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Abstract

We have found that the Regge gravity [1, 2], can be represented as a superposition

of less complicated theory of random surfaces with Euler character as an ac-

tion. This extends to Regge gravity our previous result [6], which allows to

represent the gonihedric string [7] as a superposition of less complicated the-

ory of random paths with curvature action. We propose also an alternative

linear action A(M4) for the four and high dimensional quantum gravity, which

allows the same representation. From these representations it follows that the

corresponding partition functions are equal to the product of Feynman path

integrals evaluated on time slices with curvature and length action for the go-

nihedric string and with Euler character and gonihedric action for the Regge

gravity. In both cases the interaction is proportional to the overlapping sizes

of the paths or surfaces on the neighboring time slices. On the lattice we

constructed spin system with local interaction, which have the same partition

function as the quantum gravity. The scaling limit is discussed.
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1. In our previous article [6] , devoted to the hierarchical structure of the

geometrical interactions, we observed that the physical theories can be considered

as a superposition of less complicated, primary interactions.

The example on which we have been based is the regularized string theory with

linear action A(M2) [7]. This string can be considered as a superposition of less

complicated theory of random paths fM1g with an amplitude which is proportional

to the total curvature of the path k(M1) [9].

In the present article we will extend this result and will show that the regular-

ized quantum gravity [1, 2, 3, 4, 5] can be represented as a superposition of the

random surfaces fM2g with an action which is equal to the Euler character of the

surfaces �(M2). We propose an alternative linear action A(M4) for the four and

high dimensional quantum gravity, which allows the same representation.

In the next section we present the main ideas and results for the regularized

string with linear action A(M2) and in the subsequent sections we will extend this

result to the quantum gravity.

1.1The regularized string with linear-gonihedric action A(M2) can be derived

from natural physical requirements such as [7] : �) coincidence of the string tran-

sition amplitude with the usual Feynman path amplitude for long space-time strips

and from �) the continuity principle for the transition amplitudes.

The partition function of the regularized linear string has the form [7]

ZGonihedric(�) =
X
fM2g

expf��A(M2)g; A(M2) =
X
<i;j>

�i;j ��(�ij); (1)

where �(�ij) = j� � �i;jj and the summation is extended over all triangulated

surfaces fM2g with the linear action A(M2), and �i;j is the dihedral angle between

two neighbor faces of M2 having a common edge < i; j > of the length �i;j. The

regularized string (1) is well de�ned in any dimensions and for an arbitrary topology

of the surface M2.

The linear string (1) can be viewed as a superposition of less complicated, pri-

mary theory of random paths fM1g with the curvature action k(M1). This structure

of the linear string (1) comes from the representation of the linear action A(M2) in

terms of the total curvature k(ME
1 ) of the paths fM

E
1 g which appear in the inter-

section of the plane E with the given surface M2 [9]

A(M2) =
X
fEg

k(ME
1 ): (2)

In the last formula the paths in the intersection are denoted by fME
1 g

ME
1
= M2 \ E (3)

and the absolute total curvature k(ME
1
) of the path ME

1
is equal to

k(ME
1 ) =

X
<i;j>

j� � �E
ijj; (4)

where �E
ij is the dihedral angle in the intersection of the plane E with the edge

< i; j > and �E
ij = � for the edges of M2 which are not intersected by the given

plane E.



With (2) the partition function of the system (1) can be written in the form

ZGonihedric(�) =
X
fM2g

Y
fEg

expf�� k(ME
1
) g: (5)

When the continuous Euclidean space is replaced by the Euclidean lattice, where the

paths and the surfaces are associated with the collection of the links and plaquettes,

then in the last formula the product over all intersecting planes fEg can be evaluated

to a product over planes fE�
g which are perpendicular to a given time direction �

[6]

ZGonihedric(�) =
X

f::M�

1
;M

�+1

1
::g

Y
�

K(M �
1 ;M

�+1
1 ); (6)

where

K(M �
1
;M �+1

1
) = exp��f

1

2
k(M �

1
)+l(M �

1
)+

1

2
k(M �+1

1
)+l(M �+1

1
)�2l(M �

1
\M �+1

1
) g

(7)

and the independent summation is extended over all paths f::M �
1
;M �+1

1 ::g on difer-

ent time slices. This result is valid if the self-intersection coupling constant k [7] is

equal to in�nity [13], that is for self � avoiding surfaces. In three dimensions it is

valid also for the case when k = 0 [6].

We have the propagation of the path M �
1 in the time direction � with an ampli-

tude which is proportional to the sum of the curvature k(M �
1
) and of the length of

the path l(M �
1
), and the interaction which is proportional to the overlapping length

of the paths on the neighboring time slices l(M �
1 \M �+1

1 ). The advantage of this

formula is that one can consider this interaction as a perturbation, or as the hopping

term in the lattice language, because it describes the hopping from one time slice to

another [6]. In that case the tree approximation is associated with the length and

curvature terms in (7) and describes the free fermion on a given time slice. The

separate path integral which describes the fermion on a given time slice

X
fM�

1
g

expf�� f
1

2
k(M �

1 ) + l(M �
1 )g g =< expf�H tree

Gonihedricg > (8)

has been already computed in [6] by Kac-Ward method [16, 17].

From the last formulas one can conclude that the string partition function is

equal to the limit of the in�nite product of the Dirac-Feynman path integrals which

are evaluated on the time slices fE�
g � = a; 1; :::; N; b. One can say that the

gonihedric string (1) is a superposition of weakly interacting Dirac particles which

"jumps" from one time slice to another thanks to the hopping interaction [6]. This

result demonstrates how the in�nite sandwich of primary theories can generate the

physical theory.

The equivalent statistical system for which (6),(7) is an exact expression for the

partition function has been constructed in [12, 13, 15]. This equivalence allows to

simulate the linear string (1) on the lattice and, as we will see later on, the quantum

gravity as well.



2.Let us consider three dimensional manifold fM3g which is constructed by

gluing together three-dimensional tetrahedra through their triangular faces. This

manifold can be associated with the three-dimensional gravity [1, 2] or with the

motion of the two-dimensional membrane [10].

To construct the three dimensional quantum gravity with the linear actionA(M3)

and to generate the next species in the hierarchy of the geometrical interactions

we should apply the principles �) and �). In accordance with �) the quantum

mechanical amplitude should be proportional to the linear size of the manifold and

thus it must be proportional to the linear combination of the lengths of all edges of

tetrahedrated manifold M3

A(M3) =
X
<i;j>

�ij ��ij (9)

where �ij is the length of the edge between two vertices< i > and < j >, summation

is over all edges < i; j > and �ij is unknown factor, which can be de�ned by use

of the continuity principle �). Indeed, if we impose a new vertex < m > inside a

given flat tetrahedron < ijkl >, then for that new manifold we will get an extra

contribution �im�im+�jm�jm+�km�km+�lm�lm to the action and we will get more

extra terms imposing a new vertices, despite the fact that the manifold does not

actually changed. To exclude such tape of contributions we should choose unknown

factor �ij such that it will vanish in flat cases. This can be done by use of the

dihedral angles, therefore

A(M3) =
X
<i;j>

�ij ��(�ij + �ij + :::); (10)

where

�(2�) = 0; (11)

and �ij; �ij::: are the dihedral angles between triangular faces of tetrahedra which

have the common edge < i; j >. These angles appear in the normal section of the

edge < i; j > with the d � 1 dimensional plane E. In analogy with the gonihedric

string [7] one can also de�ne more speci�c theories with the property that

�(4� � !) = �(!); �(!) � 0 (12)

As we will see bellow this generalization will allow to extend the string results to

quantum gravity.

The essential di�erence with the theory of random surfaces with the linear action

A(M2) is that now the linear functional A(M3) is an intrinsic quantity, because

dihedral angles �ij ; �ij::: are well de�ned without any embedding.

Generally speaking, a suitable selection of the factor � can be done if we re-

quire a convenient scaling behavior of the theory [7]. We will use the following

parametrization of the �(!)

�(!) = (2� � !)& ; (13)

which for the case & = 1 coincides with the Regge action [1] and is the discrete

version of the following continuous Hilbert-Einstein action



A(M3) =

Z
M3

R dv3: (14)

Our aim is now to represent the three dimensional gravity as a superposition of

less complicated geometrical theory of random surfaces with Euler character as an

action

�(M2) =
X
<i;j>

(2� � �ij � �ij � :::): (15)

In the last particular case & = 1 and � � �.

Let us consider the intersection of the tetrahedrated manifold M3 by the d � 1

dimensional plane E. The intersection is the two-dimensional surface ME
2

ME
2 = M3 \ E (16)

and as we will see in a moment the linear action A(M3) is the sum of Euler characters

of all surfaces which appear in the intersection fME
2
g

A(M3) =
X
fEg

�(ME
2 ); (17)

where

�(ME
2 ) =

X
<i;j>

(2� � �E
ij � �E

ij � :::); (18)

and �E
ij , �

E
ij , ... are the angles in the intersection of the plane E with the edge

< i; j > and !E
ij = �E

ij + �E
ij + ::: = 2� for the edges of M3 which are not intersected

by the given plane E.

The formula (17) follows from the fact that the average of the angle �E
ij over all

intersecting planes fEg is equal to dihedral angle �ij [9]

< �E
ij >�

Z
�E
ij dE = �ij � �ij (19)

and that the number of planes which intersect the given edge < i; j > is proportional

to it's length �ij .

Therefore in the same way as for the linear string A(M2) we have the following

representation of the partition function of the three dimensional quantum gravity

ZGravity(�) =
X
fM3g

Y
fEg

expf�� �(ME
2 ) g: (20)

When the continuous Euclidean space is replaced by the Euclidean lattice, where

the surfaces and the manifolds are associated with the collection of the plaquettes

and cubes, then in the last formula the product over all intersecting planes fEg can

be evaluated to a product over planes fE�
g which are perpendicular to a given time

direction �

ZGravity(�) =
X

f::M�

2
;M

�+1

2
::g

Y
�

K(M �
2 ;M

�+1
2 ); (21)



where

K(M �
2
;M �+1

2
) = exp��f

1

2
�(M �

2
)+A(M �

2
)+

1

2
�(M �+1

2
)+A(M �+1

2
)�2A(M �

2
\M �+1

2
) g

(22)

and the independent summation is extended over all surfaces f::M �
2 ;M

�+1
2 ::g on

di�erent time slices. This formula is valid when

�(!) = j2� � !j (23)

and self-intersection coupling constant k is equal to in�nity [13]. For three-dimensional

universeM3 self-intersection happens when more than two 3d cubes have been glued

face-to-face. To prove this formula one should consider case by case all seven vertex

con�guration �1; :::; �7 which remain in the limit k !1 (see bellow).

We have the propagation of the surface M �
2 in the time direction � with an

amplitude which is proportional to the sum of the generalized Euler character �(M �
2 )

(23) and of the linear size of the surface A(M �
2 ) (1), and the interaction which

is proportional to the length of the right angle edges of the overlapping surface

A(M �
2 \M �+1

2 ).

From the last formulas we conclude that the partition function for the quantum

gravity is equal to the limit of the in�nite product of the linear string path integrals

(21),(22) which are evaluated on every time slices � = a; 1; :::; N; b.

2.1 Let us consider now four dimensional manifoldM4. Using the same princi-

ples we can de�ne the linear action A(M4) for the four dimensinal quantum gravity

as

A(M4) =
X
<i;j>

�ij ��f
X
q

(2� � �
q
ij � �

q
ij � :::)g (24)

where the �rst summation is extended over all edges ofM4 and the second summation

is over all d�2 dimensional normal sections of the given edge < i; j >, and �
q
ij ; �

q
ij; :::

are dihedral angles on the q0th section. Geometricaly the last factor is equal to the

total area of the polyhedron on S3 which corresponds to the spherical image of the

edge < i; j >. The same arguments as in the previous section allow to �nd out that

A(M4) =
X
fEg

�(ME
2 ); (25)

where the summation is extended over all d � 2 dimensiona planes fEg. With

this result we have the same representation (20) for the partition function of the

four dimensional Quantum Gravity. This linear theory is again intrinsic and have

better chances to describe quantum gravity than the standart action [1], which is

proportional to the area of the four dimensional universe M4. In the next section

we will construct the spin systems which have the equivalent partition functions.

3. The correspondence between the spin con�gurations and the geometry of

interface allows to de�ne di�erent theories of random manifolds on a lattice [11, 12,

16]. In the recent articles [12, 13, 15] the authors have introduced a spin statistical

system on the lattice, the low and high temperature expansion of which generates

random walks fM1g, with the amplitude which is proportional to a total curvature



k(M1) of the paths on the two-dimensional lattice and to the linear size of the surface

A(M2) (1) on three-dimensional lattice. This two spin systems are an example of

the primary theory and of the physical theory which is an in�nite supperposition of

the �rst one, and allows therefore the reach phase structure [6]. In three dimensions

the corresponding Hamiltonian is [12, 13, 15]

H3d
gonihedric(k) = k �H3d

self�intersections +H3d
gonihedric(0)

= �2k
X
~r;~�

�~r�~r+~� +
k

2

X
~r;~�;~�

�~r�~r+~�+~�
�

1� k

2

X
~r;~�;~�

�~r�~r+~��~r+~�+~�
�
~r+~�

; (26)

and the low temperature expansion of the partition function is equal to:

Z(�) =
X
f�g

exp(��H3d
gonihedric) =

X
fM2g

exp(�2�A(M2)) (27)

In this lattice implementation of the linear string A(M2) the corresponding Hamil-

tonian (26) depends on the self-intersection coupling constant k and the system

simpli�es in the supersymmetric point where the self-intersection coupling constant

is equal to zero k = 0 [13, 15]

H3d
gonihedric(0) = �

1

2

X
~r;~�;~�

�~r�~r+~��~r+~�+~�
�
~r+~�

: (28)

The system (28) is highly symmetric, because one can independently ip spins on

any combination of planes (spin layers) of the lattice Nd. The degeneracy of the

vacuum state is equal to 2dN and allows to construct the dual Hamiltonian [6, 14, 15].

String path integral (6),(7) which we discussed in the previous section is an exact

expression for the spin system with the Hamiltonian (28) and allows to predict the

second order phase transition in 3d which should be of the same nature as it is in

the case of the 2d Ising ferromagnet [6]. This system has well separated vacuum

states with nonzero generalized magnetization at low temperature and symmetric

state at high temperature.

3.1In this section our aim is to construct the lattice spin system with the low

temperature partition function which is equal to the partition function of the random

surfaces with Euler character. This will allow to construct the spin system which

simulates quantum gravity with the linear action A(M3) and A(M4) on the lattice.

The Hamiltonian which contains eight di�erent types of spin interactions inside

the 3d cube can be written in the form

H3d = a �
X

~r;~�;~�;~

�~r�~r+~��~r+~�+~�
�
~r+~�

�~r+~�~r+~+~��~r+~+~�+~�
�
~r+~+~�

+g �
X

~r;~�;~�;~

�~r�~r+~�~r+~+~��~r+~+~�+~�
�
~r+~�+~�

�
~r+~�

+b�
X

~r;~�;~�;~

�~r�~r+~�~r+~�+~�
�
~r+~+~�+~�

+2c�
X
~r;~�;~�

�~r�~r+~��~r+~�+~�
�
~r+~�

+e�
X

~r;~�;~�;~

�~r�~r+~��~r+~�
�~r+~

2d �
X
~r;~�;~�

�~r�~r+~�+~�
+ h �

X
~r;~�;~�;~

�~r�~r+~�+~�+~
+ 4f �

X
~r;~�

�~r�~r+~� (29)



where the coupling constants a; g; b; c; e; d; h and f describe eight spin, six spin

(without main diagonal), four diagonal spin, four spin (plaquette), four spin (around

cube vertex), two diagonal spin, two spin (main diagonal), and usual direct two spin

interactions terms. It is convenient to consider the part of the Hamiltonian which

belongs to a given 3d cube

H3d
cube = a � ��������+ g � ������(four zigzag terms)

+b�����(six diagonal)+c�����(six square)+e�����(eight terms around vertex)

+d���(twelve diagonal)+h���(four main diagonal terms)+f ���(twelve direct):

(30)

There are thirteen di�erent con�gurations of the interface in 3d cube �rst seven of

which are shown on Fig.1. The corresponding seven basic vertex curvature are equal

to

�1 = �a+6d+6f +2h� 2g; �2 = a� 2b+2c+4f; �3 = �a� 2d+2f � 2h+2g;

�4 = a+6b+6c�4d+4f�8e�4h�4g; �5 = a+6b�6c+8e�4h�4g; �6 = a�2b�2c�4d;

�7 = a+ 6b� 6c � 8e + 4h+ 4g; (31)

and six vertices with self-intersections are equal to �8 = a � 2b � 2c + 4d; �9 =

a�2b+2c�4f; �10 = �a�2d�2f+2h�2g; �11 = �a+6d�6f�2h+2g; �12 =

a+6b+6c�4d�4f +8e+4h+4g; �13 = a+6b+6c+12d�12f �8e�4h�4g: To

implement generalized Euler action, the number of constraints should be imposed

on these weights.

The �rst requirement is that �2 = �4 = 0, because this vertices are flat, and one

can always normalize �1 = 1 and to parametrize �3 by �, therefore �1 = 1; �2 =

0; �3 = �; �4 = 0: From this equations we can �nd the coupling constants a; b; c

and d in terms of free parameters � and coupling constants f; g; h; e. The solution

is: a = (72f + 24g � 24h � 18� � 6)=24; b = (24f + 16g + 16e � 4�)=24; c =

(�60f +4g+16e+12h+5�+3)=24; d = (�12f +12g�12h�3�+3)=24, therefore

the basic vertex curvature become equal to :

�1 = 1; �2 = 0; �3 = �; �4 = 0;

�5 = �1�3�+24f+8e�8h; �6 = �1�
1

3
�+8f�

8

3
g�

8

3
e; �7 = �1�3�+24f+8g�8e;

and the vertices with self-intersections are equal to: �8 = �
4

3
� + 4f + 4

3
g � 4h �

8

3
e; �9 = �8f; �10 = � � 4f � 4g + 4h; �11 = �12f + 4g � 4h + 1; �12 =

�8f +8g+16e+8h; �13 = 2� 2�� 24f +8g� 8h. The second requirement which

should be imposed on the vertex curvature is that �5 = �6 from which it follows that

6f = � + 3h � g � 4e. The coupling constants are parametrized now in terms of �

and g, h, e and are equal to a = (�1 � �+ 2g + 2h� 8e)=4; b = (g + h)=2; c =

(3�5�+14g�18h+56e)=24; d = (3�5�+14g�18h+8e)=24; f = (��g+3h�4e)=6.

Therefore �1 = 1; �2 = 0; �3 = �; �4 = 0; �5 = �6 = �1+�+4h�4g�8e; �7 =

�1+�+12h+4g�24e and �8 = (�2�+2g�6h�16e)=3; �9 = (�4�+4g�12h+

16e)=3; �10 = (�� 10g + 6h+ 8e)=3; �11 = (�2�+ 6g � 10h+ 8e+ 1)=3; �12 =



(�4�+28g+12h+64e)=3; �13 = 2�6�+12g�20h+16e. From the last condition

�5 = �6 = �7 it follows that 2e = g + h and

a =
�1� �� 2g � 2h

4
; b =

g + h

2
; c =

3� 5� + 42g + 10h

24
;

d =
3� 5� + 18g � 14h

24
; f =

�� 3g + h

6
e =

g + h

2
(32)

and �nally

�1 = 1; �2 = 0; �3 = �; �4 = 0; �5 = �6 = �7 = �1 + �� 8g (33)

together with self-intersection vertices �8 = (�2� � 6g � 14h)=3; �9 = (�4� +

12g � 4h)=3; �10 = (� � 6g + 10h)=3; �11 = (�2� + 10g � 6h + 1)=3; �12 =

(�4� + 60g + 44h)=3; �13 = 2 � 6� + 20g � 12h. The (32) and (33) completely

solve the problem in terms of parameter � and coupling constants g and h. Bellow

we will consider two di�erent cases of the prime theories.

3.2 Canonical weights for vertex curvature. In this case we should take � = �1

and g = h = 0 in (33), then �rst six vertices have canonical Euler value

�1 = 1; �2 = 0; �3 = �1; �4 = 0; �5 = �6 = �7 = �2 (34)

and from (32), (29) the Haliltonian is equal to

H3d
Euler = �

X
~r;~�

�~r�~r+~� +
X
~r;~�;~�

�~r�~r+~�+~�
+
X
~r;~�;~�

�~r�~r+~��~r+~�+~�
�
~r+~�

; (35)

The remaining surface vertices �8; ::; �13 have the lines of self-intersections and are

equal to �8 =
2

3
; �9 =

4

3
; �10 = �

1

3
; �11 = 3; �12 =

4

3
; �13 = 8: Most of these

vertices are positive and therefore have less statistical weight compared with other

basic vertices �1; ::; �7. To exclude them completely from the partition function

one can ascribe to them a large or in�nite curvature. For that we can use the fact

that they all have the lines of self-intersections. The Hamiltonian which counts

the number of self-intersection lines with the weight equal to k has been already

constructed [13] and is equal to H3d
self�intersection (26). The total Hamiltonian is

equal therefore to

H3d
Euler = �(12k+4)�

X
~r;~�

�~r�~r+~�+(3k+4)�
X
~r;~�;~�

�~r�~r+~�+~�
+(3k+4)�

X
~r;~�;~�

�~r�~r+~��~r+~�+~�
�
~r+~�

;

(36)

and the corresponding vertices have the form �8 = (2 + 2k)=3; �9 = (4 +

4k)=3; �10 = (�1 + 2k)=3; �11 = (9 + 4k)=3; �12 = (4 + 4k)=3; �13 = 8 + 4k

and �1�7 are the same. The limit k ! 1 completely excludes the vertices with

self-intersections from the partition function.

3.3 Absolute value of the weights for vertex curvature. The model with the

absolute value of the Euler character (23)

�(M2) =
X
<i;j>

j2� � �ij � �ij � :::j (37)



can be constructed if we take in (32) and (33) � = 1, and g = �h = �1=4 then

a = �
1

2
; b = 0; c = d = �

5

12
; f =

1

3
; e = 0; g = �h = �

1

4
(38)

with the corresponding weights

�1 = 1; �2 = 0; �3 = 1; �4 = 0; �5 = �6 = �7 = 2;

and self-intersection vertices are �8 = (�4 + 2k)=3; �9 = (�8 + 4k)=3; �10 =

(5 + 2k)=3; �11 = (�15 + 4k)=3; �12 = (�8 + 4k)=3; �13 = �12 + 4k:

3.4 Increasing the dimension of the lattice by one and leaving the Hamiltonian

(35),(36) and (29) (38) without changes one can see that this prime system "moves"

to the the next, physical, member of the hierarchy and describes now the quantum

gravity or more exactly the system of uctuating three dimensional manifolds with

linear-gravity action A(M3) (10) on four dimensional lattice,

ZGravity(�) =
X
f�g

exp(��H3d
Euler) =

X
fM3g

exp(�2�A(M3)) (39)

where the Hamiltonian H3d
Euler exactly coincide with (35),(36) and (29), (38), but

the summation over ~r,~�....is extended now over four dimensional lattice.

As we already have seen in (20), (21) and (22), the partition function (39) of

the three-dimensional quantum gravity can be represented as a superposition of the

random surfaces with Euler action (20) or on the lattice as the superposition of

linear string (21) and (22).

We can conclude from this that the spin system (39), which simulates three-

dimensional gravity undergoes the second order phase transition in four dimensions

and that this phase transition should be of the same nature as in 2d Ising ferromagnet

or in 3d gonihedric system [6]. This happens because they are the next to primary

systems in the geometrical hierarchy, that is they are next to 1d Ising, 2d gonimetric

and 3d Euler systems correspondingly. Increasing the dimension of the lattice by

one more unit we will describe �nely four-dimensional Gravity with linear action

A(M4) which is embedded into �ve dimensional lattice.

4.In this paper we clarify the point that the gonihedric string is the superposition
of the weakly interacting fermions. We extend this result to quantum gravity, which

now appears as a superposition of weakly interacting gonihedric strings. We have

proposed also an alternative linear action A(M4) for the four and high dimensional

quantum gravity, which allows the same representation.
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