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Abstract. Local boundary conditions involving �eld strengths and the normal to the

boundary, originally studied in anti-de Sitter space-time, have been recently considered in

one-loop quantum cosmology. This paper derives the conditions under which spin-lowering

and spin-raising operators preserve these local boundary conditions on a 3-sphere for �elds

of spin 0; 1
2
; 1; 3

2
and 2. Moreover, the two-component spinor analysis of the four potentials

of the totally symmetric and independent �eld strengths for spin 3
2
is applied to the case

of a 3-sphere boundary. It is shown that such boundary conditions can only be imposed in

a 
at Euclidean background, for which the gauge freedom in the choice of the potentials

remains. Alternative boundary conditions for supergravity involving the spinor-valued

1-forms for gravitinos and the normal to the boundary are also studied.

In: Twistor Theory, ed. S. Huggett (New York, Marcel Dekker, 1994)
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Twistors and spin-3
2
potentials in quantum gravity

1. Introduction

Recent work in the literature has studied the quantization of gauge theories and supersym-

metric �eld theories in the presence of boundaries, with application to one-loop quantum

cosmology [1-9]. In particular, in the work described in [9], two possible sets of local

boundary conditions were studied. One of these, �rst proposed in anti-de Sitter space-

time [10-11], involves the normal to the boundary and Dirichlet or Neumann conditions

for spin 0, the normal and the �eld for massless spin- 1
2
fermions, and the normal and

totally symmetric �eld strengths for spins 1; 3
2
and 2. Although more attention has been

paid to alternative local boundary conditions motivated by supersymmetry, as in [2-3,8-

9], the analysis of the former boundary conditions remains of mathematical and physical

interest by virtue of its links with twistor theory [9]. The aim of this paper is to derive

the mathematical properties of the corresponding boundary-value problems in both cases,

since these are relevant for quantum cosmology and twistor theory.

For this purpose, sections 2-3 derive the conditions under which spin-lowering and spin-

raising operators preserve local boundary conditions involving �eld strengths and normals.

Section 4 applies the 2-spinor form of spin-3
2
potentials to Riemannian 4-geometries with

a 3-sphere boundary. Boundary conditions on spinor-valued 1-forms describing gravitino

�elds are studied in section 5. Concluding remarks and open problems are presented in

section 6.
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2. Spin-lowering operators in cosmology

In section 5.7 of [9], a 
at Euclidean background bounded by a 3-sphere was studied. On

the bounding S3, the following boundary conditions for a spin-s �eld were required:

2s en
AA0

::: en
LL0

�A:::L = � e�A0:::L0

: (2:1)

With our notation, en
AA0

is the Euclidean normal to S3 [3,9], �A:::L = �(A:::L) and

e�A0:::L0 = e�(A0:::L0) are totally symmetric and independent (i.e. not related by any conju-

gation) �eld strengths, which reduce to the massless spin- 1
2
�eld for s = 1

2
. Moreover, the

complex scalar �eld � is such that its real part obeys Dirichlet conditions on S3 and its

imaginary part obeys Neumann conditions on S3, or the other way around, according to

the value of the parameter � � �1 occurring in (2.1), as described in [9].

In 
at Euclidean 4-space, we write the solutions of the twistor equations [9,12]

D
(A

A0 !B) = 0 ; (2:2)

D
(A0

A e!B0) = 0 ; (2:3)

as [9]

!A = (!o)A � i
�
ex

AA0

�
�oA0 ; (2:4)

e!A0

= (e!o)A0 � i
�
ex

AA0

�e�oA : (2:5)

Note that, since unprimed and primed spin-spaces are no longer isomorphic in the case

of Riemannian 4-metrics, Eq. (2.3) is not obtained by complex conjugation of Eq. (2.2).

3



Twistors and spin-3
2
potentials in quantum gravity

Hence the spinor �eld e!B0

is independent of !B. This leads to distinct solutions (2.4)-(2.5),

where the spinor �elds !oA; e!oA0 ; e�oA; �oA0 are covariantly constant with respect to the 
at

connection D, whose corresponding spinor covariant derivative is here denoted by DAB0 .

The following theorem can be now proved:

Theorem 2.1 Let !D be a solution of the twistor equation (2.2) in 
at Euclidean space

with a 3-sphere boundary, and let e!D0

be the solution of the independent equation (2.3)

in the same 4-geometry with boundary. Then a form exists of the spin-lowering operator

which preserves the local boundary conditions on S3:

4 en
AA0

en
BB0

en
CC0

en
DD0

�ABCD = � e�A0B0C0D0

; (2:6)

2
3

2 en
AA0

en
BB0

en
CC0

�ABC = � e�A0B0C0

: (2:7)

Of course, the independent �eld strengths appearing in (2.6)-(2.7) are assumed to satisfy

the corresponding massless free-�eld equations.

Proof. Multiplying both sides of (2.6) by enFD0 one gets

�2 en
AA0

en
BB0

en
CC0

�ABCF = � e�A0B0C0D0

enFD0 : (2:8)

Taking into account the total symmetry of the �eld strengths, putting F = D and multi-

plying both sides of (2.8) by
p
2 !D one �nally gets

�2 3

2
en

AA0

en
BB0

en
CC0

�ABCD !D = �
p
2 e�A0B0C0D0

enDD0 !D ; (2:9)

2
3

2
en

AA0

en
BB0

en
CC0

�ABCD !D = � e�A0B0C0D0 e!D0 ; (2:10)
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where (2.10) is obtained by inserting into (2.7) the de�nition of the spin-lowering operator.

The comparison of (2.9) and (2.10) yields the preservation condition

p
2 enDA0 !D = �e!A0 : (2:11)

In the light of (2.4)-(2.5), equation (2.11) is found to imply

p
2 enDA0 (!o)D � i

p
2 enDA0 ex

DD0

= �e!oA0 � i exDA0 (e�o)D : (2:12)

Requiring that (2.12) should be identically satis�ed, and using the identity en
AA0

=

1
r ex

AA0

on a 3-sphere of radius r, one �nds

e!oA0 = i
p
2 r enDA0 en

DD0

�oD0 = � irp
2
�oA0 ; (2:13)

�
p
2 enDA0 (!o)D = ir enDA0 (e�o)D : (2:14)

Multiplying both sides of (2.14) by en
BA0

, and then acting with �BA on both sides of the

resulting relation, one gets

!oA = � irp
2
e�oA : (2:15)

The equations (2.11), (2.13) and (2.15) completely solve the problem of �nding a spin-

lowering operator which preserves the boundary conditions (2.6)-(2.7) on S3. Q.E.D.

If one requires local boundary conditions on S3 involving �eld strengths and normals

also for lower spins (i.e. spin 3
2
vs spin 1, spin 1 vs spin 1

2
, spin 1

2
vs spin 0), then by using

the same technique of the theorem just proved, one �nds that the preservation condition

obeyed by the spin-lowering operator is still expressed by (2.13) and (2.15).
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3. Spin-raising operators in cosmology

To derive the corresponding preservation condition for spin-raising operators [12], we begin

by studying the relation between spin- 1
2
and spin-1 �elds. In this case, the independent

spin-1 �eld strengths take the form [9,11-12]

 AB = i e!L0

�
DBL0 �A

�
� 2�(A e�oB) ; (3:1)

e A0B0 = �i !L
�
DLB0 e�A0

�
� 2e�(A0 �oB0) ; (3:2)

where the independent spinor �elds
�
�A; e�A0

�
represent a massless spin- 1

2
�eld obeying

the Weyl equations on 
at Euclidean 4-space and subject to the boundary conditions

p
2 en

AA0

�A = � e�A0

(3:3)

on a 3-sphere of radius r. Thus, by requiring that (3.1) and (3.2) should obey (2.1) on S3

with s = 1, and bearing in mind (3.3), one �nds

2�

�p
2 e�oA e�(A0

en
AB0) � e�(A0

�o B
0)

�
= i

�
2 en

AA0

en
BB0 e!L0

DL0(B �A)

+ � !L D
(B0

L e�A0)

�
(3:4)

on the bounding S3. It is now clear how to carry out the calculation for higher spins.

Denoting by s the spin obtained by spin-raising, and de�ning n � 2s, one �nds

n�

�p
2 e�oA en

A(A0 e�B0:::K0) � e�(A0:::D0

�o K
0)

�
= i

�
2
n

2 en
AA0

:::en
KK0 e!L0

DL0(K �A:::D)

+ � !L D
(K0

L e�A0:::D0)

�
(3:5)
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on the 3-sphere boundary. In the comparison spin-0 vs spin- 1
2
, the preservation condition

is not obviously obtained from (3.5). The desired result is here found by applying the

spin-raising operators [12] to the independent scalar �elds � and e� (see below) and bearing

in mind (2.4)-(2.5) and the boundary conditions

� = � e� on S3 ; (3:6)

en
AA0

DAA0� = �� enBB
0

DBB0
e� on S3 : (3:7)

This leads to the following condition on S3 (cf. equation (5.7.23) of [9]):

0 = i�

� e�oAp
2
� �oA0 en

A
0

A

�
�
� e!K0

p
2

�
DAK0�

�
� !A

2
en

K
0

C

�
DC

K0�
��

+ � en
A0

(A !B DB)A0
e� : (3:8)

Note that, while the preservation conditions (2.13) and (2.15) for spin-lowering operators

are purely algebraic, the preservation conditions (3.5) and (3.8) for spin-raising operators

are more complicated, since they also involve the value at the boundary of four-dimensional

covariant derivatives of spinor �elds or scalar �elds. Two independent scalar �elds have

been introduced, since the spinor �elds obtained by applying the spin-raising operators to

� and e� respectively are independent as well in our case.

4. Spin- 3
2
potentials in cosmology

In this section we focus on the totally symmetric �eld strengths �ABC and e�A0B0C0 for spin-

3
2
�elds, and we express them in terms of their potentials, rather than using spin-raising (or
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spin-lowering) operators. The corresponding theory in Minkowski space-time (and curved

space-time) is described in [13-16], and adapted here to the case of 
at Euclidean 4-space

with 
at connection D. It turns out that e�A0B0C0 can then be obtained from two potentials

de�ned as follows. The �rst potential satis�es the properties [13-16]


CA0B0 = 
C(A0B0) ; (4:1)

DAA0


CA0B0 = 0 ; (4:2)

e�A0B0C0 = DCC0 
CA0B0 ; (4:3)

with the gauge freedom of replacing it by

b
CA0B0 � 
CA0B0 +DC
B0 e�A0 ; (4:4)

where e�A0 satis�es the positive-helicity Weyl equation

DAA0 e�A0 = 0 : (4:5)

The second potential is de�ned by the conditions [13-16]

�BCA0 = �
(BC)

A0 ; (4:6)

DAA0

�BCA0 = 0 ; (4:7)


CA0B0 = DBB0 �BCA0 ; (4:8)

with the gauge freedom of being replaced by

b�BCA0 � �BCA0 +DC
A0 �B ; (4:9)

8



Twistors and spin-3
2
potentials in quantum gravity

where �B satis�es the negative-helicity Weyl equation

DBB0 �B = 0 : (4:10)

Moreover, in 
at Euclidean 4-space the �eld strength �ABC is expressed in terms of the

potential �C
0

AB = �C
0

(AB)
, independent of 
CA0B0 , as

�ABC = DCC0 �C
0

AB ; (4:11)

with gauge freedom

b�C0

AB � �C
0

AB +DC0

B �A : (4:12)

Thus, if we insert (4.3) and (4.11) into the boundary conditions (2.1) with s = 3
2
, and re-

quire that also the gauge-equivalent potentials (4.4) and (4.12) should obey such boundary

conditions on S3, we �nd that

2
3

2 en
A
A0 en

B
B0 en

C
C0 DCL0 DL0

B �A = � DLC0 DL
B0 e�A0 (4:13)

on the 3-sphere. Note that, from now on (as already done in (3.5) and (3.8)), covariant

derivatives appearing in boundary conditions are �rst taken on the background and then

evaluated on S3. In the case of our 
at background, (4.13) is identically satis�ed since

DCL0 DL0

B �A and DLC0 DL
B0 e�A0 vanish by virtue of spinor Ricci identities [17-18]. In

a curved background, however, denoting by r the corresponding curved connection, and

de�ning AB � rM 0(ArM 0

B)
; A0B0 � rX(A0 rX

B0)
, since the spinor Ricci identities

we need are [17]

AB �C =  ABDC �D � 2� �(A �B)C ; (4:14)

9
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A0B0 e�C0 = e A0B0D0C0 e�D0 � 2e� e�(A0 �B0)C0 ; (4:15)

one �nds that the corresponding boundary conditions

2
3

2 en
A
A0 en

B
B0 en

C
C0 rCL0 rL0

B �A = � rLC0 rL
B0 e�A0 (4:16)

are identically satis�ed if and only if one of the following conditions holds: (i) �A = e�A0 = 0;

(ii) the Weyl spinors  ABCD; e A0B0C0D0 and the scalars �; e� vanish everywhere. However,

since in a curved space-time with vanishing �; e�, the potentials with the gauge freedoms

(4.4) and (4.12) only exist provided D is replaced by r and the trace-free part �ab of the

Ricci tensor vanishes as well [19], the background 4-geometry is actually 
at Euclidean 4-

space. Note that we require that (4.16) should be identically satis�ed to avoid, after a gauge

transformation, obtaining more boundary conditions than the ones originally imposed. The

curvature of the background should not, itself, be subject to a boundary condition.

The same result can be derived by using the potential �BCA0 and its independent coun-

terpart �B
0
C

0

A . This spinor �eld yields the �C
0

AB potential by means of

�C
0

AB = DBB0 �B
0C0

A ; (4:17)

and has the gauge freedom

b�B0C0

A � �B
0C0

A +DC0

A e�B0

; (4:18)

where e�B0

satis�es the positive-helicity Weyl equation

DBF 0 e�F 0

= 0 : (4:19)

10
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Thus, if also the gauge-equivalent potentials (4.9) and (4.18) have to satisfy the boundary

conditions (2.1) on S3, one �nds

2
3

2 en
A
A0 en

B
B0 en

C
C0 DCL0 DBF 0 DL0

A e�F 0

= � DLC0 DMB0 DL
A0 �M (4:20)

on the 3-sphere. In our 
at background, covariant derivatives commute, hence (4.20)

is identically satis�ed by virtue of (4.10) and (4.19). However, in the curved case the

boundary conditions (4.20) are replaced by

2
3

2
en

A
A0 en

B
B0 en

C
C0 rCL0 rBF 0 rL0

A e�F 0

= � rLC0 rMB0 rL
A0 �

M (4:21)

on S3, if the local expressions of �ABC and e�A0B0C0 in terms of potentials still hold [13-16].

By virtue of (4.14)-(4.15), where �C is replaced by �C and e�C0 is replaced by e�C0 , this

means that the Weyl spinors  ABCD; e A0B0C0D0 and the scalars �; e� should vanish, since

one should �nd

rAA0 b�BCA0 = 0 ; rAA0 b�B0C0

A = 0 : (4:22)

If we assume that rBF 0 e�F 0

= 0 and rMB0 �M = 0, we have to show that (4.21) di�ers

from (4.20) by terms involving a part of the curvature that is vanishing everywhere. This

is proved by using the basic rules of 2-spinor calculus and spinor Ricci identities [17-18].

Thus, bearing in mind that [17]

AB e�B0 = �ABL0B0 e�L0

; (4:23)

A0B0

�B = e�A0B0

LB �L ; (4:24)
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one �nds

rBB0 rCA0

�B = r(BB0 rC)A0

�B +r[BB0 rC]A0

�B

= �1

2
r B0

B rCA0

�B +
1

2
e�A0B0LC �L : (4:25)

Thus, if e�A0B0LC vanishes, also the left-hand side of (4.25) has to vanish since this leads

to the equation rBB0 rCA0

�B = 1
2
rBB0 rCA0

�B. Hence (4.25) is identically satis�ed.

Similarly, the left-hand side of (4.21) can be made to vanish identically provided the

additional condition �CDF
0M 0

= 0 holds. The conditions

�CDF
0M 0

= 0 ; e�A0B0CL = 0 ; (4:26)

when combined with the conditions

 ABCD = e A0B0C0D0 = 0 ; � = e� = 0 ; (4:27)

arising from (4.22) for the local existence of �BCA0 and �B
0C0

A potentials, imply that the

whole Riemann curvature should vanish. Hence, in the boundary-value problems we are

interested in, the only admissible background 4-geometry (of the Einstein type [20]) is 
at

Euclidean 4-space.

5. Boundary conditions in supergravity

The boundary conditions studied in the previous sections are not appropriate if one stud-

ies supergravity multiplets and supersymmetry transformations at the boundary [9]. By
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contrast, it turns out one has to impose another set of locally supersymmetric boundary

conditions, �rst proposed in [21]. These are in general mixed, and involve in particular

Dirichlet conditions for the transverse modes of the vector potential of electromagnetism,

a mixture of Dirichlet and Neumann conditions for scalar �elds, and local boundary con-

ditions for the spin-1
2
�eld and the spin- 3

2
potential. Using two-component spinor notation

for supergravity [9,22], the spin-3
2
boundary conditions take the form

p
2 en

A0

A  Ai = � e A0

i on S3 : (5:1)

With our notation, � � �1, en A0

A is the Euclidean normal to S3, and
�
 Ai;

e A0

i

�
are the

independent (i.e. not related by any conjugation) spatial components (hence i = 1; 2; 3)

of the spinor-valued 1-forms appearing in the action functional of Euclidean supergravity

[9,22].

It appears necessary to understand whether the analysis in the previous section and

in [23] can be used to derive restrictions on the classical boundary-value problem corre-

sponding to (5.1). For this purpose, we study a Riemannian background 4-geometry, and

we use the decompositions of the spinor-valued 1-forms in such a background, i.e. [9]

 Ai = h�
1

4

�
�(AB)B0

+ �AB e�B0

�
eBB0i ; (5:2)

e A0

i = h�
1

4

�
e�(A0B0)B + �A

0B0

�B
�
eBB0i ; (5:3)

where h is the determinant of the 3-metric on S3, and eBB0i is the spatial component of

the tetrad, written in 2-spinor language. If we now reduce the classical theory of simple
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supergravity to its physical degrees of freedom by imposing the gauge conditions [9]

e i
AA0  Ai = 0 ; (5:4)

e i
AA0

e A0

i = 0 ; (5:5)

we �nd that the expansions of (5.2)-(5.3) on a family of 3-spheres centred on the origin

take the forms [9]

 Ai =
h�

1

4

2�

1X
n=0

(n+1)(n+4)X
p;q=1

�pqn

�
m(�)
np (� ) �

nqABB
0

+ er(�)np (� ) �
nqABB

0

�
eBB0i ; (5:6)

e A0

i =
h�

1

4

2�

1X
n=0

(n+1)(n+4)X
p;q=1

�pqn

�
em(�)
np (� ) �

nqA0B0B
+ r(�)np (� ) �

nqA0B0B

�
eBB0i : (5:7)

With our notation, �pqn are block-diagonal matrices with blocks

�
1 1
1 �1

�
, and the �- and

�-harmonics on S3 are given by [9]

�
nq

ACC0 = �
nq

(ACD)
nDC0 ; (5:8)

�
nq
A0B0B = �

nq

(A0B0C0)
n C0

B : (5:9)

In the light of (5.6)-(5.9), one gets the following physical-degrees-of-freedom form of the

spinor-valued 1-forms of supergravity (cf. [9,22,24]):

 Ai = h�
1

4 �(ABC)
en

B0

C eBB0i ; (5:10)

e A0

i = h�
1

4 e�(A0B0C0)
en

B
C0 eBB0i ; (5:11)
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where �(ABC) and e�(A0B0C0) are totally symmetric and independent spinor �elds.

Within this framework, a su�cient condition for the validity of the boundary condi-

tions (5.1) on S3 is

p
2 en

A0

A en
B0

C �(ABC) = � en
B
C0
e�(A0B0C0) : (5:12)

From now on, one can again try to express locally �(ABC) and e�(A0B0C0) in terms of four

potentials as in section 4 and in [23], providing they are solutions of massless free-�eld

equations. The alternative possibility is to consider the Rarita-Schwinger form of the �eld

strength, written in 2-spinor language. The corresponding potential is no longer symmetric

as in (4.1), and is instead subject to the equations (cf. [13-16,25])

�B
0C0 rA(A0 
AB0)C0 = 0 ; (5:13)

rB0(B 

A)

B0C0 = 0 : (5:14)

Moreover, the spinor �eld e�A0 appearing in the gauge transformation (4.4) is no longer

taken to be a solution of the positive-helicity Weyl equation (4.5). Hence the classical

boundary-value problem might have new features with respect to the analysis of section 4

and [23].

Indeed, the investigation appearing in this section is incomplete, and it relies in part

on the un�nished work in [26]. Moreover, it should be emphasized that our analysis, al-

though motivated by quantum cosmology, is entirely classical. Hence we have not discussed

ghost modes. The theory has been reduced to its physical degrees of freedom to make a

comparison with the results in [23], but totally symmetric �eld strengths do not enable one
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to recover the full physical content of simple supergravity. Hence the 4-sphere background

studied in [2] is not ruled out by our work [26].

6. Results and open problems

Following [9] and [23], we have derived the conditions (2.13), (2.15), (3.5), and (3.8) un-

der which spin-lowering and spin-raising operators preserve the local boundary conditions

studied in [9-11]. Note that, for spin 0, we have introduced a pair of independent scalar

�elds on the real Riemannian section of a complex space-time, following [27], rather than

a single scalar �eld, as done in [9]. Setting � � �1+ i�2; e� � �3 + i�4, this choice leads to

the boundary conditions

�1 = � �3 �2 = � �4 on S3 ; (6:1)

en
AA0

DAA0 �1 = �� enAA
0

DAA0 �3 on S3 ; (6:2)

en
AA0

DAA0 �2 = �� enAA
0

DAA0 �4 on S3 ; (6:3)

and it deserves further study.

We have then focused on the potentials for spin- 3
2
�eld strengths in 
at or curved

Riemannian 4-space bounded by a 3-sphere. Remarkably, it turns out that local boundary

conditions involving �eld strengths and normals can only be imposed in a 
at Euclidean

background, for which the gauge freedom in the choice of the potentials remains. In [16]

it was found that � potentials exist locally only in the self-dual Ricci-
at case, whereas 


potentials may be introduced in the anti-self-dual case. Our result may be interpreted as a
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further restriction provided by (quantum) cosmology. What happens is that the boundary

conditions (2.1) �x at the boundary a spinor �eld involving both the �eld strength �ABC

and the �eld strength e�A0B0C0 . The local existence of potentials for the �eld strength

�ABC, jointly with the occurrence of a boundary, forces half of the Riemann curvature of

the background to vanish. Similarly, the remaining half of such Riemann curvature has to

vanish on considering the �eld strength e�A0B0C0 . Hence the background 4-geometry can

only be 
at Euclidean space. This is di�erent from the analysis in [13-16], since in that

case one is not dealing with boundary conditions forcing us to consider both �ABC and

e�A0B0C0 .

A naturally occurring question is whether the potentials studied in this paper can

be used to perform one-loop calculations for spin- 3
2
�eld strengths subject to (2.1) on

S3. This problem may provide another example (cf. [9]) of the fertile interplay between

twistor theory and quantum cosmology [26], and its solution might shed new light on

one-loop quantum cosmology and on the quantization program for gauge theories in the

presence of boundaries [1-9]. For this purpose, as shown in recent papers by ourselves and

other co-authors [28-30], it is necessary to study Riemannian background 4-geometries

bounded by two concentric 3-spheres (cf. sections 2-5). Moreover, the consideration of

non-physical degrees of freedom of gauge �elds, set to zero in our classical analysis, is

necessary to achieve a covariant quantization scheme.
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