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ABSTRACT

In this paper, we use large P3M N-body simulations to study the three-point cor-
relation function � of clusters in two theoretical models. The �rst model (LCDM) is
a low-density at model of 
0 = 0:3, �0 = 0:7 and h = 0:75, and the second model
(PIM) is an Einstein-de-Sitter model with its linear power spectrum obtained from
observations. We found that the scaled function Q(r; u; v), which is de�ned as the ratio
of �(r; ru; ru+rv) to the hierarchical sum �(r)�(ru)+�(ru)�(ru+rv)+�(ru+ rv)�(r)
(where � is the two-point correlation function of clusters), depends weakly on r and u,
but very strongly on v. Q(r; u; v) is about 0.2 at v = 0:1 and 1.8 at v = 0:9. A model

of Q(r; u; v) = �101:3v
2

can �t the data of � very nicely with � � 0:14. This model is
found to be universal for the LCDM clusters and for the PIM clusters. Furthermore,
Q(r; u; v) is found to be insensitive to the cluster richness. We have compared our N-
body results with simple analytical theories of cluster formation, like the peak theories
or the local maxima theories. We found that these theories do not provide an adequate
description for the three-point function of clusters. We have also examined the obser-
vational data of � presently available, and have not found any contradiction between
the observations and our model predictions. The v-dependence of q in a projected cat-
alogue of clusters is shown to be much weaker than the v-dependence of Q found in the
three-dimensional case. This is probably the reason why the v-dependence of Q has
not been found in an angular correlation function analysis of the Abell catalogue. The
v-dependence found in this paper might be an important feature of clusters formed
in the Gaussian gravitational instability theories. Therefore it would be important to
search for the v-dependence of Q in redshift samples of rich clusters.

Key words: galaxies: clustering - large-scale structure of the universe - cosmology:
observations

1 INTRODUCTION

The observational fact that the two-point correlation function of rich clusters of galaxies has an amplitude much higher than

that of galaxies (Bahcall & Soneira 1983; Klypin & Kopylov 1983), has been explained by Kaiser (1984) as a consequence of

the hypothesis that rich clusters form at high peaks of the underlying Gaussian uctuation �eld on the cluster mass scale. In

his paper, Kaiser derived a relation between the two-point correlation function �pk of peaks and the two-point function �m

of the underlying mass. This derivation has been re�ned and generalized to the three-point correlation function �pk of peaks

by many authors (e.g. Politzer & Wise 1984; Matarrese, Lucchin & Bonometto 1986; Jensen & Szalay 1986). For a Gaussian

perturbation �eld and in the limits of high sharp peaks and weak underlying clustering (�m � 1), the three-point function

�pk is found to be

�pk(r12; r23; r31) = Qh

h
�pk(r12)�pk(r23) + �pk(r23)�pk(r31) + �pk(r31)�pk(r12)

i
+Qk�pk(r12)�pk(r23)�pk(r31) (1)

with Qh = Qk = 1. For this case, �pk is said to have the Kirkwood form. If Qk is zero, �pk is said to have the Hierachical

form. Szalay (1988) relaxed the limit of high sharp peaks and examined �pk for a general threshold function. Under the limit

of weak underlying clustering, he showed that the cubic term Qk�pk(r12)�pk(r23)�pk(r31) always accompanies the hierarchical
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term Qh[�pk(r12)�pk(r23) + �pk(r23)�pk(r31) + �pk(r31)�pk(r12)] with Qk = Q3
h even for a general threshold function (though

some other terms may appear in this case). He suggested that this relation can be used to test the hypothesis that clusters

form at high peaks of the primordial density �eld.

Studies based on the projected catalog of Abell clusters, however, indicate that the three-point correlation function �cl

of clusters approximately obeys the hierarchical model with Qk = 0 and Qh � 0:6 (Jing & Zhang 1989; T�oth, Holl�osi &

Szalay 1989). The same hierarchical model seems to hold for �cl of clusters selected from the Lick catalog (Borgani, Jing

& Plionis 1992). A few workers have tried to extract the three-point function of clusters from redshift samples of clusters,

however the constraints on the form of �cl from these studies are rather weak because the redshift samples are too small (Jing

& Valdarnini 1991; Davies & Coles 1993). Recent analyses of the skewness S3(R) for the Abell clusters and the APM clusters

seem to support the hierarchical model because the measured S3(R) depends very weakly on R (Plionis & Valdarnini 1995;

Cappi & Maurogordato 1995; Gazta~naga, Croft & Dalton 1995 hereafter GCD95).

In real observations of �cl, as Coles & Davies (1993, hereafter CD93) pointed out, the condition �m � 1 can be hardly

satis�ed because the two- and three-point correlation functions of clusters are very di�cult to measure on the scales of �m � 1.

They therefore, using numerical integrations, investigated the form of �pk as a function of �pk for the quasi-linear regime �m < 1.

They �nd that the hierarchical model is a better �t to �pk than the Kirkwood model though neither model provides a good �t

to �pk. As they pointed out, one problem with this peak theory is that a region with density exceeding some threshold may be

identi�ed with several distinct clusters because of its �nite spatial extent, thus overestimating the correlations on small scales

(Coles 1989; Lumsden, Heavens & Peacock 1989). They therefore studied the three-point correlation of local maxima of the

density �eld. It is found that the hierarchical form can approximately describe the three-point correlation function of local

maxima. However, because of the technical complexity of this approach, their conclusion is drawn only for the one-dimensional

density �eld. One common prediction of both theories is that the amplitude Q of the three-point function increases with the

density threshold.

The main weakness of these analytical theories is that they are unable to treat the non-linear density uctuations,

especially merging of clusters. As pointed out by Croft & Efstathiou (1993) based on N-body simulations, these theories

predict too high a two-point correlation function for clusters. This weakness should also inuence the calculations of the

three-point correlation function. Therefore it is obviously very important to use N-body simulations to calculate the three-

point correlation function for clusters. Such a study is not only useful for testing the analytical predictions but also provides

a basis to compare observations with theories.

Here we report our results of the three-point correlation function � of clusters in N-body simulations. The simulations

are a set of P3M simulations of 106 particles in a simulation box of 300 or 400 h�1Mpc. A description of these simulations

will be given in Section 2, where identi�cation procedures of clusters will be discussed. In Section 3, we will report the three-

point correlation function of simulated clusters, with emphasis on the dependence of � on sizes and shapes of triangles. We

will �nd that neither the hierarchical nor the Kirkwood model can provide a reasonable �t to the three-point function of

simulated clusters. There we suggest another model which can �t � quite well. Then in Section 4, we compare our results with

previous works: observational statistics, analytical theories, and simulation studies of the skewness ?. Our main conclusions

are summarized in Section 5.

2 N-BODY SIMULATIONS

The simulations used here are two sets of large P3M N-body simulations. The �rst set (hereafter LCDM) simulates a low-

density at universe of 
0 = 0:3, h = 0:75 and �8 = 1, where 
0 is the current density parameter, h is the Hubble constant in

unit of 100 km s�1Mpc�1 and �8 is the linearly evolved rms mass uctuation in a sphere of 8h�1Mpc at the present time. For

this simulation, we assume that the primordial power spectrum is a Harrison-Zel'dovich spectrum. Its linear transfer function

is taken from Bardeen et al (1986). The second set (hereafter PIM) simulates an Einstein-de-Sitter universe with �8 = 0:8 and

a phenomenological linear power spectrum which was obtained by Branchini, Guzzo & Valdarnini (1994) from an analysis

of redshift surveys of galaxies. Because of these parameters, both models provide good approximations to the real universe,

although, as Branchini et al. noted, the latter model slightly lacks large-scale clustering power when compared with the APM

and EDSGC angular two-point functions of galaxies (Maddox et al. 1990; Collins, Nichol & Lumsden 1992).

The standard P3M technique is used for these simulations (Hockney & Eastwood 1981; Efstathiou et al. 1985; Valdarnini

& Borgani 1991; Jing & Fang 1994). For both models, 106 particles are used in each simulation and 8 realizations are run for

each model. For the LCDM simulation, we use a box of L = 400 h�1Mpc and the force resolution � = 0:2 h�1Mpc; for the

PIM simulation we use L = 300 h�1Mpc and � = 0:3h�1Mpc. Since we have simulated a huge volume of the model universes

( 27 or 64 �106 h�3Mpc3) with a large number of particles, we are able to calculate accurately the three-point correlation

? Because the skewness depends on the three-point correlation through an integral, the shape dependence we �nd in this paper cannot
be found in the skewness analysis
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function of clusters in these models.

Clusters are selected according to the single criterion | the mass overdensity � in a spherical volume of radius rc =

1:5 h�1Mpc. Similar criteria have been used for cluster identi�cation in real observations (Abell 1958; Dalton et al. 1992;

Lumsden et al. 1992). In order to study the richness dependence of the cluster three-point correlation function in detail,

we have selected both rich and poor clusters with � � �min. �min is taken to be 90 for the LCDM model and 38 for the

PIM model. With these overdensity thresholds, we can identify <
� 3200 clusters in each realization of the simulation for both

models. Moreover each cluster in both models contains at least 20 particles. The poorest clusters in our simulations may be

slightly poorer than the clusters in the above mentioned observations. We have used two methods to identify these overdensity

regions (i.e. clusters). The �rst method is based on the friends-of-friends algorithm and a description of this method can be

found in Jing et al. (1993; see also White et al. 1987). The linking parameter b in this work is taken to be 0.1 times the mean

particle separation. This method has been applied only to the LCDM simulation because it is too CPUtime-consuming for

large simulations (106 particles here). Therefore we developed another method which can work much faster.

In the second method, we place a grid of N3
g cells in the simulation volume. Ng is 256 for the LCDM and 192 for the PIM

simulations, so that the cell size in both simulations is 1:56 h�1Mpc. We count the number /C of particles in each cell. If a cell

has the count /C larger than the count in every of its 26 neighboring cells, this cell is recognized as a local density maximum

and the cell center is regarded as the position of the maximum. For each local maximum, we calculate the barycenter rb0 and

the count C0 of the particles inside a sphere of radius rc = 1:5 h�1Mpc centered at the maximum. Around the barycenter

r
b
0, we draw a new sphere of rc and calculate the barycenter rb1 and the count C1 for the particles in this sphere. We repeat

the same calculation for each updated barycenter, until the new count Ci is not larger than the previous one Ci�1. The

previous barycenter r
b
i�1 and count Ci�1 are then the center and particle count of a new cluster if its overdensity is larger

than the threshold �min. This iterative calculation is attempted to minimize the e�ect of the uniform grid cells. Some clusters

identi�ed in this way may overlap, i.e. the separation between two clusters may be smaller than 2rc. We correct this simply

by eliminating the smaller one of two overlapping clusters. A sample of clusters has thus been constructed. The cluster sample

may still slightly depend on how the grid is placed. Especially some clusters may not appear as local maxima in this particular

grid placement, thus they are not included in the sample. In order to reduce this e�ect, we displace the grid by 1/2 cell size

along the x-axis and/or the y-axis and/or the z-axis (i.e. 7 displacements), and produce, in the way just described, 7 samples

of clusters using these displaced grids. Although most clusters (� 90%) are common to all the 8 samples, a small fraction of

clusters appear only in some of these samples. Therefore we merge the 8 samples, and eliminate the overlapping clusters in

the same way as we do for a single sample. This merged sample of non-overlapping clusters is our �nal sample of clusters.

We have applied the second method both to the LCDM and to the PIM simulations. In order to test whether cluster

properties, especially the results of this work, depend on the method of cluster identi�cation, we have compared the mass

functions and the two-point correlation functions of the LCDM clusters identi�ed by the two di�erent methods. The two

identi�cation procedures produce a consistent result for both measures. In Section 3, we will further show that these procedures

give a consistent three-point correlation function of clusters. In the rest of the paper, unless explicitly stated, clusters used

for our analysis are those identi�ed by the second method.

3 THE THREE-POINT CORRELATION FUNCTION OF CLUSTERS

In order to study the richness dependence of the three-point correlation function, we construct 4 subsamples of clusters for

each model according to cluster richness. The i-th subsample (i = 1; 2; 3; 4) is made of the 400� i most massive clusters in each

realization of the simulation, thus contains a total of 3200� i clusters. For simplicity, we will call the i-th subsample of the

LCDM clusters the LCDMi sample and the i-th subsample of the PIM clusters the PIMi sample. The overdensity thresholds

�min of the LCDM samples are respectively 90, 136, 195, and 260, and the �min of the PIM samples are respectively 38, 59,

90, and 125.

3.1 The method of estimating the three-point correlation function

The three-point correlation function �(r12; r23; r31) is de�ned by writing the joint probability dP123 of �nding three clusters

concentrated in each of three volume elements dV1, dV2 and dV3 separated by r12, r23 and r31 as,

dP123 = �n3[1 + �(r12) + �(r23) + �(r31) + �(r12; r23; r31)]dV1 dV2 dV3 (2)

where �n is the mean number density of clusters. Usually it is convenient to use variables r, u, v instead of r12, r23, r31 (Peebles

1980). For r12 < r23 < r31, the relations of these variables are given as following:

r = r12; u =
r23

r12
; v =

r31 � r23

r12
: (3)
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Figure 1 { The two-point correlation functions of four samples. The solid curves are the best �ts of the models described in the text.

The count NT (i; j; k) of cluster triplets with sides in the (i; j; k)-bin Ri < r � Ri+1, Uj < u � Uj+1 and Vk < v � Vk+1 are

N
T (i; j; k) =N (1)(i; j; k) +N

(2)(i; j; k) +N
(3)(i; j; k)

N
(1)(i; j; k) =8�2�n2Ncl

Z Ri+1

Ri

Z Uj+1

Uj

Z Vk+1

Vk

r
5(u+ v)u dr du dv

N
(2)(i; j; k) =8�2�n2Ncl

Z Ri+1

Ri

Z Uj+1

Uj

Z Vk+1

Vk

r
5(u+ v)u

h
�(r) + �(ru) + �(ru+ rv)

i
dr du dv

N (3)(i; j; k) =8�2�n2Ncl

Z Ri+1

Ri

Z Uj+1

Uj

Z Vk+1

Vk

r5(u+ v)u �(r; ru; ru+ rv) dr dudv

(4)

where Ncl is the total number of clusters in the sample. For the N-body simulations where the periodic boundary is assumed,

the above equation is strictly valid for the triplet count if the periodic e�ect is taken into account (in contrast with real

observations where the boundary e�ect is more di�cult to correct). If the two-point correlation function and the triplet count

NT (i; j; k) have been measured, the three-point correlation function �(r; u; v) can be determined through Eq.(4).

We therefore �rst measure the two-point correlation function � for each sample. In Figure 1, we plot, as examples, the

two-point correlation function for four samples. The error bars �� shown in the �gure are the bootstrap errors estimated by

the analytical formula of Mo, Jing & B�orner (1992). For the LCDM clusters, we �nd that the two-point correlation function

can be accurately �t by

�(r) =
1

ar1:5 + br2 + cr3:5
: (5)

Because the PIM model has relatively less power than the LCDM model, the following formula

�(r) =
1

ar1:5 + br2 + cr6:5
(6)

can nicely �t the two-point correlation function of the PIM clusters. The �tting parameters a, b, and c are determined for each

sample by a least-square �t to ��1(r) with the weight �2��1� . The �tted � are shown as solid curves in Figure 1. The �gure (and

a check with the �t results of other samples not plotted in the �gure) shows that these �tting formulae can accurately express

the two-point functions of the LCDM clusters for r < rmax � 45 h�1Mpc and of the PIM clusters for r < rmax � 35 h�1Mpc.

These formulae will be used to predict N (2)(i; j; k). We have compared our cluster-cluster � of the LCDM model with that of

Croft & Efstathiou (1993) of a similar model, and found a good agreement between the two studies. Our results also con�rm

the weak richness-dependence of the � amplitude originally found by Croft & Efstathiou (1993).
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We then count the number NT (i; j; k) of cluster triplets in each sample. Here we use the following bins of r, u, and v:

Ri < r � Ri+1 [log(Ri+1=Ri) = 0:1; i = 1; � � �; imax; R1 = 3:1 h
�1
Mpc];

Uj < u � Uj+1 [log(Uj+1=Uj) = 1=6; j = 1; � � �; 6; U1 = 1];

Vk < v � Vk+1 [Vk+1 � Vk = 0:2; k = 1; � � �;5; V1 = 0]:

(7)

Since the two-point correlation function � is detected and �t well only at r � rmax, we limit our analysis to triangles with

their longest sides smaller than rmax. Here we take imax = 12 (rmax = 39 h�1Mpc) for the LCDM clusters and imax = 11

(rmax = 31h�1Mpc) for the PIM clusters. Because of the constraint r31 � rmax, the integral upper limits of u and v for the

N (i)(i; j; k) now become min(Uj+1; rmax=r) and min(Vk+1; rmax=r � u).

We will use the scaled function

Q(r; u; v) =
�(r; u; v)

�(r)�(ru) + �(ru)�(ru+ rv) + �(ru+ rv)�(r)
(8)

to express the three-point correlation function. For the hierarchical model of �,Q(r; u; v) is a constant; for the Kirkwood model

(Qh � Qk in Eq. 1), Q(r; u; v) decreases rapidly with r for �(r) > 1. Since it is di�cult to show the full (3-D) dependence of

Q(r; u; v) on r, u and v by simple means (e.g. plots), in the following we will separately show the dependence of Q(r; u; v) on

each variable by taking an average of Q(r; u; v) over the other two variables. The least-square technique is used to �nd these

averages �Q(y) ( y = r; u; v). For example, �Q(r) is found by minimizing

�
2 =

X
j;k

�
NT (i; j; k)�N (1)(i; j; k)�N (2)(i; j; k)� �Q(i)N (4)(i; j; k)

�NT (i; j; k)

�2
(9)

where �NT (i; j; k) is the bootstrap error of NT (i; j; k) estimated by the analytical formula of Mo et al. (1992), and

N
(4)(i; j; k) = 8�2�n2Ncl

Z Ri+1

Ri

Z Uj+1

Uj

Z Vk+1

Vk

r
5(u+ v)u[�(r)�(ru) + �(ru)�(ru+ rv) + �(ru+ rv)�(r)] dr du dv : (10)

This least-square technique will also be used to test the hierarchical model and the Kirkwood model of � and to estimate

their parameters Q, Qh and Qk. For the Kirkwood model, we minimize

�
2 =

X
i;j;k

�
NT (i; j; k)�N (1)(i; j; k)�N (2)(i; j; k)�QhN

(4)(i; j; k)�QkN
(5)(i; j; k)

�NT (i; j; k)

�2
(11)

with

N
(5)(i; j; k) = 8�2�n2Ncl

Z Ri+1

Ri

Z Uj+1

Uj

Z Vk+1

Vk

r
5(u+ v)u�(r)�(ru)�(ru+ rv) dr du dv : (12)

For the hierarchical model, we just minimize the �2 of Eq.(11) with Qh replaced by Q and with Qk set to zero.

3.2 The results

In Figure 2, we show the results of �Q(r), �Q(u) and �Q(v) of the LCDM clusters. The most noticeable point is the strong

dependence of �Q(v) on v. �Q(v) increases with v, and its value is about 0.2 at v = 0:1 and about 1.8 at v = 0:9. The dependences

of �Q on r and u are much weaker: within � 1� error bar, a constant value � 0:5 is acceptable for �Q(r) and �Q(u). The decline

of �Q(r) at large r is due to the facts that v of the triangles with large r should be small because of the longest side r31 < rmax

and that �Q(v) is an increasing function of v. For the range of cluster richness studied in this work, these dependences of �Q

do not depend on the richness, as shown by di�erent rows of the �gure. The uncertainty of �Q of the LCDM1 sample is large

because the number of clusters in this richest sample is relatively small.

The results of the PIM clusters are shown in Figure 3. The �Q(r), �Q(u) and �Q(v) of the PIM clusters are nearly the same

as those of the LCDM clusters. This might indicate that these �Q-functions do not sensitively depend on the density parameter


0 or the cosmological constant �0 (these two parameters of the LCDM and the PIM models di�er signi�cantly). Since the

di�erence of the linear power spectra between the two models is not large, it is di�cult to say whether these functions depend

on the power spectrum or not.

We have also done the same analysis for the LCDM clusters identi�ed by the friends-of-friends algorithm (Method I).

The results are shown in Figure 4. The three �Q-functions of this �gure are nearly the same as those in Fig. 2. This means

that our results are robust, not depending on the method used to identify clusters.

The weak r-dependence and the strong v-dependence of �Q means that neither the Kirkwood model (with Qh = Qk) nor

the hierarchical model is a good model for the three-point correlation function of clusters (for the range of scales analyzed

here). We propose another empirical model in which Q(r; u; v) depends only on v through the relation

Q(r; u; v) = �101:3v
2

: (13)
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Figure 2 { The averaged �Q of the LCDM clusters as a function of r (the left panels), u (the middle panels) or v (the right panels). Each

row of three panels shows the results of one sample, with the sample name given in the right panel. The solid curves in the left panels

are �Q(v) = 0:15 101:3v
2
.

As shown by the �2 tests, this model (hereafter Model III) can �t the simulation data of � much better than the Kirkwood and

the hierarchical models. Table 1 lists �2
min of these three model �ts to � of the LCDM clusters (cf. Eq. 11). The �2

min of Model

III is much smaller than those of the other two models, which means that Model III can better �t the data of � than the other

two models. For 239 to 240 degrees of freedom, the �2
min of the LCDM4 model is 71 for Model III, 561 for the hierarchical

model, 671 for the Kirkwood model with Qh = Qk, and 544 for the Kirkwood model with two free parameters Qh and Qk,

therefore the hierarchical and the Kirkwood models fail to describe the simulation data. Since the absolute values of �2
min

depend on the error model (here the bootstrap error) used in the least-square �ts, we caution readers against over-interpreting

the statistical meaning of these absolute values, though the bootstrap error was shown to be a good error model for such �ts

(see Mo et al. 1992 for a very detailed discussion). The best values of � from these �ts are given in Table 2. � is about 0.15

for the LCDM clusters and 0.13 for the PIM clusters. The solid curves in Figs. 2 { 4 are the Model III predictions with these

� values. It is clear that Model III can very nicely �t the simulation data of �.
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Figure 3 { The averaged �Q of the PIM clusters as a function of r (the left panels), u (the middle panels) or v (the right panels). Each

row of three panels shows the results of one sample, with the sample name given in the right panel.The solid curves in the left panels

are �Q(v) = 0:13 101:3v
2
.

4 DISCUSSION

First let us compare our N-body results with the predictions of some analytical theories of cluster formation (CD93). The

analytical theories explore the clustering properties either of regions with density uctuation above some threshold (hereafter

the peak theory) or of local linear density maxima above some threshold (hereafter the maxima theory). The peak theory

predicts that Q slightly decreases with the increase of v (cf. Figs. 1{2 of CD93), contrary to our N-body results. The maxima

theory can predict the three-point correlation function only for the one-dimensional case (i.e. v = 1), so it is unknown how Q

changes with v in this theory. Both theories predict that Q increases with the peak (maxima) threshold, which is inconsistent

with our result that Q does not depend on the richness of clusters. The failure of the analytical theories to match our N-body

results implies that these theories can not be used to predict the three-point correlation function for clusters. It is not very

surprising that the analytical theories are inconsistent with our N-body results, since these theories have also met problems

to predict the two-point correlation function of clusters (Croft & Efstathiou 1993).

We have noted two recent works which have analyzed the three-point correlation function and/or skewness S3(R) for rich

clusters in N-body simulations. Watanabe, Matsubara, & Suto (1994) analyzed the three-point correlation function and S3(R)

for simulation clusters. However, their cluster samples are too small, so that they are unable to address the dependences of Q
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Figure 4 { The same as Fig. 2, but the clusters are identi�ed by the friends-of-friends algorithm.

Table 1 �2min of three model �ts to the LCDM samples

Hierarchical Kirkwood 1 Kirkwood 2 Model III

LCDM1 51.0 54.4 50.4 37.5

LCDM2 80.0 94.1 75.4 43.4

LCDM3 182.2 223.5 178.4 52.3

LCDM4 560.8 671.1 543.8 71.4

The number of data points for these �ts are 241. In Kirkwood

1, Qh = Qk is assumed. In Kirkwood 2, both Qh and Qk are

free �t parameters.

Table 2 The �t values of Q for the LCDM

and PIM clusters

Sample No. LCDM PIM

1 0:16� 0:03 0:11� 0:02

2 0:15� 0:02 0:13� 0:01

3 0:15� 0:01 0:136� 0:005

4 0:140� 0:004 0:131� 0:003
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Figure 5 { The skewness S3(R) of an LCDM cluster sample measuredwith the count-in-cell (CIC) analysis (squares connectedwith solid

lines), compared with the integral results of Equation (14) for the Hierarchical model (dotted line) and for Model III (thick solid line).

The value at R = 10h�1Mpc given by the CIC analysis is slightly low due to the �nite size of the clusters. The numerical integration

accuracy of S3(R) is controlled to � 10%. Within this accuracy, the integral results given by both models are in good agreement with

the result from the CIC analysis.

on r, u and v, though their average value of Q is consistent with our results.

GCD95 have analyzed only the skewness of clusters (but not the three-point function) in a set of CDM simulations. The

normalized skewness S3(R) of a spherical volume is related to the three-point correlation function through

S3(R) =
��(R)
��2(R)

��(R) =
1

V 3

Z
sphereR

dr1 dr2 dr3�(r12; r23; r31)

��(R) =
1

V 2

Z
sphereR

dr1 dr2�(r12)

; (14)

where V = 4�R3=3. We have measured S3(R) for our LCDM cluster samples by the count-in-cell analysis (Peebles 1980)

with a result in good agreement with that of an LCDM model of GCD94. Our measured S3(R) is also nicely consistent, as

expected, with the S3(R) numerically calculated through Eq.(14) using Model III. This is shown in Figure 5. S3(R) is almost

a constant � 1:7 for R � 25 h�1Mpc (we limited our analysis to R � 25 h�1Mpc because the three-point correlation function

is measured only for r31 � 40 h�1Mpc. The constant S3(R) might extend much beyond R = 25 h�1Mpc.).

A constant S3(R) was usually regarded as a support for the hierarchical model in the literature. Actually the hierarchical

model with Q � 0:55 can reproduce, using Eq.(14), our measured S3(R) (see Fig. 5), but the hierarchical model clearly fails

to account for the direct count NT (i; j; k). It is not surprising that the di�erent models for � can lead to the same result

for S3(R), since S3(R) is an integral of �. Clearly a constant S3(R) is not su�cient to argue for the hierarchical model. The

count-in-cell analysis (or the moment method) has been widely used to study high-order correlation functions of extragalactic

objects. Although these analyses have already yielded useful information for high-order correlations (e.g. Plionis & Valdarnini

1995; Cappi & Maurogordato 1995; GCD95), the strong v-dependence of �Q found in this work will be de�nitely lost in the

moment method.

The average value of �Q (i.e. averaged over r, u and v) of our model clusters is about 0:55, consistent with the observational

results from the statistical analyses of Abell clusters, Lick clusters and APM clusters (Jing & Zhang 1989; Jing & Valdarnini

1991; Borgani et al. 1992, T�oth et al. 1989; Plionis & Valdarnini 1995; Cappi & Maurogordato 1995; GCD95). Of these

observational works, only JZ89 have examined the richness-dependence and the v-dependence of Q. They analyzed the three-

point function for Abell clusters of richness R � 1 and R � 2 respectively, and found that Q does not depend on the richness

of clusters. Their result is consistent with our results here. As for the v-dependence, because the Abell catalogue is a projected

sample, they measured the value of q in two bins of 0 < v < 0:5 and 0:5 < v < 1 [where q(�; u; v) is de�ned in the same way as

Q but with the angular two and three-point correlation functions, see JZ89 for details]. They found that q does not strongly

depend on v, at least much more weakly than the v-dependence of �Q found here. The projection e�ect in a two-dimensional

catalogue may have reduced the v-dependence. We have examined this problem using the Limber equation (Peebles 1980).

Assuming that the three-point correlation function obeys Model III with � = 0:15, the two-point function � / r�2 and the
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Figure 6 { The v-dependence of q predicted by the Limber equation for a projected catalogue of rich clusters, if the cluster three-point

correlation obeys the model of this paper.

cluster sample is a perfect distance-limited sample of redshift z = 0:2, we calculate q(�; u; v) for di�erent values of �, u and

v. We �nd that q depends very weakly on � and u, but does depend on v. The v-dependence of q is shown in Figure 6. We

see that q increases from q � 0:5 at v = 0:1 to q � 0:9 at v = 0:9. The v-dependence of q in the two-dimensional case is

much weaker than that of Q in the three-dimensional case. From Figure 6, we expect that the value of q in the two bins of

0 < v < 0:5 and 0:5 < v < 1 is about 0.5 and 0.7 respectively. These two values are consistent with the result of JZ89 within

the statistical uncertainty of their work (�q � 0:2). So it is not surprising that they could not discover the v-dependence of

q in their work. Overall the observational results are not contradictory to our result based on N-body simulations.

It is worth emphasizing that the analytical theories compared above are simple theories of cluster formation. Their failure

to explain our N-body results only means the limitation of these simple theories. A similar v-dependence to that found

here has been predicted for the mass three-point function �m of the initially Gaussian uctuation �eld by the second-order

perturbation theory (Fry 1984). Although the relations between the cluster � and the mass �m are yet unknown, it seems that

the non-Gaussian underlying density �eld (which is resulted from the dynamical evolution of a Gaussian density �eld) has an

important impact on the form of the three-point function of clusters (see Fry & Gazta~naga 1993 for a general discussion of

the biasing issue in the second-order perturbation theory). This could also be the reason why the peak theories or the local

maxima theories fail to explain our N-body results, since these theories assume that the underlying density �eld is Gaussian.

The relations between � and �m will be explored in a subsequent paper (Jing et al. in preparation). At this moment, it is

reasonable to argue that the v-dependence of Q probably is an important feature of clusters formed in gravitational instability

theories of Gaussian uctuation �elds. As an example of non-Gaussian models, the toy model of a bubble universe in which

galaxies are distributed on shells and clusters form at the \knots" of three crossing shells predict a very weak v-dependence of

Q for rich clusters (Jing 1991). This toy model is inspired by a non-gravitational instability theory of galaxy formation | the

explosion scenario (Ostriker & Cowie 1981). Therefore, it is worthwhile to conduct a statistical analysis for the v-dependence

of Q in redshift samples of rich clusters. The v-dependence of Q could serve as a discriminator between di�erent scenarios of

cluster formation.

5 CONCLUSIONS

In this paper we have used two sets of N-body simulations to study the three-point correlation function of clusters in theoretical

models. We found:

(1) The scaled three-point function Q(r; u; v) depends weakly on r and v, but very strongly on v. This function is found

to be universal for the LCDM clusters and for the PIM clusters. Furthermore, this function does not depend on the cluster

richness.
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(2) Two well-known models of �, the Kirkwood and the Hierarchical model, cannot be accommodated to these features of

Q(r; u; v). We proposed another model Q(r; u; v) = �101:3v
2

which can �t the data of � very nicely with � � 0:14.

(3) Simple analytical theories of cluster formation, like the peak theories or the local maxima theories, fail to explain the

weak dependence of Q(r; u; v) on the cluster richness and/or the v-dependence of Q(r; u; v) found in our N-body simulations.

The reason might be that these theories cannot describe the non-linear density uctuation, especially the merging processes

of clusters and that these theories assume a Gaussian uctuation for the underlying density �eld.

(4) The v-dependence of q in a projected catalogue of clusters is found to be much weaker than the v-dependence of Q. This

is probably the reason why JZ89 have not found the v-dependence in their analysis of � for the Abell catalogue. The weak

richness dependence of Q they found, agrees with our N-body results. Overall, our N-body results of � are not contradictory

with all observational results currently obtained.

(5) These speci�c but robust features of the cluster three-point correlation function found in this paper, might be an

important feature of Gaussian gravitational instability theories. Simple toy models of the explosion theory of galaxy formation

predict a Q which depends rather weakly on v. Therefore a statistical study of � for redshift samples of rich clusters would

be very important for testing theories of galaxy formation.
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