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Abstract

The partition function of a system of galaxies in gravitational interaction

can be cast in an Ising Model form, and this reformulated via a Hubbard{

Stratonovich transformation into a three dimensional stochastic and classical

scalar �eld theory, whose critical exponents are calculable and known. This

allows one to compute the galaxy to galaxy correlation function, whose non{

integer exponent is predicted to be between 1.530 and 1.862, to be compared

with the phenomenological value of 1.6 to 1.8.

PACS: Self{Gravitating Systems: 04.40; Cosmology: 98.80; Renormalization, { phase

transitions: 64.60A.
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An intergalactic tourist admiring the Universe at the largest scales would perceive it

as something akin to a three dimensional `salt{and{pepper' pattern which, when projected

onto a two dimensional picture, would appear very similar to what we see in pictures of

Large Scale Surveys, such as the Lick [1] or APM surveys [2]. As he reduced the size of his

gauge to smaller and smaller distances he would come to the conclusion that the Universe

today is dominated by matter which, at large distances is in gravitational interaction. And

that this matter seems to organize itself into bodies which roughly group themselves into

solar systems, galaxies, groups of galaxies, and even larger structures. We believe we see

the same as our tourist, and that we call the Cosmological Principle.

At the larger scales he would probably recognize the Universe as a homogeneous object

and therefore describe it with a Friedmann{Robertson{Walker metric. He would reproduce

the many successes of cosmology based on this metric. As he went on to smaller scales

he would �nd that (i) `on all observable scales there are structures seen and signi�cant

anisotropies are detected' [3]. In fact, (ii) if he inferred the galaxy{to{galaxy correlation

function (�Gal(r)) from these surveys, he would discover1 that �(r) / r�
 where [4] 
 �

O(1:6 � 1:8), instead of 
 = 1 which is what one would naively expect2 for a homogeneous

distribution of matter in a three dimensional space.

Given these phenomenological facts, one may ask: (A) Is there a fundamental explana-

tion for this power law behavior? (B) Can it be understood by using some basic scheme?

1The value of 
 seems to vary somewhat from survey to survey; for example, it is 1.8 for the Lick

survey and about 1.6 for the APM.

2This can be understood as follows: as we will see below, the gas of galaxies can be put in a

one{to{one correspondence with a 3{dimensional scalar �eld theory, and the galaxy{to{galaxy

correlation function corresponds to the scalar �eld propagator. In units of length, a scalar �eld in

a d{dimensional space{time has a canonical dimension of �(d=2� 1). The above statement about


 follows at once.
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This note aims at providing answers to the above questions within the framework of

known physics. It rests upon the well{known observation [5] that the existence of a non{

integer (anomalous) dimension (signalled by 
 6= 1) is a tell{tale sign betraying the existence

of both smaller length scales and 
uctuations.

We will apply the techniques of Statistical Mechanics to a system made up by many{

galaxies (accounting for the `smaller length scales' ) in gravitational interaction, and which

are subject to 
uctuations emerging from the intrinsic properties of the gravitational in-

teraction of this many body system. The actual nature of the 
uctuations needs not be

specified here, but they could, for example, be related to the `frictional' processes in grav-

itational systems long ago considered by Chandrasekhar [6] or, as predicted by well known

classical theorems of Poincar�e, to chaotic processes [7] related to the many body nature of

the gravitational system.

We will obtain the partition function for this system and compute the two{point corre-

lation function and its corrections due to the existence of 
uctuations.

Let us consider the continuous mass density, �(r), describing the spatial{distribution of

galaxies. The deviation from an average density �� is ��(r) = �(r)� ��. The galaxy{to{galaxy

correlation function is de�ned [4] as �Gal(ri � rj) = h��(ri)��(rj)i =��
2, where the angular

brackets mean that a suitable average has been taken. In the (justi�able) non{relativistic

limit, the gravitational interaction energy for this system is then given by (assuming no

expansion)

Hint =
�1

2
G
Z Z

d3rid
3rj�(ri)

1

jri � rjj
�(rj) :

As a �rst approximation, it is reasonable to consider the gas of galaxies as made up

of discrete, spatially localized `points' of (equal) mass m0, and we can set [4] the `contrast'

��(ri)=�� equal to 1 if there is a galaxy at position ri and equal to {1 if there is a void. The

interaction energy becomes

Hint = �
1

2

X
ij

mi

G

jri � rjj
mj � �

1

2

X
ij

miLijmj (1)
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with the following natural correspondence (since we have assumed that all galaxies have a

similar mass) betweenmi, a two{valued (�1) `spin' variable si, the density and the contrast:

2 mi=m0 $ �(ri)=�� (2)

si $ ��(ri)=��: (3)

Furthermore, mi and si are related by

mi = m0
1

2
(si + 1) (4)

which happens to be analogous to the relationship between a lattice gas and an Ising magnet.

This relationship, via a Hubbard{Stratonovich transformation [8], allows one to map the

`gas' of galaxies into a system described by a stochastic 1{component (scalar) classical �eld

�(r) in 3 dimensions, whose partition function Z[�] can be readily calculated, and gives

ZGrav
Ising [�] =

X
fmg

e
�

2

P
ij
miLijmj

= C

Z
[d�] exp

(
�
�

2

Z
(�(r)�H(r))L�1(r; r0) (�(r0)�H(r0)) drdr0 +

Z
dr log cosh [��(r)]

)

�

Z
[d�]e��H[�;H] : (5)

Here the function H(r) is given by H(r) = �1=2
R
dr0m2

0 L(r; r
0) and C is an inessential

factor. The �eld � is the order parameter for this system. Although all direct reference to

the original masses has disappeared, the physics described by the hamiltonian of Eq. (5) is

completely equivalent to the original description.

Because of Eq. (1) and (4),

L�1(r; r0) = �[�(r� r0)=(2�Gm2
0)]r

2
r ;

and
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H[�;H] = �
1

2

Z
(�(r)�H(r))

1

2�Gm2
0

r
2 (�(r)�H(r)) dr

�
1

�

Z
dr log cosh [��(r)] :

As is well known [8], the connected, two{point correlation function for the spin system

and the �eld theory are the same. Furthermore, because of 
uctuations in the �eld �, its

canonical dimension acquires an anomalous dimension and shifts away from its canonical

value (cf. Footnote 2), such that when jri � rjj ! 1, the connected, 2{point correlation

function for this hamiltonian, �(jri � rjj), scales as
[5] [8]

lim
jri�rjj!1

hsi sji = lim
jri�rjj!1

�(jri � rjj) �
1

jri � rjjd�2+�
(6)

where the �rst equality follows from the equivalence between the `spin' and `field' descrip-

tions of the system, d is the dimensionality of space (=3) and � is the critical exponent for

the pair correlation function, whose value (0.0198 { 0.064) (cf. the Table below) di�ers from

zero due to the 
uctuations in �(r).

Because of Eq. (2) and (3)

�Gal(jri � rjj) = hsi sji (7)

with the average computed using Eq. (5).

Putting together Eqns. (6) and (7), our calculation shows that for large separations, the

galaxy{to{galaxy correlation function must scale as

�Gal(jri � rj j) � r�


with [10] 
 = d� 2 + � between 1.0198 and 1.064.

Thus far our calculation has been static, but the Universe is expanding, and the e�ects

of expansion can (and do [9]) modify the values of critical exponents. For the correlation

function, it is known from computer simulations in condensed matter physics [9] combined

with dynamical scaling considerations, that time enters in the correlation function by altering
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the argument of the correlation function from jri�rjj to jri�rjj=L(t) where L(t) / t� and � is

determined in computer simulations to be 1/3 for systems with a conserved order parameter,

and 1/2 for systems with a non{conserved order parameter. Separation and time are related

in an expanding Universe where, to a �rst approximation, in a matter dominated Universe

the scale factor is proportional to t2=3. Putting together the expansion of the Universe and

the dynamical critical phenomena e�ects as contained in �, the exponent in the galaxy{to{

galaxy correlation function is modi�ed from 
 = d� 2 + � to (d� 2+ �)� (1 + 3�=2). That

is, we �nally get that the predicted (calculated) value for 
 will be3 between 1.530 and 1.596

(= 
CExpanding) if we assume that the order parameter is conserved, and between 1.785 and

1.862 (= 
NC
Expanding) if we assume that the order parameter is not conserved.

Method of Calculation 
Static 
CExpanding 
NC
Expanding

Series Estimates 1.056 � 0.008 1.584 � 0.012 1.848 � 0.014

O(�) 0 1.5 1.75

O(�2) 1.0198 1.530 1.785

O(�3) 1.037 1.555 1.815

O(�4) 1.029 1.543 1.801

These values are to be compared with the values inferred from the existing galaxy cata-

logs, which range between 1.5 for the APM survey to 1.8 for the Lick survey [4].

Therefore, we see that the questions enumerated at the beginning of this note can �nd

an answer within the framework outlined here. In addition, there is a clear and unam-

biguous prediction: due to the Universal nature of the gravitational force, re
ected in the

interaction hamiltonian of Eq. (1), the result we have obtained for the galaxy{to{galaxy

3Cf. Table. The static values for � are taken from Reference [10].
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correlation function must apply also to any other many{body{gravitational system, includ-

ing the interstellar medium in our galaxy. This means that observations must con�rm that

the interstellar medium has a distribution whose correlation function scales with the same

generic power law as galaxies. The only possible di�erence would be in the numerical value

of the anomalous dimension, since for intergalactic gas clouds the size of the system is

smaller, and therefore, renormalization group arguments tell us that the value of 
Interstellar

is smaller than for systems of galaxies, where the coupling constant has had more distance

to grow on its way into the IR �xed point4.

Many questions remain. For example, is the order parameter conserved, or not? Can one

use renormalization group techniques to also calculate the dynamical e�ect of the expansion

of the Universe on �, instead of appealing to phenomenological (albeit well substantiated)

computer estimates to generalize the static values of 
 to dynamical values? Does the implied

r-dependence of G(r) play a rôle in the physics of large scales? How do initial conditions

impact on the correlation functions? How does one actually approach the disordered phase?

These questions will be considered in a future paper.

4This follows by noticing that, because of conservation of probability (unitarity in �eld theory)

� is positive; perturbation theory tells us that it is proportional to a power of Gm2

0
. Also, in less

than four dimensions, the latter coupling tends in the IR to the equivalent of the Wilson{Fisher

�xed point, and away from the Gaussian UV{�xed point.
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