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Abstract

We calculate the hyperon magnetic moments in the framework of the SU(3)

generalization of the semibosonized Nambu{Jona{Lasinio model for baryons.

The e�ects of symmetry breaking imposed by the non{zero strange quark

mass and the inuence of the rotational 1=Nc corrections on hyperon magnetic

moments are examined.
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I. INTRODUCTION

Recently it was shown [1] that the correct mass splitting of hyperons are obtained in the

SU(3) e�ective quark-meson theory in the linear approximation with regard to the strange

quark mass and soliton angular velocities. In the same approximation the long-standing

problem of the underestimate of axial coupling constants gA and nucleon magnetic moments

in hedgehog models was solved [2{5]. It must be stressed that though the corrections linear

in soliton angular velocities in the Skyrme model with explicite vector mesons [6] have

the same structure as in the the semibosonized Nambu{Jona{Lasinio model (NJL), the

origin and the size of the corrections are much di�erent. The success of the perturbation

theory in the SU(3) NJL o�ers a systematic study of each correction to di�erent baryonic

observables. In this letter we study such corrections to the magnetic moments of the octet

baryons due to the non-zero strange quark mass in order O(ms) and due to the rotation of

the soliton in order O(1=Nc) systematically. In order to calculate the baryon one-current
matrix elements we use the NJL model for baryons. This model has been introduced a
decade ago by Kahana, Ripka and Soni [7,8] and Birse and Banerjee [9]. The original
version of the model su�ered however from vacuum{instability paradox [10{12]. Later a new

version of the model free of that paradox has been suggested [13] as following in the low{
momenta limit from the instanton picture of QCD. According to ref. [13] the contents of QCD
at low{momenta come to dynamically massive quarks interacting with pseudoscalar �elds
whose kinetic energy appears only dynamically through quark loops. The basic quantities
of the model, viz. the momentum-dependent quark mass M(p) and the intrinsic ultra-violet

cut-o� have been also estimated in ref. [13] through the �QCD parameter. An immediate
implication of this low-momenta theory is the Chiral Quark{Soliton Model identi�ed with
the semibosonized Nambu-Jona-Lasinio Model. for baryons of ref. [14], which is in the same
spirit of refs. [7]{ [9] but without the above{mentioned vacuum instability. According to
the model the nucleon can be viewed as bound states of Nc (=3) "valence" quarks kept

together by a strong hedgehog-like pion �eld whose energy coincides by de�nition with the
aggregate energy of quarks from the negative Dirac sea. Such a semi-classical picture of
the nucleon gets a justi�cation in the limit Nc !1 { in line with more general arguments
by Witten [15]. Roughly speaking, the model interpolates between the naive valence quark

model of baryons and the Skyrme model. A non-trivial self-binding con�guration of the

pion and quark �elds has been �rst found in ref. [14]. Subsequent numerical studies of the

self-binding con�guration have been done by many authors using di�erent methods [16]{

[18] and have found that results are rather close to the original ones [14]. Meanwhile, in
ref. [16] a detailed quark-soliton theory of nucleons has been developed, including a collective-

quantization procedure to deal with the rotational excitations of the quark-pion soliton. (The
quantization of the otherwise static solution is necessary to obtain physical baryon states

with de�nite quantum numbers). It enables one to go into detailed calculations of the N and
� properties, such as form factors, N�� splitting, magnetic moments, axial constants, etc.

A convenient numerical technique to calculate the "one-current" quantities introduced in

ref. [16] has been developed by Bochum group [19] and Wakamatsu and Yoshiki [22], based
on the discretized Kahana { Ripka plane-wave basis [8], [12].

Many physical processes (semileptonic decays, electromagnetic transitions, the one-

current baryon matrix element:
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hB2j � �Ô (x)jB1i; (1)

where � = (�; �5; ���; 5) is a particular Dirac matrix depending on the O is a SU(3)

avor matrix. For element in Eq. (1) with

� = �; Ô =
1

2
�3 +

1

2
p

3
�8 (2)

is relevant to the electromagnetic form factors of the octet baryons (magnetic moments, e.m.

radii, etc.). This particular matrix element is a subject of the present paper.

One can relate the hadronic matrix element Eq. (1) to a correlation function:

h0jJB1
(~x; T ) � �O J

y
B2

(~y; 0)j0i (3)

at large Euclidean time T . The baryon current JB can be constructed from quark �elds,

JB =
1

Nc!
"i1:::iNc�

�1:::�Nc

JJ3II3Y
 �1i1 : : :  �NciNc (4)

�1 : : : �Nc are spin{isospin indices, i1 : : : iNc are color indices, and the matrices �
�1:::�Nc

JJ3II3Y
are

chosen in such a way that the quantum numbers of the corresponding current are equal to
JJ3II3Y . The general expression for the matrix elements Eq. (1) was derived in Ref. [20]
with linear ms corrections taken into account:

hB2j � �O (x)jB1i = �Nc

Z
d3xeiqx

Z
d!

2�
tr hxj 1

! + iH
4��

Ajxi

�
Z
dR	y

B2
(R)	B1

(R)
1

2
tr(Ry�ARO)

+ iNc

Z
d3xeiqx

Z
d!

2�
tr hxj 1

! + iH
4�

A
1

! + iH
4��

Bjxi

�
Z
dR	y

B2
(R)	B1

(R)
1

2
tr(Ry�ARm̂)

1

2
tr(Ry�BRO); (5)

where q � MN is the momentum transfer, 	B(R) are the rotational wavefunctions of the

baryon with strange quark mass taken into account, and �A = (
q

2
3
1; �a), �a are Gell-

Mann matrices. In Eq. (5) a regularization is not shown for simplicity (see Ref. [21] for

details). Recently [3{5] the rotational 1=Nc corrections for matrix elements of vector and

axial currents were derived, general expression (without regularization) for these corrections
has a form:

�
1hB2j � �O (x)jB1i = iNc

Z
d3xeiqx

Z
d!

2�

Z
d!0

2�
P

1

! � !0
(I�1)aa0

� tr hxj 1

! + iH
�a

0 1

!0 + iH
4��

bjxi

� fabc
Z
dR	y

B2
(R)	B1

(R)
1

2
tr (Ry�cRO)

+ Nc

Z
d3xeiqx

Z
d!

2�
tr hxj 1

! + iH
�a

1

! + iH
4��

bjxi

�
Z
dR	y

B2
(R)

1

2
ftr(Ry�bRO); 
̂ag+	B1

(R): (6)
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Where Iab is a matrix of moments of inertia for the soliton, 
̂a is an operator of angular

velocities acting on angular variables R (details can be found in [1]). In what follows we shall

use these expressions to calculate hyperon magnetic moments. Using the general expressions

Eq. (5) and Eq. (6) for the one current baryonic matrix elements, we can express the magnetic

moments of the SU(3) octet baryons in linear approximation in ms and 1=Nc via a few

quantities vi depending on the concrete dynamics of the quark chiral soliton.

�B = v1hBjD(8)
Q3jBi +

v2

Nc

dab3hBjD(8)
Qa
� ĴbjBi

+ ms

h
(v3dab3 + v4Sab3 + v5Fab3) �D(8)

Qa
D

(8)
8b jBi

i
(7)

here we have introduced SU(2)T � U(1)Y invariant tensors

dabc =
1

4
tr(�af�b; �cg+);

Sab3 =
1p
3

(�a3�b8 + �b3�a8);

and

Fab3 =
1p
3

(�a3�b8 � �b3�a8); (8)

where Q = 1
2
�3 + 1

2
p
3
�8 is the charge operator. The rotational wavefunctions jBi entering

these formulae must be calculated in the linear approximation in ms. The vi are quantities

depending on the concrete dynamics of the quark chiral soliton (they are independent of the
hadrons involved). These dynamic quantities have a general structure like:

X
m;n

hnjO1jmihmjO2jnif(En; Em;�); (9)

here Oi are spin-isospin operators changing the grand spin of states jni by 0 or 1, and the
double sum runs over all eigenstates of the quark hamiltonian in the soliton �eld. The
numerical technique for calculating such a double sum has been developed in [1,19,22]. Be-

fore we numerically calculate the magnetic moments let us estimate the importance of 1=Nc

corrections and relative size of subleading O(ms=Nc) corrections. To this end we use a dy-

namically independent relations between magnetic moments arising from the \hedgehog"
symmetry of the model. Hyperon magnetic moments are parametrized (in our approxima-

tion) by six parameters (v1; v2; v3; v4; v5 and one parameter is contained in the rotational
wavefunctions). Looking upon them as free parameters, we obtain the relations between the

hyperon magnetic moments and the magnetic moment of �0� transition :

��0 =
1

2
(��+ + ���); (10)

�� =
1

12
(�12�p � 7�n + 7��� + 22��+ + 3��� + 23��0)

� (1 +O(
ms

Nc

) +O(m2
s
)) (11)

��0� = � 1p
3

(��n +
1

4
(��+ + ���)� ��0 +

3

2
��) � (1 +O(

ms

Nc

) +O(m2
s
)); (12)
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and one additional relation if we neglect rotational 1=Nc corrections, i.e. put v2 = 0 in

Eq.(7):

��0 = (�3�p � 4�n + 4��� + ��+ + 3���) � (1 +O(
1

Nc

) +O(m2
s
)): (13)

Let us note that the analogous relations between hyperon magnetic moments was obtained by

Adkins and Nappi [23] but they did not take into account mass corrections to the rotational

baryon wave functions and neglected 1=Nc corrections. The �rst relation Eq.(10)is trivially

ful�lled. It is an isospin relation and so has no corrections in both 1=Nc and ms. The next

two relations Eq. (11) and Eq. (12) empirically gives:

�(0:613 � 0:004) = �(0:402� 0:10) (14)

and

�(1:61� 0:08) = �(1:48� 0:03) (15)

respectively. Whereas the fourth relation Eq. (13) gives:

�(1:250 � 0:015) = �(4:8 � 0:2) (16)

We see that the fourth relation Eq. (13) where we neglect 1=Nc corrections is badly repro-
duced by experiment whereas the �rst three ones (10,11,12) seems to be successful. The

explanation of this di�erence lies in di�erent large Nc properties of the relations. These
relations have, in principle, corrections of order O(1=Nc), O(ms=Nc) and O(m2

s
), but in

(10,11,12) all corrections proportional to any power of 1=Nc are cancelled. Hence the rela-
tions eqs. (10,11,12) are satis�ed to accuracy of the order O(ms=Nc), while the eq.(13) is
satis�ed with the accuracy of O(1=Nc). From these estimates one can conclude that cor-

rections of order O(1=Nc) to magnetic moments numerically are large whereas those of the
order O(ms=Nc) can be relatively small. Such kind of estimates give us a lower limit for the
systematic errors of computations in any \hedgehog" model for baryons due to the neglect
of the non-computed O(ms=Nc) and O(m2

s
) corrections, because any \hedgehog" model re-

spects the eqs. (10,11,12) which are deviated from the experiment by about 15 %. Hence

such kind of models can not reproduce the experimental data of magnetic moments better
than the above{mentioned limit of 15%. We shall see that in the NJL model the accuracy

of computation of hyperon magnetic moments very close to its upper limit.

In order to calculate Eq. (7) numerically, we follow the well-known Kahana and Ripka
method [8]. In table 1 we show the dependence of the magnetic moments of the SU(3) octet

baryons on the constituent quark mass in the chiral limit (ms = 0). Both of the leading
order and the rotational 1=Nc corrections tend to decrease as the constituent quark mass M

increases. In this limit the U -spin symmetry is not broken, so that we have the relations

�p = ��+ ; �n = ��0;

��� = ���; ��0 = ���: (17)

Compared to the SU(2) results, the prediction of the SU(3) model (ms = 0) for the nucleon is

di�erent and seems to be better. It is due to the fact that in our approach a nucleon possesses
polarized hidden strangeness [27,28]. Technically the di�erence arises due to contributions

of the soliton kaon cloud and due to di�erent collective coordinates quantization rules.
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The rotational 1=Nc corrections are equally important to the other octet members as

shown in Table 1. As a result, the total rotational 1=Nc corrections contribute to the

magnetic moments around 50%.

The symmetry breaking terms, proportional to ms, lift the U -spin symmetry. The ms

corrections arise due to explicit dependence of the baryon matrix elements on the strange

quark mass (second term of eq (5) and due to the dependence of the solitonic rotational

wave functions on ms (details see in Refs. [27,24]). The latter correction appears in each

column of Table 2 and it is equally important as the former one.

It is interesting to compare the NJL model with the Skyrme model, since these two models

are closely related. As Ref. [4] already made a comparison between the NJL model and the

Skyrme model in case of the gA. Apparently both models have the same collective operator

structures (see Eq. (7)), but the origin of parameters vi given in Eq. (7) is quite distinct

each other. In the NJL model, the coe�cients vi include the contribution which arises from

the noncommutivity of the collective operators [3] while it is absent in the Skyrme model,
since the lagrangian of the Skyrme model is local in contrast to that of the semibosonized
NJL. The coe�cient v2 comes from the pseudoscalar mesons dominated by the induced kaon

uctuations. It is interesting to note that the Skryme model needs explicit vector mesons in
addition to pseudoscalar ones [6] in order to achieve the algebraic structure of the collective
hamiltonian as it is obtained in the semibosonized NJL model with pseudoscalar mesons
alone. Due to the introduction of vector mesons, it is inevitable to import large numbers of
parameters into the Skyrme model.

In Fig. 1 we show how much the predicted magnetic moments deviate from the ex-
perimental data. On the whole, the magnetic moments are in a good agreement with the
experimental data within about 15%.

In summary, we have studied the magnetic moments of the SU(3) octet baryons in the
framework of the semibosonized SU(3) NJL model, taking into account the rotational 1=Nc

corrections and linear ms corrections. The only parameter we have in the model is the

constituent quark mass M which is �xed to M = 420 MeV by the mass splitting of the
SU(3) baryons. We have shown that the NJL model reproduces the magnetic moments of
the SU(3) octet baryons within about 15 %. The accuracy we have reached is more or less
the upper limit which can be attained in any model with \ hedgehog symmetry".

We would like to thank Christo Christov, Michal Praszalowicz and T. Watabe for helpful

discussions. This work has partly been supported by the BMFT, the DFG and the COSY-
Project (J�ulich).
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TABLES

TABLE I. The dependence of the magnetic moments of the SU(3) octet baryons on the con-

stituent quark mass M without ms corrections: �(

0
) corresponds to the leading order in the

rotational frequency while �(

1
) includes the subleading order.

370 MeV 420 MeV 450 MeV

Baryon �B(

0
) �B(


1
) �B(


0
) �B(


1
) �B(


0
) �B(


1
) Exp

p 1.0 2.50 0.92 2.20 0.88 2.08 2.79

n -0.75 -1.71 -0.69 -1.50 -0.66 -1.42 -1.91

� -0.38 -0.85 -0.34 -0.75 -0.33 -0.71 -0.61

�
+

1.0 2.50 0.92 2.20 0.88 2.08 2.46

�
0

0.38 0.85 0.34 0.75 0.33 0.71 {

�
�

-0.25 -0.79 -0.23 -0.70 -0.22 -0.66 -1.16

�
0

-0.75 -1.71 -0.69 -1.50 -0.66 -1.42 -1.25

�
�

-0.25 -0.79 -0.23 -0.70 -0.22 -0.66 -0.65

TABLE II. The magnetic moments of the SU(3) octet baryons predicted by our model are

compared with the evaluation from the Skyrme model of Park and Weigel [6]. The experimental

values are taken from Ref.[26]. The constituen quark mass is �xed as M = 420 MeV. The

�B(

1
; ms) include subleading orders in 
 and ms, which are our �nal values.

Baryons �B(

0
; m

0

s
) �B(


1
; m

0

s
) �B(


1
; m

1

s
) Park & Weigel Exp.

p 0:93 2:22 2:30 2:36 2:79

n �0:80 �1:60 �1:66 �1:87 �1:91

� �0:32 �0:73 �0:76 �0:60 �0:61

�
+

0:92 2:21 2:34 2:41 2:46

�
0

0:29 0:71 0:74 0:66 |

�
�

�0:34 �0:79 �0:85 �1:10 �1:16

�
0

�0:68 �1:49 �1:59 �1:96 �1:25

�
�

�0:21 �0:68 �0:67 �0:84 �0:65

j�
0
! �j 0:66 1:35 1:44 1:74 1:61
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