deep inside the black-hole core.
The most signi�cant shortfall in our analysis is the lo-

cation of the CH at v = 1. So, how close to the CH do

we really get? Without the entire solution (up to and in-
cluding the CH) it is di�cult to quantify this. However,
in terms of a Kruskal-like coordinate V = �e���v which
goes to zero on the CH we have reached values as small
as V = �10�150 during our integrations. It might seem
tempting to choose such an advanced time coordinate ab

initio, so that the CH is located at a �nite coordinate
distance VCH . However a high price is paid for such a
choice; in the new coordinates the initial data gj� and
gj� become badly behaved as V ! VCH leading to sig-
ni�cantly decreased integration times.
In conclusion, we believe that the e�ects we have de-

scribed above are representative of the asymptotic struc-
ture of the true black hole interior and that a null, mass
ination singularity is present along the CH. Further-
more, the null CH singularity is a precursor of the �nal
spacelike singularity deep within the black-hole core. A
detailed account of this work is in preparation.
We are grateful to Ian Moss and Werner Israel for use-
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