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Abstract

Fractional supersymmetry denotes a generalisation of supersymme-

try which may be constructed using a single real generalised Grassmann

variable, � = ��; �n = 0, for arbitrary integer n = 2; 3; :::. An explicit for-

mula is given in the case of general n for the transformations that leave

the theory invariant, and it is shown that these transformations possess

interesting group properties. It is shown also that the two generalised

derivatives that enter the theory have a geometric interpretation as gen-

erators of left and right transformations of the fractional supersymmetry

group. Careful attention is paid to some technically important issues,

including di�erentiation, that arise as a result of the peculiar nature of

quantities such as �.
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1 Introduction

Supersymmetry has been a popular and fruitful area of research for at least

twenty years. Study of it in space-time of one dimension, time, has given rise

to the important topic of supersymmetric quantum mechanics (see [1]- [3] for

reviews). The most primitive version of supersymmetric quantum mechanics

is one that involves use of a single real Grassmann number � such that

� = �� ; �2 = 0 : (1:1)

As a result the theory possesses a natural Z2�grading and a single generator Q

of its supersymmetry transformations which obeys Q2 = �@t. The distinctive

features of supersymmetric theories which possess such a Z2�grading can be

seen by reference to various papers [4]-[9]. The term fractional supersymmetry

is currently being applied to a class of generalisations of supersymmetry in

one dimension. Our work on fractional supersymmetry can be presented most

straightforwardly by creating theories with Zn�grading by generalisation of

theories with Z2�grading. Thus we consider theories involving a single real

(generalised) Grassmann number � which obeys

� = �� ; �n = 0 ; n = 2; 3; 4; : : : ; (1:2)

in which the generator Q of the generalised (`fractional') supersymmetry trans-

formations that leave such a theory invariant obeys

Qn = �@t : (1:3)

The last result accounts loosely for the use of the term `fractional' as an iden-

ti�er of the theory.

The generalisation from ordinary to fractional supersymmetry not only

has intrinsic interest but may also be expected to produce interesting new

models in classical and quantum mechanics. There have been a large number

of studies of fractional supersymmetry in recent years [10] - [18]. Some of

these deal with a complex Grassmann variable � such that �n = 0. Others

employ N di�erent copies of � which obey (1.1), thus developing N -extended

fractional supersymmetry. Fractional supersymmetry is contrasted below with

a distinct class of generalisations of basic, or Z2 -graded, supersymmetry, those

which possess parasupersymmetry. There has been a great deal of attention

given recently to work in this �eld [19] - [26], and often these papers contain

thinking relevant also to fractional supersymmetry. We belive that the whole

area promises both activity and progress in the future.

This paper discusses two important aspects of fractional supersymmetry,

Firstly, we discuss the fact that the fractional supersymmetry transformations

that describe the invariance properties of the Zn-graded theory form a group

Gn. Secondly, we elucidate certain fundamental technical matters stemming

from unfamiliar features of the algebra. Two areas need attention. One con-

cerns di�erentiation with respect to �; the other is the situation surrounding

families of multiplicative rules of the type
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�� = q�1�� ; q = exp(2�i=n) ; (1:4)

involving a Grassmann number �, its associated transformation parameter �

and dynamical variables of Grassmann type. In the former there are di�culties

of principle, which we treat; in the latter it is a matter of demonstrating a

coherent rationale behind the formulation and the consistency of results like

(1.4) within it.

We give explicit formulas for the elements of the group Gn of transforma-

tions that should leave any Zn-graded theory invariant, and related proofs.

Once the status of derivatives with respect to � is established, we turn to the

objects of generalised covariant derivative type that enter (up to now in an ad

hoc way) into a theory possessing fractional symmetry. We show that these

have the interesting geometrical interpretation of being the generators of the

left and right actions of the fractional supersymmetry group Gn (as is the case

for ordinary supersymmetry [27]).

We have introduced into our discussion a quantity q = exp(2�i=n) which

obeys

qn = 1 : (1:5)

To provide some appropriate comment, we recall that fractional symmetry

aims at a generalisation of supersymmetry. The latter when quantized, in-

volves one boson and one fermion variable, and requires use of a 2� 2 matrix

representation of the fermion. We plan a generalisation, (see (4.3), (4.1) for

n = 3 or (7.2) below), which retains the boson and replaces the fermion by

some more general object, cf. (1.1) and (1.2). Two classes of variables, which

can be represented by matrices in an n-dimensional vector space are known

to us. The parafermions [28][29] are one of these; use of them leads down a

path of interest, but not the one we are able usefully to follow at the moment,

toward parasupersymmetry. We follow the other path. The q-deformed har-

monic oscillator [30][31][32] possesses commutation relations in terms of its a

and ay variables that make sense, not only for q 2 R, but also q 2 C, when

(1.5) applies. In this situation, a and ay are represented (for each n) by n� n

matrices. Since for n = 2 we get back in this way to a description of fermions,

it is clear that we are talking about generalisations of these. By looking at the

n = 3 case and beyond one can see that the generalisations are distinct from

parafermions. We are not yet in a position to push satisfactorily the quanti-

zation of our theory to a point where the implied interpretation is present in

a consistent well-understood way, but we are certainly describing a plausible

scenario for it. We plan to report on this soon.

For reasons of notational simplicity and clarity, we present �rst our ideas

for the Z3-graded case, the �rst non-trivial generalisation of the basic super-

symmetry. This already requires that most of the central issues of the Zn case

be treated seriously. The paper contains seven sections. Section 2 contains

introductory material for G3 including its group law, and the reasons behind
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expressions such as (1.4). Section 3 derives the formula for the transformations

of Gn. Section 4 discusses the problem of de�ning derivatives with respect to

�, leading into section 5 which shows how the usual derivatives Q and D enter

crucially into the construction of a Lagrangian theory with G3 invariance. Sec-

tion 6 establishes Q and D as the generators of the left and right actions of G3

by introducing a suitable exponentiation of the �rst order formulas. Section 7

extends our results for n = 3 to the general case and includes the proof of the

exponentiation for general n.

2 Fractional supersymmetry transformations:

the case of G3

The simplest version of ordinary supersymmetry deals with the transformation

t0 = t+ � + i�� ; �0 = � + � : (2:1)

This Z2-graded theory contains a time variable t and a parameter � of grade

zero, and a real Grassmann number � and parameter � of grade one. Thus

� = �� ; �2 = 0 ; � = �� ; �2 = 0 ; �� = ��� : (2:2)

We consider generalisation to a situation involving a single real Grassmann

variable �, such that � = ��, �n = 0 , n = 2; 3; 4:::, within a theory that possesses

Zn-grading; the case n = 3 provides the simplest non-trivial generalisation of

ordinary supersymmetry. Without loss of generality, we take � to have grade

one in the Z3-grading, and to obey

� = �� ; �3 = 0 : (2:3)

The Z3-generalisation of (2.1) is then given by

t! t0 = t+ � + �(�; �) ; �! �0 = � + � ; (2:4)

where

�(�; �) = q(��2 + �2�) ; (2:5)

t and � are as in (2.1), � is a real grade one parameter, such that � = �� ; �3 = 0,

�� = q�1�� : (2:6)

and q is a complex cube-root of unity. For de�niteness we take q = exp(2�i=3);

replacing q by q�1 in (2.5) and (2.6) would modify only slightly the appearance

of the expressions written below, but not their content. Eq. (2.6) ensures that

the two terms of (2.5), in addition to being of overall grade zero, are real, e.g.

q��2 = q�1�2� = q�1q2�� = q��2 :
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The fact that (2.4) describes a group G3 of transformations is easy to

check. Applying two transformations g = (�; �) and g0 = (� 0; �0) to (t; �) we

�nd g00 = g0g with parameters

�00 = �0 + � ; � 00 = � 0 + � + q(�0�2 + �0 2�) � � 0 + � + �(�0; �) (2:7)

where, in analogy with (2.6), we have

�0� = q�1��0 : (2:8)

In fact, we may view (2.4) as the (left) action of the element g 2 G3 on a

Z3-graded physical `manifold'M , of `coordinates' (t; �), given by

g : (t; �) 7! (t0�0) ; �0 = � + � ; t0 = t+ � + �(�; �) ; (2:9)

likewise, we may view (2.7) as describing the left action of g0 = (� 0; �0) on the

G3 group itself.

The unit and inverse elements are given by (0,0) and (��;��). The asso-
ciativity of the group law g00(g0g) = (g00g0)g is easily checked, and, in fact, it

follows from two-cocycle condition

�(�00; �0) + �(�00 + �0; �) = �(�00; �0 + �) + �(�0; �) ; (2:10)

in which �; �0; �00 are the grade one parameters of three transformation per-

formed in succession, and which holds for the �(�0; �) given in (2.7) provided

that

�00�0 = q�1�0� ; �0� = q�1��0 : (2:11)

As is well known (see, e.g. [33]), two-cocycles are associated with central

extensions of a Lie group . In their Lie algebra formulation they correspond to a

curvature two-form (which is symmetric rather than antisymmetric in the case

of supersymmetry, see [27]). The structure of the fractional supersymmetry

group opens the possibility of extending these concepts to a (here) ternary

algebra by introducing a `curvature' three-form (cf. [12]).

To exhibit the origin of (2.6), (2.8) and (2.11), we observe that in any

context where such results arise, there is a natural ordering of the numbers

of non-zero grading that enter it. It will further be seen that this ordering

determines consistently (and always according to the same pattern) the powers

of q that enter the required multiplicative relations. In the case of group

multiplication, the above ordering (in symbolic notation �0 > � > �) requires

�0� = q�1��0 ; �� = q�1�� (2:12)

used above. To these, we add the result �0� = q��0 (see below). For all three,

one passes from the lexical order to the opposite one by using relations that

use the same power of q, here q�1, in the same places. In the discussion of
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associativity, the ordering �00 > �0 > � similarly implies the results (2.11) used

above, and in addition �00� = q�1��00.

Similarly, if we had elect to write our fractional supersymmetry transfor-

mation as

�0 = � + � ; t0 = t+ � + q2(��2 + �2�) ; (2:13)

the reality of t0 would now imply

�� = q�� ; (2:14)

and, for the ordering �0 > � > �, the same rule would govern matters but with

the power q as in (2.14), and in �0� = q��0. However, (2.13) is equivalent to

�0 = � + � ; t0 = t+ � + q(�2� + ��2) ; (2:15)

so that we prefer the ordering � > � > �0, and write

�� = q�1�� ; ��0 = q�1�0� ; ��0 = q�1�0� : (2:16)

This is now in full conformity with the other examples discussed Further,

just as our discussion related to �0 > � > � is appropriate to the case of left

transformations, the passage involving (2.15) and � > � > �0 is seen to be

similarly suited to the discussion of right translations. The results (2.15) and

(2.16) are indeed so employed in section six.

One consequence of results of the type (2.8) is in the form of q-deformed

binomial expansions. For example,

(�0 + �)m =
rX

t=0

"
m

t

#
�0t�m�t : (2:17)

The braced object here is the q-analogue of the ordinary binomial coe�cient,

in which ordinary factorials, e.g. m!, are replaced by

[m]! = [m][m� 1] � � � [1] ; [m] �
1� qm

1 � q
= 1 + q + � � �+ qm�1 : (2:18)

It is easy to see and well-known that (2.17) indeed follows by use of (2.8).

Results such as (2.17) are employed in section three.

We append our notation for q-deformed exponentials for use in sections six

and seven. We write

exp(qk;X) =
1X

m=0

1

[m; qk]!
Xm ; (2:19)

for suitable k, where

[m; qk]! = [m; qk] � � � [2; qk][1] ; [m; qk] �
1 � qkm

1� qk
: (2:20)

In this notation [m] in (2.18) is [m; q].
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3 The transformation formula for Gn

We now extend the work done in the previous section on G3 to the Zn-graded

case which employs a single real Grassmann number � and an associated pa-

rameter � with the properties

� = �� ; �n = 0 ; � = �� ; �n = 0 ; �� = q�1�� : (3:1)

It is understood that no power of � or � lower than the n-th can vanish.

We retain the general structure (2.4) for Gn but seek, for the cocycle �, a

formula of the type

�(�0; �) =
n�1X
r=1

cr�
0 r�n�rq!(r) ;

q = exp(2�i=n) ; n = 2; 3; 4::: ; (3:2)

so that qn = 1 replaces q3 = 1 in previous work. Also, the exponent of q shown

in (3.2) namely

!(r) =
1

2
r(n � r) ; (3:3)

ensures using (2.8) that each term of (3.2) is real if cr is real. We set c1 = 1,

and rewrite (3.2) as

�(�0; �) =
n�1X
r=1

dr�
0 r�n�r : (3:4)

We must determine the numbers dr in such a way that (2.10) is satis�ed, so

that when � is given by (3.2) and (3.3), eq. (2.4) has the required Gn group

multiplication properties. First we note that the terms on the two sides of

(2.10) that are independent of � agree. Then, with the aid of results like

(2.17), we can show that consideration of the terms of (2.10) linear in � allow

us to determine all the dr as multiples of d1. Explicitly we �nd dr = dn�r and

dr

d1
=

[n� 1]!

[r]![n� r]!
; r = 1; 2; : : : ; n� 1: (3:5)

Now that (3.4) is fully determined by (3.5) we must prove that (2.10) is iden-

tically satis�ed. Thus, we use (3.4), (3.5) and (2.17) to obtain

�(�00; �0 + �) =
n�1X
r=1

n�rX
s=0

�00 r�0 s�n�r�sd1[n� 1]!

[r]![s]![n� r � s]!
: (3:6)

We now observe that �(�0; �) di�ers only slightly from what will provide the

r=0 of the r.h.s. of (3.6). In fact, we can write

�(�00; �0+ �) + �(�0; �) =
nX

r=0

n�rX
s=0

�00 r�0 s�n�r�sd1[n� 1]!

[r]![s]![n� r � s]!
� d1(�

00n+ �0n+ �n)=[n] :

(3:7)
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Here, in order to make a tractable double sum we have added and subtracted

certain ill-de�ned terms. The procedure is necessary to expedite the key step

of our proof. In this, we reverse the order of summations in (3.7) obtaining

nX
r=0

rX
s=0

=
nX

s=0

nX
r=s

=
nX

s=0

n�sX
u=0

;

where a shift in the variable of summation r to u = r� s has also been made.

The result so obtained for the left side of (2.10) can now be shown to agree

exactly with the analogue of (3.7) obtained by direct calculation of the r.h.s.

of (2.19), completing the required demonstration.

The remaining ingredients of the group multiplication laws for Gn are at-

tended to immediately. Indeed, an additional calculation to prove associativity

is not needed, since the cocycle property guarantees it.

4 Derivatives with respect to �

We want to move from the description of the group properties of the frac-

tional supersymmetry transformation towards the construction of actions and

dynamical systems that possess invariance properties relative to them. This

requires a geometrical understanding of the derivatives @=@�, and of objects

in the theory of covariant derivative type. Let us go back to G3, again as a

good example, aiming in particular to expose and treat the conceptual dif-

�culties that occur in discussing reality properties of @=@�. It is su�cient

for the purposes of this section, although not of course for the eventual con-

struction of Lagrangian theories, to work with scalar, i.e. grade zero real

super�elds f , whose expansion in powers of � involves three real terms (see

e.g. [11, 15, 16, 18])

f = x+ q�� + q��2 = �f = x+ q2�� + q2�2� ; (4:1)

in which x is a grade zero (bosonic) variable, and the variables � and � are of

grades two and one. The reality of f expressed by (4.1) implies the properties

�� = q�� ; �� = q�1�� : (4:2)

Comparing (4.1) with (2.5) now seen to be of scalar super�eld nature, we see

that �, of grade one, is related like � to �, so that � > �, and �, of grade two, is

likewise related to �2, so that � < �. The latter implies that we should adopt

the rule �� = q�1�� , although in this section no call for any such result is

made.

To prepare the ground for our discussion of derivatives in the Z3 case, we

recall briey the case of basic supersymmetry and Z2-grading (eq. (11)) for

which a the real scalar �eld has the expansion

f = x+ i�� = x� i�� : (4:3)

8



It is normal to use the left spinorial derivative so that

@f

@�
= @f � @Lf = i� ; (4:4)

and to employ @�
@�

= 1 and

�@ + @� = 1 (4:5)

to do routine manipulations. Since (4.4) is not real for real f there is no case

for viewing @ as a real entity. However one did not consider using such an

idea as a guide towards (4.5). Eq. (4.5) is valid because it holds applied to

an arbitrary super�eld f . In fact, the right spinorial derivative @R can be

consistently viewed as a conjugate to @L via

@Lf �
@f

@�
� f

 

@

@�
= @Rf ; (4:6)

which agrees trivially with

@Lf = i� ; @Rf = �i� :

Similarly, by application to arbitrary f it follows that the conjugate of (4.5),

@R� + �@R = 1 ;

makes good sense.

Returning to the Z3 case, we see that to compute @f
@�
� @f � @Lf and @Rf ,

we need the Z3-analogue of (4.5) to treat the �2 terms of (4.1). We begin by

postulating

@�

@�
= 1 (4:7)

and a result of the type

@� = a�@ + b ; (4:8)

in which a; b 2 C. Eq. (4.7) is certainly natural. We discuss whether it can

or needs to be modi�ed (it doesn't) below. When (4.8) is applied to 1, then

(4.7) implies b = 1. Applied to �, eq. (4.8) yields

(@�2) = (1 + a)� ; (4:9)

Then, using (4.1), we get

@f

@�
= @Lf = q2�+ q2(1 + a)�� ; (4:10)

which is not real for real f . To complete the speci�cation of (4.8), we stipulate

that it must be a true when applied to an arbitrary scalar super�eld. It is easy

to see that it does so if
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1 + a+ a2 = 0 : (4:11)

Thus we �nd two solutions for a; the two corresponding candidates for the

derivative with respect � are both used in the literature and, as we see below,

essential. If a = q, we shall write @ for the derivative that obeys

@�

@�
= 1 ; @� = q�@ + 1 ; [@; �]q = 1 : (4:12)

If a = q�1, we write �, and

��

��
= 1 ; �� = q�1�� + 1 ; [�; �]q�1 = 1 : (4:13)

Also @� = q�1�@ (or [@; �]q�1 = 0). Both derivatives hereby introduced are

acting from the left. Neither has any natural reality properties that can be

uncovered without reference to their partner right derivatives. The above

is su�cient for our own intended applications. However, variations in the

literature exist, and are often associated with implicit assumptions hinting at

reality properties of @. If one uses (4.8) with or without (4.7) and without

reference to the requirement that, applied to an arbitrary super�eld, it holds

good, one might try to complete speci�cation of (4.8) by demanding that its

correctness ensures the correctness of its adjoint. However, if one assumes @

is in some sense real (which we do not believe to be a tenable view) then (4.8)

implies successively

�@ = �a@� +�b ;

a�@ = a�a@�+ a�b ; calling for a�a = 1 ;

@� = a�@ � a�b ;

reproducing (4.8) when b = �a�b. The choice b = 1, the natural choice, implies

a = �1, and we are forced back to the Z2-supersymmetry result as the only

non-trivial possibility. If one tries a choice like a = q , then b = iq1=2r ; r 2 R,
so that

@� = q�@ + irq1=2 :

Application of this result to an arbitrary real scalar f fails to give an identity.

So also does any attempt to view c@ as a conjugate to @, for c 2 C.

In fact, it is sensible to view @R as the conjugate of @. Since doing so

is independent of whether one is looking at @ or �, it is su�cient to give

details for the former. Thus we shall employ here (4.12) and (4.10). We take

@R� = (�
 

@
@�
) = 1 and, from (4.9), by conjugation, deduce

(@R�
2) � (�2

 

@

@�
) = (q2 + 1)� :

Then, from (4.1), we obtain
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@Rf = (f

 

@

@�
) = q�+ q�(1 + q2)� = @Lf (4:14)

where (4.2) and (4.10) for @f � @Lf have been used. Similarly, a consistent

picture for �; �R emerges. So, in summary, if on rare occasions one needs

a conjugate for @, one may not use any multiple of @, although @R serves

perfectly well. Neither � nor �R are satisfactory candidates for the rôle of

the conjugate of @. We note in passing that the fact that a variable and the

derivative with respect to it cannot be made simultaneously real (or hermitian)

is a known feature of non-commutative geometry and has been discussed in

completely di�erent contexts (see, e.g. [34]).

We note that the result

q@L@Rf = @R@Lf ;

treated with care, also makes sense, but forbear from appending any remark

about ordering.

We return �nally to (4.7). It is not obviously wrong to let (@�) = c; c 2 C,
but (4.7) clearly remains the natural choice. With @R, rather than any multiple

of @, seen as the true conjugate of @, we are not aware of any compelling reason

for using c 6= 1.

5 Covariant derivative objects

The derivatives @ and � discussed feature in the literature on fractional super-

symmetry in the de�nition (see e.g. [11, 15, 18]) of the important quantities

Q = @� + q�2@t ; (5:1)

D = �� + q2�2@t ; (5:2)

Q produces the �rst order generalised supersymmetry transformation. We

then write

�(�)f = �Qf : (5:3)

Eq. (5.3) implies the super�eld component transformations

�(�)x = q2�� ;

�(�)� = �q�� ;

�(�)� = � _x :

(5:4)

We note that the `�2 component' of f changes by a total time derivative.

Proceeding from this remark towards the construction of actions, we realise

that D has been de�ned in (5.2) and in relation to (5.1) in such a way that Df

has the same transformation law as f . It follows that the same philosophy as
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worked for supersymmetry will enable us to construct actions with the correct

invariance properties under generalised supersymmetry transformations. We

just take the `�2 component' of a suitable product, of the correct dimensions,

of super�elds such as f ; _f ;Df etc. For example (cf. [15, 16, 18])

S =
Z
dt

1

2
i f D f j�2 =

Z
dtL ; (5:5)

L =
1

2
_x _x+

1

2
q2 _�� �

1

2
q _�� : (5:6)

Exposition of the canonical formalism that stems from (5.6) is neither prob-

lem free in quantum mechanics, nor in existence at all at the present time

to our knowledge in classical mechanics. We may expect, as is the case in

Z2-supersymmetry where symmetric Poisson brackets are associated with an-

ticommutators, that both formalisms, classical (fractional pseudomechanics)

and quantum, are closely related. We intend to present a discussion of these

questions elsewhere.

The important rôles of Q and D having been put into evidence, we note

that Df will transform like f provided that

�(�)D = D�(�) ; (5:7)

or

�QD = D �Q : (5:8)

Since (2.6) implies �2 � = q2 � �2 ; and hence

qD � = �D ;

we deduce that (5.7) requires

DQ = q QD ; [D;Q]q = 0 : (5:9)

The consistency of (5.8) as an operator identity demands that, when applied

to an arbitrary f , it gives a super�eld identity. The choice (5.2) shows this to

be satis�ed.

To conclude, we note the further well-known results (cf. [11, 15, 18])

D3 = �@t ; Q3 = �@t ; (5:9)

which are most easily seen as identities by applying them to arbitrary f .

6 Left and Right Transformations

What governed the choices (5.1), (5.2)? In the case of (5.1) the application of

�Q to (t; �) does reproduce (2.4) to �rst order in �. This however does not allow

@ to be preferred to � in (5.1), nor conversely. Once (5.1) has been chosen, as
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seems sensible enough, it is quite easy to �nd a derivative in the form (5.2)

that satis�es (5.8). However, this choice has a deep geometrical interpretation.

In fact, we now show that Q and D can be regarded as the generators of the

left and right actions of the group G3 on the physical `manifold' M of (2.9),

and that (5.8) expresses the fact that left and right actions commute. This

geometrical picture is a nontrivial generalisation of one that applies to ordinary

supersymmetry where, of course, both actions are linear.

Let us denote the parameters of the left and right transformations of G3

as � and �. Thus � > � > �, as discussed in section two, and hence

�� = q�1�� ; �� = q�1�� : (6:1)

We de�ne the left and right actions L(�) and R(�) by

L(�) : � 7! �0 = �+ � ; t 7! t0 = t+ � + q(��2 + �2�) ; (6:2)

R(�) : � 7! �0 = � + � ; t 7! t0 = t+ � + q(�2� + ��2) ; (6:3)

which agree with (2.4) and (2.15). It is a non-trivial result is that these trans-

formations may written as exponentials of the generators Q and D respectively

L(�) t = exp (q�1 ; �Q) t ; (6:4)

R(�) t = exp (q ; �D) t ; (6:5)

where we have used the notation of (2.19). The proof, which due to the

ordering necessarily involves distinct deformed exponentials, is given below.

The commutativity of the two actions implies

[�Q ; �D] = 0 : (6:6)

This requires the consequences

D� = q�1�D ; �Q = q�1Q� (6:7)

of (6.1), and a hitherto unused relation

�� = q�1�� : (6:8)

Then (6.6) is seen to imply (5.8).

To prove (6.4), we use (2.19) in the form

exp(q�1; �Q) = 1 + �Q+ �Q�Q=[2 ; q�1] : (6:9)

A simple computation using �� = q�1�� and (@�2) = [2; q]� gives us (6.4); the

proof depends crucially on the former and on the occurrence of @ rather than

� in the de�nition (5.1) of Q.

We prove (6.5) in the same way, noting again how critically the success of

the proof depends on the actual arrangement of details involving �; �; � and

exp (q ; �D):

13



7 Super�elds, derivatives and q-exponentiation

for Gn

We have given already in section three, the de�nition of the transformation of

the group Gn when

� = �� ; �n = 0 ; � = �� ; �n = 0 ; �� = q�� : (7:1)

In general we expect most features of the Z3 - graded theory that are discussed

above allow fairly direct extension to the Zn theory. We will indicate some of

these briey in this section, without examining in much detail how the general

case may yield a theory signi�cantly richer in content.

In place of (4.1), we have the expansion of the real scalar super�eld

f = x+
n�1X
r=1

q!(r) r�
n�r = �f = x+

n�1X
r=1

q�!(r)�n�r r ; (7:2)

where the power !(r) of q = exp(2�i=n) is chosen to make all terms in f all

real; it is given by (3.3). Moreover, in place of (4.2), we now have

� r = qr r� ; r = 1; : : : ; n� r ; (7:3)

in the Z3 case, � and � of (4.1) would be written as  2 and  1 to conform

with (7.2).

The discussion of derivatives, via (7.1) and

@� = a�@ + 1 ; (7:4)

yields more possibilities, for a must now obey

1 + a+ a2 + ::: + an�1 = 0 : (7:5)

We thus write @r for the derivative which obeys

@r � = qr � @r + 1 ; r = 1; 2::: n� 1 : (7:6)

Our previous @ and � correspond to @1 and @n�1. We will continue to use the

former notation because we do not describe any context that involves crucial

use of @r for r 6= 1 or r 6= n�1. We note, in particular, the direct consequences

of (7.6)

(@ �s) = [s]�s�1 ; (� �s) = q1�s[s]�s�1 ; s = 1; 2; ::: ; n� 1 : (7:7)

Here � directly involves (1� q�s)=(1� q�1), which we have expressed in terms

of [s], de�ned by (2.18).

The de�nitions (5.1) and (5.2) of Q;D in section �ve are now modi�ed to

read
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Q = @1 + q!(1)�n�1@t � @ + q!(1)�n�1@t ; (7:8)

D = @n�1 + q�!(1)�n�1@t � � + q�!(1)�n�1@t ; (7:9)

where !(1) is given by (3.3). We note that Q, so de�ned, does generate

correctly the �rst order term of theGn-transformation for a parameter � related

to � via (7.1). Also

�(�) 1 = � _x (7:10)

indicates that we can still follow the usual way of obtaining invariant actions

from the �n�1 components of suitable super�elds. Further (5.8) again holds.

But in place of (5.9), we use n-th powers: the Zn theory is of fractional

supersymmetry with fractions 1=n, of course.

Finally, it is to be expected that the exponentiation results of section six

carry over into the general theory. We rewrite then in general notation

L(�)t 7! t0 = exp(q�1; �Q) t ; (7:11)

R(�)t 7! t0 = exp(q; �D) t ; (7:12)

where

�� = q�� ; �� = q�� ; �� = q�� : (7:13)

To prove the extension (7.11) of (6.4) to the Zn-graded theory we need to

recover

L(�) : t! t0 = t+
n�1X
r=1

dr�
r�n�r ; (7:14)

where dr is given by (3.5), as the expansion of (7.11)

L(�)t = t+
nX

r=1

1

[r; q�1]!
(�Q)rt ; (7:15)

where Q is given by (7.8). The �rst order term, which comes from the action

of �Q on t is clearly correct:

d1��
n�1 = (�Q)t ; (7:16)

since d1 = c1q
!(1) = q!(1).

This is �rst key element of a proof, by induction, that the individual terms

of (7.14) and (7.15) coincide. We therefore assume this for r = 1; 2; :::; k and

seek, on the basis of that assumption, to prove it for r = k + 1. This requires

us to show that
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dk+1�
k+1�n�k�1 =

1

[k + 1; q�1]
(�Q)dk�

k�n�k : (7:17)

Only the term @1 � @ of Q contributes. The formula @�k = q�k�k@ then

prepares for the use of (7.7), and we can see that (7.17) is an equality provided

that

1

[k + 1; q]
=

q�k

[k + 1; q�1]
: (7:18)

It is easy to show that (7.18) is true, and the proof is complete.

Proof of (7.12) proceeds similarly. We remark that the exponentials in

(7.11) and (7.12) are necessarily di�erent because of the use of the di�erent

derivatives @ and � in the de�nitions (7.8) and (7.9) of Q and D.
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