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Abstract. This paper studies the one-loop expansion of the amplitudes of electromag-

netism about at Euclidean backgrounds bounded by a 3-sphere, recently considered in

perturbative quantum cosmology, by using �-function regularization. For a speci�c choice

of gauge-averaging functional, the contributions to the full �(0) value owed to physical de-

grees of freedom, decoupled gauge mode, coupled gauge modes and Faddeev-Popov ghost

�eld are derived in detail, and alternative choices for such a functional are also studied.

This analysis enables one to get a better understanding of di�erent quantization techniques

for gauge �elds and gravitation in the presence of boundaries.

PACS numbers: 0370, 0460
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1. Introduction

The way in which quantum �elds respond to the presence of boundaries is responsible for

many interesting physical e�ects (e.g. the Casimir e�ect), and plays a very important

role in quantum gravity and quantum cosmology. In that case, the (formal) quantization

of gauge �elds and gravitation via Wick-rotated Feynman path integrals is expressed in

terms of quantum amplitudes of going from a 3-metric and a �eld con�guration on an

initial spacelike surface to a 3-metric and a �eld con�guration on a �nal spacelike surface.

Whilst mathematics enables one to understand which compact boundary geometries do

actually exist, the methods of quantum �eld theory �x the boundary conditions for scalar,

fermionic and gauge �elds, as well as gravitation and corresponding ghost �elds for spins

1; 3
2
and 2. Although the full theory via path integrals is in general ill-de�ned, since there is

little understanding of the measure for quantum gravity and of the corresponding sum over

all Riemannian 4-geometries, the one-loop approximations of these ill-de�ned functional

integrals can be evaluated in terms of well-de�ned mathematical concepts [1-9]. Since one

has then to study determinants of second-order, self-adjoint, elliptic operators, the basic

tool used by theoretical physicists is the generalized Riemann �-function formed by the

eigenvalues of these operators as [9]

�(s) �
1X

n=n0

1X
m=m0

dm(n)�n;m
�s : (1:1)

With our notation, n;m are degeneracy labels, and dm(n) is the degeneracy of the eigenval-

ues �n;m, which is taken to depend only upon the integer n, as happens in many physically
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relevant applications (including the ones described in this paper). The regularized �(0)

value yields both the scaling of the one-loop prefactor and the one-loop divergences of

physical theories.

In particular, the problem of the one-loop �niteness of (extended) supergravity theories

in the presence of boundaries is still receiving careful consideration in the current literature

[1-9]. As emphasized in [9-11], one can perform one-loop calculations paying attention

to: (1) S-matrix elements; (2) topological invariants; (3) presence of boundaries. For

example, in the case of pure gravity with vanishing cosmological constant, � = 0, it is

known that one-loop on-shell S-matrix elements are �nite. This property is also shared by

N = 1 supergravity when � = 0, and in that theory two-loop on-shell �niteness also holds.

However, when � 6= 0 both pure gravity and N = 1 supergravity are no longer one-loop

�nite in the sense (1) and (2), because the non-vanishing on-shell one-loop counterterm is

given by [10]

S(1) =
1e�
�
A� � 2BG�S

3�

�
: (1:2)

In (1.2) e� � n� 4 is the dimensional-regularization parameter, � is the Euler number, S is

the classical action on-shell, and one �nds [9,10]: A = 106
45
; B = �87

10
for pure gravity, and

A = 41
24
; B = �77

12
for N = 1 supergravity. Thus, B 6= 0 is responsible for lack of S-matrix

one-loop �niteness, and A 6= 0 does not yield topological one-loop �niteness.

In the presence of boundaries, however, a much larger number of counterterms can be

obtained even just at one-loop order in perturbation theory, using the extrinsic-curvature

tensor and the Ricci tensor of the boundary. Thus, if any theory of quantum gravity

can be studied from the perturbative point of view, boundary e�ects play a key role in
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understanding whether it has interesting and useful �niteness properties. It is therefore

necessary to analyze in detail the structure of the one-loop boundary counterterms for

�elds of various spins, and the techniques developed so far are described in detail in [2-9].

The corresponding problems are as follows.

(i) Choice of locally supersymmetric boundary conditions [1-4,8-9]. They involve the

normal to the boundary and the �eld for spin 1
2
, the normal to the boundary and the spin- 3

2

potential for gravitinos, Dirichlet conditions for real scalar �elds, magnetic or electric �eld

for electromagnetism, mixed boundary conditions for the 4-metric of the gravitational �eld

(and in particular Dirichlet conditions on the perturbed 3-metric).

(ii) Quantization techniques. One-loop amplitudes can be evaluated by �rst reducing

the classical theory to the physical degrees of freedom by choice of gauge and then quan-

tizing, or by using the gauge-averaging method of Faddeev and Popov, or by applying the

extended-phase-space Hamiltonian path integral of Batalin, Fradkin and Vilkovisky [2-9].

(iii) Regularization techniques. The generalized Riemann �-function [12] and its reg-

ularized �(0) value can be obtained by studying the eigenvalue equations obeyed by per-

turbative modes, once the corresponding degeneracies are known, or by using geometrical

formulae for one-loop counterterms which generalize well-known results for scalar �elds,

but make no use of mode-by-mode eigenvalue conditions and degeneracies [2-9,13].

Since the various quantization and regularization techniques mentioned so far have

been found to give rise to di�erent estimates of the �(0) value for all spins > 0, it is crucial

to get a better understanding of the �(0) values obtained by using the manifestly gauge-

invariant quantization techniques previously listed. The aim of this paper is to perform
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this analysis in the simplest (but highly non-trivial) case, i.e. the one-loop amplitudes of

vacuum Maxwell theory when a 3-sphere boundary is present. One is thus led to make a

3 + 1 split of the 4-vector potential, expanding its components on a family of 3-spheres

centred on the origin as [9,14]

A0(x; � ) =

1X
n=1

Rn(� )Q
(n)(x) (1:3a)

Ak(x; � ) = AT
k (x; � ) +AL

k (x; � ) for all k = 1; 2; 3 (1:3b)

where Q(n)(x) are scalar harmonics on the 3-sphere, whereas the transverse part AT
k and

the longitudinal part AL
k are expanded, 8k = 1; 2; 3, as

AT
k (x; � ) =

1X
n=2

fn(� )S
(n)

k (x) (1:4)

AL
k (x; � ) =

1X
n=2

gn(� )P
(n)

k (x) : (1:5)

Of course, the S
(n)

k (x) and P
(n)

k (x) are the transverse and longitudinal vector harmonics on

S3 respectively, and their properties are described in detail in the appendix of [14]. Note

that, strictly, normal and tangential components of A� are only well-de�ned at the 3-sphere

boundary, where � = a, since a unit normal vector �eld inside matching the normal to S3

at the boundary is ill-de�ned at the origin. As in all mode-by-mode calculations, we are

performing a local analysis, where one takes that scalar �eld whose expansion on a family

of 3-spheres centred on the origin matches the A0(x; a) value at the boundary. Moreover,

one takes that 3-vector �eld whose expansion on a family of 3-spheres centred on the origin
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matches the Ak(x; a) value on S3. One then has to show that an unique regular solution

of the corresponding boundary-value problem exists, although the unit normal vector �eld

inside is ill-de�ned at the origin. It will be shown in section 3 that this is indeed the case.

[We are grateful to Dr. A. Kamenshchik for correspondence about this problem]

Our paper is thus organized as follows. Section 2 derives the contribution of the

physical degrees of freedom (i.e. the modes fn(� ) appearing in (1.4)) to the �(0) value,

following [9,14]. Section 3 studies the coupled set of second-order ordinary di�erential

equations expressing the eigenvalue equations obeyed by the gauge modes gn and Rn,

8n � 2. Section 4 derives the contribution of the R1-mode of (1.3a), which remains

decoupled from Rn(� ) and gn(� ), 8n � 2. Section 5 studies the corresponding form of the

ghost operator, and various possible choices of the gauge-averaging term in the Faddeev-

Popov formula. Open problems and concluding remarks are presented in section 6.

2. Physical degrees of freedom

Within the Faddeev-Popov approach to Euclidean Maxwell theory one deals with gauge-

invariant amplitudes of the form [15]

Z[g] �
Z e�1[A]�[�(A)] det

�
��(A)

��

�
exp

�
�
Z
M

1

4
F��F

��
p
det g d4x

�
(2:1)

where A� is the 4-vector potential, F�� � @�A� � @�A� denotes the electromagnetic-

�eld tensor, and g is the background 4-metric. These amplitudes are more conveniently
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re-expressed as

Z[g] =

Z e�1[A]e�2[c; c�] exp �� eIE� (2:2)

where the total Euclidean action eIE � ÎE + IGA + Igh � IE + Igh is given by

eIE = Igh +

Z
M

2
641
4
F��F

�� +

h
�(A)

i2
2�

3
75 p

det g d4x : (2:3)

In these formulae �(A) is an arbitrary gauge-averaging functional which depends on the

U(1) potential A and its covariant derivatives, and � is a positive dimensionless parameter.

Igh is the corresponding ghost-�eld action. Moreover, e�1[A], e�2[c; c�], det h��(A)��

i
are

a suitable measure on the space of connections, a suitable measure for ghosts, and the

Faddeev-Popov determinant respectively. The inclusion of gauge-averaging functionals

and corresponding ghost �elds (cf section 5) is necessary to extract the volume of the

gauge group. In other words, on integrating over all �eld con�gurations one integrates

in�nitely many times over the volume of the gauge group, whereas we need to concentrate

the measure over a subset of con�gurations containing a single point for each orbit of the

gauge group. This is achieved using (2.1)-(2.3).

In recent years, the case of at Euclidean backgrounds bounded by a 3-sphere has been

studied as the �rst step of a program aiming to get a better understanding of one-loop

properties of supersymmetric �eld theories in the presence of boundaries [9]. As described

in section 1, for this purpose one is then led to make a 3+ 1 split of the 4-vector potential

as in (1.3)-(1.5). In this section we compute the contribution of the physical degrees of
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freedom fn(� ) of (1.4) to the one-loop amplitudes Z(1) of vacuum Maxwell theory in four-

dimensions. If the measure in the path integral is scale-invariant (see [9,14] and references

therein) such Z(1) amplitudes take the asymptotic form

Z(1)(a) �W a�(0) e�I (2:4)

where W is an arbitrary constant and a is the 3-sphere radius.

The physical modes fn(� ) are always decoupled from the gauge modes by virtue of

the properties of the transverse vector harmonics. The corresponding elliptic operator in

the Euclidean action is found to be [9,14]

Dn � �
1

�

d

d�

�
�
d

d�

�
+
n2

�2
for all n � 2 (2:5)

whose eigenfunctions are fn(� ) = AnJn(
p
E� ), An being a constant [16]. Since locally

supersymmetric boundary conditions require that either the magnetic �eld or the electric

�eld should vanish on S3 [9,14], one has to compute the regularized �(0) value for the

generalized zeta-function obtained from the eigenvalues of Dn when fn(� ) is subject to

Dirichlet conditions on S3 (i.e. magnetic case) or Neumann conditions on S3 (i.e. electric

case). In the magnetic case, following the detailed analysis of [14], one �nds

�
(PDF )

B (0) = � 77

180
(2:6)

where the label (PDF) reminds us that (2.6) is the contribution of the physical degrees

of freedom to the full �(0). In the electric case, following section 5.9 of [9], we begin

by taking the Laplace transform of the heat equation, where Jn(
p
E� ) is replaced by
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the linear combination AnIn(�� ) + BnKn(�� ). The ratio An

Bn
is found by requiring that

d
d�

�
AnIn(�� ) + BnKn(�� )

�
(a) = 0, 8n � 2, which takes into account the eigenvalue

condition _Jn(
p
Ea) = 0, where a is the 3-sphere radius. Thus, the Laplace transform of the

kernel of the heat equation for spin 1 when _fn(a) = 0, 8n � 2, is an in�nite sum of products

Gn of functions eGn of the type eGn = T
�
AnIn(�T )+BnKn(�T )

�
. More precisely, de�ning

�< �min(�; � 0), �> � max(�; � 0), one �nds that Gn

�
�; � 0; �2

�
= eGn

�
�<; �

2
� eGn

�
�>; �

2
�
,

where

eGn

�
�<; �

2
�
= �<In(��<) (2:7a)

eGn

�
�>; �

2
�
= �>

�
Kn(��>) �

K 0
n(�a)

I 0n(�a)
In(��>)

�
: (2:7b)

This implies that the free part of the heat kernel is equal to the one found in [14], and

hence does not contribute to �(0). We therefore study the interacting part [9]

Gint
�
�2
�
= �

1X
n=2

�
n2 � 1

�K 0
n(�a)

Kn(�a)

In(�a)

I 0n(�a)
f(n;�a) (2:8)

where f(n;�a) is the function de�ned in equation (4.1.18) of [9]. Thus, we have to work out

the uniform asymptotic expansions of the various terms on the r.h.s. of (2.8) according to

the relations (4.4.13)-(4.4.22) of [9]. Setting a = 1 for simplicity, and de�ning y � np
n2+�2

,

this yields

K 0
n(�)

Kn(�)

In(�)

I 0n(�)
�
�
A0(y) +

A1(y)

n
+
A2(y)

n2
+
A3(y)

n3
+ :::

�
(2:9)

9
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where [9]

A0(y) = �1 (2:10)

A1(y) = �y
�
1� y2

�
(2:11)

A2(y) = �
y2

2

�
1� y2

�2
(2:12)

A3(y) = �
y3

16

�
1� y2

��
10� 68y2 + 74y4

�
: (2:13)

Thus, since f(n;�) �
p
n2+�2

�2

�
B1(y)

n
+ B2(y)

n2
+ B3(y)

n3
+ B4(y)

n4
+ :::

�
, using the explicit forms

of Bi(y) appearing in equation (4.4.12) of [9] one �nds

K 0
n(�)

Kn(�)

In(�)

I 0n(�)
f(n;�) �

p
n2 + �2

�2

�
C1(y)

n
+
C2(y)

n2
+
C3(y)

n3
+
C4(y)

n4
+ :::

�
(2:14)

where [9]

C1(y) = �
y

2

�
1� y2

�
(2:15)

C2(y) =
y2

2

�
1� y2

��
2y2 � 1

�
(2:16)

C3(y) = �
y3

8

�
1� y2

��
3� 20y2 + 21y4

�
(2:17)

C4(y) = �
y4

16

�
1� y2

��
9� 122y2 + 301y4 � 196y6

�
: (2:18)

Note that additional terms in (2.14) have not been computed since they give a contribution

equal to O(
p
t) (t being a parameter not related to Lorentzian time), and hence do not

a�ect the �(0) value. Thus, using (2.8) and (2.14)-(2.18) and taking the inverse Laplace

10
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transform, one �nds that the integrated heat kernel has an asymptotic expansion as t! 0+

given by [9]

Gint(t) � �
1X
n=2

�
n2 � 1

� 4X
i=1

efi(n; t) + O(
p
t) (2:19)

where [9]

ef1(n; t) = �1

2
e�n

2t (2:20)

ef2(n; t) = 4

3

t
3

2

p
�
n2e�n

2t �
r

t

�
e�n

2t (2:21)

ef3(n; t) = �3

8
te�n

2t +
5

4
t2n2e�n

2t � 7

16
t3n4e�n

2t (2:22)

ef4(n; t) = �3

4

t
3

2

p
�
e�n

2t +
61

15

t
5

2

p
�
n2e�n

2t � 301

105

t
7

2

p
�
n4e�n

2t +
392

945

t
9

2

p
�
n6e�n

2t : (2:23)

The interacting part Gint(t) is an even function of n, and we can compute its contribution

to �(0) using the Watson transform de�ned in [9]. The poles of the integrand at 0 and

at �1 are excluded, since the sum over all n in (2.19) only starts from n = 2. The poles

at �1 do not contribute, because the integrand of the Watson transform has zeros at �1.

In our case the constant contribution arising from the poles is given by the constant term

appearing in the inverse Laplace transform of �1
2
ef (0; �), which is equal to 1

4
. One thus

�nds

Gint(t) �
�
1

4
+ O(

p
t)�

Z 1

0

�
�2 � 1

� 4X
i=1

efi(�; t) d�
�

�
p
�

8
t�

3

2 � 1

4
t�1 � 55

256

p
�t�

1

2 � 1

6
� 1

90
+

1

4
+ O(

p
t) (2:24)
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where the contributions �1
6
and � 1

90
are owed to (2.21) and (2.23) respectively. One thus

obtains the PDF value

�
(PDF )
E (0) =

13

180
: (2:25)

3. Coupled gauge modes

The Euclidean action is obtained multiplying the Lorentzian action by �i, setting t = �i� ,

and bearing in mind that (A0)Ldt = (A0)Ed� , so that the rn-modes appearing in the

Lorentzian formulae of [14] are related to the Euclidean Rn-modes by rn = iRn. Moreover,

for at Euclidean backgrounds bounded by a 3-sphere, we choose the gauge-averaging term

�2

2�
, where � is de�ned as (cf (5.1))

� � @A0

@�
+ (3)riAi =

1X
n=1

_Rn(� )Q
(n)(x) � ��2

1X
n=2

gn(� )Q
(n)(x) : (3:1)

Note that in (3.1) we have used the property of at backgrounds (4)r0A0 = @A0

@�
, and

the relation sij = ��2cij between the contravariant 3-metric sij , and the contravariant

3-metric cij on a unit 3-sphere. Covariant di�erentiation on a unit S3, denoted by a

vertical stroke, yields P
(n) jk
k (x) = �Q(n)(x) [14]. With this choice of gauge-averaging

functional, the corresponding di�erential operator acting on Rn-modes will turn out to

be the one-dimensional Laplace operator for scalars if � = 1, as we would expect in the

12



Gauge-averaging functionals for Euclidean Maxwell theory ...

light of the expansion (1.3a). Note also that (3.1) does not represent the Lorentz gauge-

averaging functional (various alternative possibilities are studied in section 5). Thus, the

part IE(g;R) of the Euclidean action quadratic in gauge modes is in our case [9]

IE(g;R) �
1

2�

Z 1

0

�3( _R1)
2 d� =

1X
n=2

Z 1

0

�
�

2(n2 � 1)

�
_gn � (n2 � 1)Rn

�2

+
�

2�

�
� gn

�
+ � _Rn

�2�
d� (3:2)

where we have inserted the at-background hypothesis N = 1, a(� ) = � . The physical

degrees of freedom and the ghost �eld decouple from (3.2). Because we are here dealing

with all degrees of freedom, we need further boundary conditions on the modes for A0

and the whole of Ak. For example, we may set to zero on S3 the whole of Ak: fn(1) =

gn(1) = 0; 8n � 2. This, of course, implies the vanishing on S3 of the magnetic �eld

B, whereas the converse does not hold, because B only depends on the fn-modes. As

explained in [17], in this case the gauge-averaging term has to vanish as well on S3 by

virtue of Becchi-Rouet-Stora-Tyutin (BRST) invariance. In light of (3.1), this implies that

_Rn(1) = 0; 8n � 1. The ghost operator is then self-adjoint only if Dirichlet boundary

conditions are imposed. Viceversa, if Neumann boundary conditions are chosen for the

ghost �eld, remaining boundary conditions compatible with BRST invariance are _fn(1) = 0

and _gn(1) = 0; 8n � 2; Rn(1) = 0; 8n � 1. This case is then called electric.

We now integrate by parts in (3.2) and use the generalized magnetic or electric bound-

ary conditions described above. Thus, de�ning 8n � 2 the second-order di�erential oper-

ators

Ân(� ) � �
d2

d�2
� 1

�

d

d�
+

(n2 � 1)

��2
(3:3)

13
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B̂n(� ) �
1

�

�
� d2

d�2
� 3

�

d

d�

�
+

(n2 � 1)

�2
(3:4)

we �nd 8n � 2 the fundamental result [9]

I
(n)
E (g;R) =

1

2

Z 1

0

�gn

(n2 � 1)
(Ângn) d� +

1

2

Z 1

0

�3Rn(B̂nRn) d�

+

�
1� 1

�

�Z 1

0

�gn _Rn d� +

Z 1

0

gnRn d� : (3:5)

By virtue of gauge-invariance, we can perform the �(0) calculation setting � = 1, so that

the contribution of �gn _Rn vanishes. However, our problem remains a coupled one, also

with this choice. The eigenvalues for gn-modes and Rn-modes can be obtained in principle

from the boundary conditions and the variational principle �
�
IE � �JE

�
= 0, where

JE � 1
2

R
A�A

�
p
det g d4x. We here make the analytic continuation to the Euclidean time

variable � = it in computing IE (cf (3.2)) and JE, and we use (1.3)-(1.5) and the well-

known properties of longitudinal vector harmonics and scalar harmonics [14]. This leads

to the coupled system of two second-order ordinary di�erential equations for arbitrary �

and 8n � 2 (the case n = 1 only involves the R1-mode, and should be treated separately,

as in section 4)

�

(n2 � 1)

�
��gn �

_gn

�
+

(n2 � 1)

��2
gn

�
+

�
1� 1

�

�
� _Rn +Rn =

�n

(n2 � 1)
�gn (3:6)

�3
�
1

�

�
� �Rn �

3

�
_Rn

�
+

(n2 � 1)

�2
Rn

�
� � _gn

�
1� 1

�

�
+
gn

�
= �n�

3Rn : (3:7)
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Now we still choose � = 1, because it enables one to decouple much more easily the system

(3.6)-(3.7). The boundary conditions are regularity at the origin

gn(0) = Rn(0) = 0 for all n � 2 (3:8)

and magnetic conditions on S3

gn(1) = _Rn(1) = 0 for all n � 2 (3:9)

or electric conditions on S3

_gn(1) = Rn(1) = 0 for all n � 2 : (3:10)

In the � = 1 gauge we can express Rn from (3.6) as

Rn =
�n

(n2 � 1)
�gn +

�

(n2 � 1)

�
�gn +

_gn

�
� (n2 � 1)

�2
gn

�
(3:11)

and its insertion into the corresponding form of (3.7) yields the fourth-order equation

0 =

��
2� 3

(n2 � 1)

�
�n�

2 � �2n
(n2 � 1)

�4�
�
n2 � 1

��
gn

+ 2�

�
1� 3�n�

2

(n2 � 1)

�
_gn +

2�2

(n2 � 1)

�
n2 � 4� �n�

2

�
�gn

� 6�3

(n2 � 1)
gIIIn � �4

(n2 � 1)
gIVn : (3:12)

Moreover, studying �rst the magnetic case, the relations (3.9) and (3.11) lead to

�n =
�
n2 � 1

�
� 2

�gn(1)

_gn(1)
� gIIIn (1)

_gn(1)
for all n � 2 : (3:13)
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Of course, as shown by (3.6)-(3.7), the eigenvalues �n have dimension (length)�2. However,

in (3.13) we have set a = 1 for simplicity, following (3.9)-(3.10). Hence the physical

dimension does not appear explicitly. For the solutions of the equations (3.11)-(3.12)

subject to the boundary conditions (3.8)-(3.9), an existence and uniqueness theorem holds.

Thus, denoting by k an integer � 0, in the light of the form of (3.12) we write its solution

as [9]

gn(� ) = ��
1X
k=0

an;k(n; k; �n)�
k : (3:14)

The insertion of (3.14) into (3.12)-(3.13), and the requirement that gn(1) = 0,8n � 2, leads

to a problem formulated in purely algebraic terms. One then �nds that only half of the

an;k coe�cients are non-vanishing and obey very involved recurrence relations, whereas

the value of � is obtained by solving a fourth-order algebraic equation.

In fact, de�ning

F (k; n; �) � 2(k + �)2 � (n2 � 1)�
(k + �)2

�
(k + �)2 � 1

�
(n2 � 1)

(3:15)

we �nd

F
�
0; n; �

�
an;0 = F

�
1; n; �

�
an;1 = 0 (3:16)

F
�
m;n; �

�
an;m +

2
42�

�
2(m+ �)2 � 4(m+ �) + 3

�
(n2 � 1)

3
5 �n an;m�2 = 0 (3:17)
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where m = 2; 3, whereas, 8k � 4, we have

0 = F (k; n; �)an;k +

2
42�

�
2(k + �)2 � 4(k + �) + 3

�
(n2 � 1)

3
5 �n an;k�2

� �2n
(n2 � 1)

an;k�4 : (3:18)

In (3.16)-(3.18), the value of � can be obtained from the equation F (0; n; �) = 0, and

bearing in mind (3.8), which implies that only a � > 1 is an acceptable value, in the light

of (3.11). In other words, we study the fourth-order algebraic equation [9]

�4 � (2n2 � 1)�2 + (n2 � 1)2 = 0 : (3:19)

This equation can be easily solved setting �2 = x and studying the corresponding second-

order equation for x. One thus �nds the four roots

�
(1)
+ = +

r
n2 � 3

4
+

1

2
(3:20)

�
(2)
+ = +

r
n2 � 3

4
� 1

2
(3:21)

�
(1)
� = ��(1)+ (3:22)

�
(2)
� = ��(2)+ : (3:23)

Interestingly, both �
(1)
+ and �

(2)
+ are > 1, 8n � 2. They yield the desired regular solution

of the system (3.6)-(3.7).
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4. Decoupled gauge mode

In the light of (3.2), if we set � = 1 and integrate by parts using (3.8)-(3.10), we �nd that

the decoupled gauge mode R1(� ) obeys the eigenvalue equation

�R1 +
3

�
_R1 + �1R1 = 0 (4:1)

which is solved by R1(� ) = H1�
�1J1(

p
�1 � ), where H1 is a constant. Thus, in the

magnetic case, we study the eigenvalue condition (setting a = 1 for simplicity)

J1(
p
�1)�

p
�1 _J1(

p
�1) = 0 (4:2)

whereas in the electric case the corresponding eigenvalue condition is

J1(
p
�1) = 0 : (4:3)

If (4.2) holds, we have to perform a �(0) calculation with just one perturbative mode,

subject to a complicated eigenvalue condition involving a linear combination of J1 and _J1.

Of course, a regularization is still needed because there are in�nitely many solutions �̂n

of (4.2). For this purpose, it is convenient to use the technique described and applied in

[3,9,18]. The basic idea is as follows.

Given the �-function at large x

�(s; x2) �
1X
n=1

�
�̂n + x2

��s
(4:4)
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one has in four-dimensions

�(3)�(3; x2) =

Z 1

0

t2e�x
2tG(t) dt �

1X
q=0

Bq�
�
1 +

q

2

�
x�q�2 (4:5)

where we have used the asymptotic expansion of the heat kernel G(t) for t! 0+, written

as

G(t) �
1X
q=0

Bqt
q

2
�2 : (4:6)

Such an asymptotic expansion does actually exist in the case of Laplace operators subject

to Dirichlet, Neumann or Robin boundary conditions [9,13,19,20]. On the other hand,

de�ning (cf (4.2))

F1(z) � J1(z) � z _J1(z) (4:7)

one also has the identity

�(3)�(3; x2) = �N1

�
� 1

2x

d

dx

�3

log
�
(ix)�1F1(ix)

�
(4:8)

where N1 = 1 is the degeneracy of the problem. Thus, the comparison of (4.5) and (4.8)

can yield the coe�cients Bq and in particular �(0) = B4, provided we carefully perform an

uniform asymptotic expansion of F1(ix). Now, making the analytic continuation x ! ix

and then de�ning e� � p
1 + x2, one obtains the following asymptotic expansions which

are uniformly valid in the order as j x j! 1:

J1(ix) �
(ix)p
2�
e�� 1

2 ee�e� log(1+e�)�1(1; e�(x)) (4:9)
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J 01(ix) �
1p
2�
e� 1

2 ee�e� log(1+e�)�2(1; e�(x)) (4:10)

where �1(1; e�(x)) � P1
k=0 uk(

1e� ), �2(1; e�(x)) � P1
k=0 vk(

1e� ) [3,9,18]. Using (4.7) and

(4.9)-(4.10), and de�ning C � � log(
p
2�), one thus �nds the uniform asymptotic expan-

sion

log
�
(ix)�1F1(ix)

�
� C � log(1 + e�) + 1

2
log(e�) + e�+

1X
l=1

lX
r=0

blre��l�2r (4:11)

where the double sum on the right-hand side of (4.11) is obtained by expanding in in-

verse powers of e� the log
�
�1e� � �2

�
. In the light of (4.8) and (4.11), we conclude that

�(3)�(3; x2) �
h
�1 + �2

i
, where

�1 �
�

1

2x

d

dx

�3 �
� log(1 + e�) + 1

2
log(e�) + e�� (4:12)

�2 �
�

1

2x

d

dx

�3 1X
l=1

lX
r=0

blre��l�2r : (4:13)

It can be easily checked that the asymptotic expansion of �2 in (4.13) does not contribute

to �(0), whereas one �nds

�1 �
3

8
x�5 � x�6 +

x�6

2
+

1X
k=7

!kx
�k (4:14)

which implies (cf (4.5))

�R1
(0) =

1

2

�
� 1

2

�
= �1

4
: (4:15)

20



Gauge-averaging functionals for Euclidean Maxwell theory ...

By contrast, when the eigenvalue condition (4.3) holds for the R1-mode, the square bracket

on the right-hand side of (4.12) contains �1
2
log(e�) rather than 1

2
log(e�) (cf (4.9)). This

leads to

e�R1
(0) =

1

2

�
� 3

2

�
= �3

4
(4:16)

since, again, the asymptotic expansion of the corresponding �2 does not contribute to

�(0). Note also that our value (4.16) agrees with the result found in [21] in the case of

one perturbative mode subject to Dirichlet boundary conditions. As explained in [22], the

perturbative calculations of [21] are correct, whereas the �(0) values with �nitely many

perturbative modes of appendix A of [23] are incorrect.

5. Ghost-�eld contribution

In section 3, we have chosen the gauge-averaging term �2

2�
, where the gauge-averaging

functional �(A) can be written in the form (cf [24])

�(A) � �1(A) � (4)r�A� �Ki
iA0 =

@A0

@�
+ (3)riAi (5:1)

where Ki
i =

3
�
is the trace of the extrinsic-curvature tensor of the boundary. This choice

of �(A) leads to the familiar one-dimensional Laplace operator acting on the Rn-modes,

which simpli�es the �(0) calculation for the coupled gauge modes and for the R1-mode,

as shown in sections 3 and 4. However, since �1(A) is not the Lorentz gauge-averaging
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functional, the corresponding ghost action does not involve the familiar Laplace operator.

This is proved (cf [15]) by studying the gauge transformation

�A� � A� +
(4)r�� = A� + @�� (5:2)

where the scalar � is expanded on a family of 3-spheres centred on the origin as

�(x; � ) =

1X
n=1

�n(� )Q
(n)(x) : (5:3)

One thus �nds

�(�1(A)) � �1(A) ��1(
�A) =

1X
n=1

Q(n)(x)

�
� d2

d�2
+
(n2 � 1)

�2

�
�n(� ) : (5:4)

This implies that the eigenfunctions of the ghost operator are of the kind [16]

e�n(� ) = p�Jpn2� 3

4

(
p
E� ) : (5:5)

More precisely, since the electromagnetic �eld is bosonic, the corresponding ghost �eld

is fermionic [15]. Its contribution to the full �(0) is thus obtained changing sign to the

scalar-eigenfunctions contribution of (5.5), and then multiplying the resulting number by

two, since the ghost �eld is complex. We now have to perform a �(0) calculation which

involves Bessel functions of non-integer order, generalizing the technique described in sec-

tion 4. Here we show that, although eigenvalues and eigenfunctions are di�erent, the �(0)

calculation originating from (5.5) is closely related to a standard �(0) calculation involving

Bessel functions of integer order. For this purpose, we study the simplest case, i.e. when
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the ghost �eld obeys homogeneous Dirichlet conditions on S3. This leads to the eigenvalue

condition

Jp
n2� 3

4

(
p
Ea) = 0 for all n � 1 : (5:6)

Following [9], our section 4 and (5.6), it is now useful to de�ne 8n � 1 and at large x

� � +

r
n2 � 3

4
(5:7)

��(x) �
p
�2 + x2 =

r
n2 � 3

4
+ x2 (5:8)

�n(x) �
p
n2 + x2 : (5:9)

Since the generalization of the technique of section 4 to in�nitely many perturbative modes

for the ghost involves de�ning ��(x), whereas we are only able to perform exact calculations

using �n(x), it is also useful to evaluate the ratio

��(x)

�n(x)
� �n(x) �

�
1� 3

8

�
n2 + x2

��1
� 9

128

�
n2 + x2

��2
+O

��
n2 + x2

��3��
:

(5:10)

The asymptotic expansion (5.10) is very useful in that it is uniform in n, i.e. it holds 8n � 1,

at large x. A careful study of section 7.3 of [9] shows that, if the eigenvalue condition (5.6)

holds (whose eigenvalues are positive 8n � 1), (4.8) and (4.11) are generalized as

�(3)�(3; x2) �
h
�1 + �2

i
(5:11)
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where

�1 �
1X
n=0

n2
�
� �x�6 + �2x�6��1� +

�2

2
x�4��3� +

3

8
�2x�2��5� � ��6�

2
+

3

8
��5�

�
(5:12)

�2 � �
1X
l=1

lX
r=0

alr

�
r +

l

2

��
r +

l

2
+ 1

��
r +

l

2
+ 2

� 1X
n=0

n2�2r��
�l�2r�6 : (5:13)

In these formulae, obtained using uniform asymptotic expansions of Bessel functions of

non-integer order, n2 is the degeneracy resulting from the scalar harmonics appearing in

the expansion (5.3), � is the order of the Bessel functions de�ned in (5.7), and �� has been

de�ned in (5.8). We now re-express �2 as
�
n2 � 3

4

�
, and ��(x) � �n(x)�n(x) as in (5.10).

Moreover, we use the contour formula [3,9,18]

1X
n=0

n2k��2k�mn =
�
�
k + 1

2

�
�
�
m
2
� 1

2

�
2�
�
k + m

2

� x1�m for all k = 1; 2; 3; ::: : (5:14)

We then point out that the asymptotic expansion (5.12) can be cast in the form

�1 �
h
� x�6I(1)1 + x�6I(2)1 + x�4I(3)1 + x�2I(4)1 � I(5)1 + I(6)1

i
(5:15)

where (see appendix A)

I(2)1 � I(1)1 � �
1X
n=0

n3 +

1X
n=0

n2
�
�2

��
�
�
� � n

��
(5:16)
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I(3)1 � 1

2

1X
n=0

n4��3n +
9

16

1X
n=0

n4��5n +
135

256

1X
n=0

n4��7n

� 3

8

1X
n=0

n2��3n � 27

64

1X
n=0

n2��5n � 405

1024

1X
n=0

n2��7n

+
1

2

1X
n=0

n4��3n O
�
��6n

�
� 3

8

1X
n=0

n2��3n O
�
��6n

�
(5:17)

I(4)1 � 3

8

1X
n=0

n4��5n +
45

64

1X
n=0

n4��7n +
945

1024

1X
n=0

n4��9n

� 9

32

1X
n=0

n2��5n � 135

256

1X
n=0

n2��7n � 2835

4096

1X
n=0

n2��9n

+
3

8

1X
n=0

n4��5n O
�
��6n

�
� 9

32

1X
n=0

n2��5n O
�
��6n

�
(5:18)

I(5)1 � 1

2

1X
n=0

n2��6�

� 1

2

1X
n=0

n2��6n +
9

8

1X
n=0

n2��8n +
1

2

1X
n=0

n2��6n O
�
��4n

�
(5:19)

I(6)1 � 3

8

1X
n=0

n2��5�

� 3

8

1X
n=0

n2��5n +
45

64

1X
n=0

n2��7n +
945

1024

1X
n=0

n2��9n

+
3

8

1X
n=0

n2��5n O
�
��6n

�
: (5:20)
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It is therefore clear, using (5.14), that the �(0) value resulting from �1 and �2 is given

by 1
90

= �2
�
� 1

180

�
(which coincides with the �(0) value corresponding to the Lorentz

gauge-averaging functional) plus additional terms owed to the second sum in (5.16), the

third and �fth sum in (5.17)-(5.18), denoted by T1; T2; T3; T4, the third sum in (5.20),

denoted by T5, and �nally (5.13). Note that I
(5)
1 de�ned in (5.19) does not contribute to

the additional terms. The detailed calculation yields

x�4T1 �
135

256
x�4

1X
n=0

n4��7n =
27

256
x�6 (5:21)

x�4T2 � �
27

64
x�4

1X
n=0

n2��5n = � 9

64
x�6 (5:22)

x�2T3 �
945

1024
x�2

1X
n=0

n4��9n =
27

512
x�6 (5:23)

x�2T4 � �
135

256
x�2

1X
n=0

n2��7n = � 9

128
x�6 (5:24)

T5 �
945

1024

1X
n=0

n2��9n =
9

128
x�6 : (5:25)

We now focus on (5.13) and (5.16), and we �rst study the asymptotic expansion (5.13),

since (5.16) gives rise to severe technical di�culties (see below). For this purpose, we

remark that, studying for all integer values l 2 [1;1[; r 2 [1; l] the function (see appendix
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A)

Ilr(x) �
1X
n=0

n2�2r��l�2r�6�

�
1X
n=0

n2
�
n2 � 3

4

�r
��l�2r�6n

�
1 +Alr�

�2
n +Blr�

�4
n +O

�
��6n

��

�
h
I
(1)

lr + I
(2)

lr + I
(3)

lr + I
(4)

lr

i
(x) (5:26)

one �nds

I
(1)

lr (x) �
1X
n=0

n2
�
n2 � 3

4

�r
��l�2r�6n (5:27)

I
(2)

lr (x) � Alr

1X
n=0

n2
�
n2 � 3

4

�r
��l�2r�8n (5:28)

I
(3)

lr (x) � Blr

1X
n=0

n2
�
n2 � 3

4

�r
��l�2r�10n (5:29)

I
(4)

lr (x) �
1X
n=0

n2
�
n2 � 3

4

�r
��l�2r�6n O

�
��6n

�
(5:30)

where Alr and Blr are coe�cients which only depend on l and r. The case r = 0 is easier.

Using (5.13)-(5.14), r = 0 leads to a contribution to �(0) related to

T6 � �a10
15

8

21

8

�
�
3
2

�
�(3)

2�
�
9
2

� x�6 = �3

8
a10x

�6 (5:31)

where 21
8
is the coe�cient of ��2n in the asymptotic expansion of ��7n (x) (see appendix A).

If the integer r is � 1, one has to study (5.26)-(5.30), where

�
n2 � 3

4

�r
= n2r � 3

4
rn2r�2 + :::+ rn2

�
� 3

4

�r�1
+
�
� 3

4

�r
: (5:32)
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Inserting (5.32) into (5.27)-(5.30), and using (5.14), a lengthy calculation yields a contri-

bution to �(0) related to (see appendix A)

T7 �
�
3

4
a11 �

9

8
a11

�
x�6 = �3

8
a11x

�6 : (5:33)

Note that the two terms on the r.h.s. of (5.33) are due to the asymptotic expansions of

I
(1)

lr (x) and I
(2)

lr (x) respectively, whereas (5.29)-(5.30) do not a�ect the �(0) value, since

they do not involve x�6. It now remains to evaluate the contribution of (5.16). Indeed,

de�ning

J1 �
1X
n=0

n2�

�
�

��
� 1

�
(5:34)

we point out that multiplying and dividing the round bracket by
�
�+��

�
, and then adding

and subtracting �� in the numerator of the corresponding expression, one �nds by virtue

of (5.8) the useful identity

J1 = �x2
1X
n=0

n2

2
4 1

��
� 1�

� + ��

�
3
5 = J (1)1 + J (2)1 : (5:35)

Moreover, (5.10) and (5.14) show that the contribution to �(0) owed to J
(1)
1 is related to

T8 � �
27

128
x�4

1X
n=0

n2��5n = � 9

128
x�6 : (5:36)

A further contribution is owed to

T9 �
1

120
x�6 (5:37)
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originating from
P1

n=0 n
3 in (5.16). However, we do not yet know how to deal properly

with the divergent sum

J (2)1 � x2
1X
n=0

n2�
� + ��

� : (5:38)

We should now add up the numerical coe�cients appearing in (5.21)-(5.25), (5.31),

(5.33), (5.36)-(5.37), divide them by two, and �nally multiply by �2 since the ghost is

fermionic and complex. This leads to the following partial contribution to the �(0) value

for the ghost �eld:

�
(I)

gh (0) =
1

90
� 9

512
+

3

8

�
a10 + a11

�
+

9

128
� 1

120
=

1

360
+

11

512
(5:39)

where 1
90

is added for the reasons described following (5.20), and we have used the values

a10 =
1
8
; a11 = � 5

24
appearing in equation (26) of [18].

By contrast, if the Lorentz gauge-averaging functional is chosen, one �nds

�(A) � �2(A) � (4)r�A� =
@A0

@�
+ (4)riAi (5:40)

which implies

�(�2(A)) � �2(A) � �2(
�A) =

1X
n=1

Q(n)(x)

�
� d2

d�2
� 3

�

d

d�
+

(n2 � 1)

�2

�
�n(� ) (5:41)

where we have used the property (4)ri� =
(3)ri� = �ji = @i�, 8i = 1; 2; 3. Thus, as we

anticipated, the familiar one-dimensional Laplace operator appears in the ghost action, so

that the ghost contributions to the full �(0) value are more easily computed as �2
�
� 1

180

�
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and �2
�
29
180

�
in the Dirichlet and Neumann cases, respectively. However, if �2(A) is

chosen as gauge-averaging functional, the form of the action quadratic in the gauge modes

becomes 8n � 2

I
(n)

E (g;R) =
1

2

Z 1

0

�gn

(n2 � 1)

�
� d2gn

d�2
� 1

�

dgn

d�
+

(n2 � 1)

��2
gn

�
d�

+
1

2

Z 1

0

�3Rn

�
1

�

�
� d2Rn

d�2
+

3

�

dRn
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: (5:42)

Thus, the second-order di�erential operator acting on Rn-modes is no longer the one-

dimensional Laplace operator for scalars, and the calculation becomes more involved. For

example, if we set � = 1, the contribution of R1(� ) to �(0) involves a Bessel function of

order
p
13. Moreover, a non-vanishing boundary term I

(n)

B � a
3

2�
_Rn(a)Rn(a) = �3a2

2�
R2
n(a)

survives in the action, if the whole functional �2(A) is required to vanish on the boundary

in the magnetic case (cf [17]). Thus, one has to add to the action a boundary term equal

to �I(n)B , if the whole of �2(A) is set to zero on S3.

Of course, since the theory is gauge-invariant, in�nitely many other choices for �(A)

(but not all choices) are still possible. A very relevant class of choices can be cast in the

form

�(b)(A) � (4)r�A� + bKi
iA0 (5:43)

where b is a real number. With our parametrization, b = �1 leads to �1(A), and b = 0

leads to �2(A). Note that, even if we set � = 1, it does not seem possible to decouple
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gauge modes using �2

2�
and obtain a well-de�ned ghost action, since the decoupling of gn

and Rn, 8n � 2, is then obtained setting

�(A) � �3(A) �
1X
n=2

vuut"�� gn

�2
+ _Rn

�2

+
2

�2
d

d�
(gnRn)

#
Q(n)(x) : (5:44)

However, the ghost action should be derived by functionally di�erentiating the in�nite sum

of square roots on the right-hand side of (5.44) as in (5.4) and (5.41), and this does not lead

to a linear, second-order di�erential operator. This is why we believe that the coupling of

gauge modes is an intrinsic property of problems with boundaries, as well as the choice

of gauge-averaging functionals of the form (5.43), which all reduce to the Lorentz choice

in the absence of boundaries. Note that the work in this section supersedes earlier work

appearing in section 6.5 of [9], where the ghost-�eld operator (cf (5.4)) was not derived.

In light of (2.6), (4.15) and (5.39), the full �(0) value for vacuum Euclidean Maxwell

theory in the case of magnetic boundary conditions on S3 takes the form

�(0) = �
(PDF )

B (0) + �R1
(0) + �GM (0) + �gh(0) = �

243

360
+

11

512
+ �GM (0) + �

(II)

gh (0) (5:45)

where �GM (0) and �
(II)

gh (0) are the as yet unknown contributions to �(0) arising from

coupled gauge modes (section 3) and from (5.38) respectively. We have been unable to

evaluate �GM (0) since we do not know explicitly the uniform asymptotic expansion as

�n ! 1 of the power series in (3.14), which is not (obviously) related to well-known

special functions (see appendix B). Moreover, the regularized contribution �
(II)

gh (0) of (5.38)

to �(0) involves � � +
q
n2 � 3

4
, which is a source of complication. However, it should be
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emphasized that all divergences are only �ctitious, since the starting point for the derivation

of (5.12) is the identity [9]

�
1

2x

d

dx

�3

log

�
1

� + ��

�
=
�
� + ��

��3�
� ��3� � 9

8
���4� � 3

8
�2��5�

�
: (5:46)

This proves that by summing over all integer values of n from 0 to1 one gets a convergent

series.

In this section we have not studied the case of Neumann boundary conditions for the

ghost �eld, i.e. the electric case. This complicated calculation may be, by itself, the object

of another paper. However, interestingly, in light of (2.6), (2.25) and (4.15)-(4.16) one

�nds

�
(PDF )

B (0) + �R1
(0) = �

(PDF )

E (0) + e�R1
(0) = �61

90
: (5:47)

In other words, if the gauge-averaging functional of (5.1) is chosen, physical degrees of

freedom and decoupled gauge mode give the same partial contribution to the full �(0), i.e.

�61
90
, both in the magnetic and in the electric case.

6. Concluding remarks and open problems

One-loop quantum cosmology may add further evidence in favour of di�erent approaches

to quantizing gauge theories being inequivalent [2-9,25-34]. Studying at Euclidean back-

grounds bounded by a 3-sphere, for vacuum Maxwell theory the PDF method yields

�(0) = � 77
180

and �(0) = 13
180

in the magnetic and electric cases respectively [6,9,14],
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whereas the indirect method (by this we mean that one-loop amplitudes are expressed

using the boundary-counterterms technique and evaluating the various coe�cients in a

covariant way as in [2,17]) was found to yield �(0) = � 38
45

in both cases in [2]. For N = 1

supergravity, the PDF method yields partial cancellations between spin 2 and spin 3
2
[7-9],

whereas the indirect method yields a one-loop amplitude which is even more divergent than

in the pure-gravity case [2]. Finally, for pure gravity, the PDF method yields �(0) = � 278
45

in the Dirichlet case, whereas the indirect method yields �(0) = � 803
45

[2,9]. Moreover,

within the PDF method, it is possible to set to zero on S3 the linearized magnetic cur-

vature. This yields a well-de�ned one-loop calculation, and the corresponding �(0) value

is 112
45

[9]. By contrast, using the Faddeev-Popov formula, magnetic boundary conditions

for pure gravity are ruled out [2]. Interestingly, recent work in [35] seems to add evidence

in favour of direct �(0) calculations being correct. The authors of [35] have shown that

di�erent formulae for �(0) previously obtained in [8] for Majorana and Dirac fermions on

the part of a de Sitter sphere bounded by a 3-sphere, with local and spectral boundary

conditions, have the same limiting value in the case of a full sphere. This value coincides

with the covariant one obtained by the method in [2,13,17]. Moreover, all these expressions

are found to give the same results in the case of a hemisphere [35]. The authors of [35]

have also suggested that 3+1 splits of the kind considered in many papers, including Eqs.

(1.3a)-(1.3b) of our paper, might be the reason of the discrepancies for higher-spin �(0)

values found using covariant and non-covariant methods. However, there is not yet a proof

of this statement, and in the case of real scalar �elds subject to Neumann (or Dirichlet)
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conditions on a 3-sphere boundary, �(0) values obtained from various methods coincide,

although the boundary 3-geometry is the same as in higher-spin calculations.

It is therefore necessary to get a better understanding of the manifestly gauge-invariant

formulae for one-loop amplitudes used so far in the literature, by performing a mode-by-

mode analysis of the eigenvalue equations, rather than relying on general formulae which

contain no explicit information about degeneracies and eigenvalue conditions. This detailed

analysis has been attempted here in the simplest case, i.e. vacuum Maxwell theory at one-

loop about a at Euclidean background bounded by a 3-sphere. Our results are here

summarized for the sake of clarity:

(1) In the light of (2.6), (2.25) and (4.15)-(4.16) the physical degrees of freedom, and

the decoupled gauge mode, give a contribution to the full �(0) equal to � 61
90

both in the

magnetic and in the electric case (this important property had not been realized in section

6.5 of [9]), if the gauge-averaging functional �1(A) of (5.1) is chosen. Since in [2] it was

found that the full �(0) values for spin 1 are equal in the magnetic and electric cases, it

appears relevant that also our partial contributions to the full �(0) coincide in these two

cases for the spin-1 problem about at Euclidean backgrounds.

(2) Remaining gauge modes gn and Rn always obey a coupled system of linear, second-

order ordinary di�erential equations, 8n � 2. The solution of such a system corresponding

to �1(A) has been given in section 3 and appendix B.

(3) If �1(A) is chosen, the ghost eigenfunctions involve Bessel functions of non-integer

order. The corresponding contribution to the full �(0) can be obtained using the method

of section 5. Such a technical point appears interesting, since to our knowledge no previous
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mode-by-mode analysis for the ghost is appearing in the literature in the case of Bessel

functions of non-integer order.

It now remains to evaluate the contribution to the full �(0) of the divergent sum in

(5.38), and the uniform asymptotic expansion of gn- and Rn-modes as �n !1 at the end

of section 3. Unfortunately, the generalization of the method described in [5-8] is highly

non-trivial. By contrast, a simpler form of the ghost eigenfunctions is obtained using the

Lorentz gauge-averaging functional �2(A). However, this leads to a further complication of

the calculations involving gauge modes, since the decoupled mode R1(� ) involves a Bessel

function of order
p
13 (this implies a contribution to �(0) proportional to

p
13, which we

�nd very puzzling), and coupled gauge modes require the addition to the action, in the

magnetic case, of a boundary term equal to 3a2

2�

P1
n=2R

2
n(a).

Thus, although some evidence exists that di�erent �(0) values for gauge �elds in the

presence of boundaries are due to inequivalent quantization techniques [9], the most im-

portant check, i.e. the mode-by-mode analysis of eigenvalue equations for gauge modes

and ghost �elds, remains a very di�cult problem. We hope that our paper, through its

detailed (although incomplete) analysis, may contribute to shed new light on this long-

standing problem in quantum �eld theory.
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Appendix A

The derivation of (5.17)-(5.20), (5.31), (5.33) and (5.36) has been obtained using the

following asymptotic expansions:

��1n (x) � 1 +
3

8
��2n +

27

128
��4n +O

�
��6n

�
(A:1)

��2n (x) � 1 +
3

4
��2n +

9

16
��4n +O

�
��6n

�
(A:2)

��3n (x) � 1 +
9

8
��2n +

135

128
��4n +O

�
��6n

�
(A:3)

��4n (x) � 1 +
3

2
��2n +

27

16
��4n +O

�
��6n

�
(A:4)

��5n (x) � 1 +
15

8
��2n +

315

128
��4n +O

�
��6n

�
(A:5)

��6n (x) � 1 +
9

4
��2n +

27

8
��4n +O

�
��6n

�
(A:6)
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��7n (x) � 1 +
21

8
��2n +

567

128
��4n +O

�
��6n

�
(A:7)

��8n (x) � 1 + 3��2n +
45

8
��4n +O

�
��6n

�
(A:8)

��9n (x) � 1 +
27

8
��2n +

891

128
��4n +O

�
��6n

�
: (A:9)

Note that these expansions are valid uniformly in the integer n, 8n � 1, as j x j! 1.

They are obtained using repeatedly (5.10) and the well-known expansion of (1 + Y )�1 as

Y ! 0.

Appendix B

Following section 3, coupled gauge modes can be written as

g(j)n (� ) =

1X
k=0

a
(j)

n;k

�
n; k; �(j)n

�
�k+� (B:1)

R(j)
n (� ) =

1X
k=0

b
(j)

n;k

�
n; k; �(j)n

�
�k+��1 : (B:2)

The label j is introduced because, for each integer value of n � 2, there is a whole family

n
�
(j)
n

o
of eigenvalues labelled by the integer j, say. They are solutions of the equation

gn(a) = 0, and their degeneracy dj(n) = n2, 8j � 1 and 8n � 2 [14]. Now, de�ning 8k � 2

and 8n � 2

G(k; n; �) � 2�

�
2(k + �)2 � 4(k + �) + 3

�
(n2 � 1)

(B:3)
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one �nds 8j � 1

a
(j)
n;2

a
(j)
n;0

= �G(2; n; �)
F (2; n; �)

�(j)n (B:4)

F (k; n; �)a
(j)

n;k +G(k; n; �)�(j)n a
(j)

n;k�2 �

�
�
(j)
n

�2
(n2 � 1)

a
(j)

n;k�4 = 0 8k � 4 (B:5)

b
(j)
n;0 =

�
�2

(n2 � 1)
� 1

�
a
(j)
n;0 (B:6)

b
(j)

n;k =
�
(j)
n

(n2 � 1)
a
(j)

n;k�2+
�
(k + �)2

(n2 � 1)
� 1

�
a
(j)

n;k 8k � 2 (B:7)

a
(j)

n;k = b
(j)

n;k = 0 8k = (2m+ 1) m = 0; 1; 2; ::: : (B:8)

Moreover, setting the 3-sphere radius a to 1 for simplicity, magnetic boundary conditions

(i.e. gn(1) = _Rn(1) = 0) lead to

1X
k=0

a
(j)

n;k = 0 (B:9)

�(j)n =
�
n2 � 1

�
� �(3�� 2)�

P1
k=0 k

3a
(j)

n;kP1
k=0 ka

(j)

n;k

� (3�� 1)

P1
k=0 k

2a
(j)

n;kP1
k=0 ka

(j)

n;k

: (B:10)

Since, 8n � 2, there are two values of � > 1, a further label is necessary to characterize

completely the coupled gauge modes as follows:

g
(j)
1;n

�
n; �

(j)
1;n; �

�
and R

(j)
1;n

�
n; �

(j)
1;n; �

�
if � = �

(1)
+

g
(j)
2;n

�
n; �

(j)
2;n; �

�
and R

(j)
2;n

�
n; �

(j)
2;n; �

�
if � = �

(2)
+
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(see (3.20)-(3.21)).

Note that it is extremely di�cult (if not impossible) to �nd the eigenvalues �
(j)
n by

analytic or numerical methods, since (B.4)-(B.5) imply that a function H exists such that

a
(j)

n;k

a
(j)
n;0

= H(k; n; �)
�
�(j)n

�k
2

(B:11)

for all even values of k � 2, and 8n � 2. Thus, when (B.11) is inserted into (B.9)-(B.10),

it is not clear how to �nd an explicit solution for �
(j)
n and a

(j)

n;k.
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