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Abstract

We critically examine the claim made by Burko and Ori that black holes are

expected to form in nonsymmetric gravity and �nd their analysis to be in-

conclusive. Their conclusion is a result of the approximations they make, and

not a consequence of the true dynamics of the theory. The approximation

they use fails to capture the crucial equivalence principle violations which

enable the full nonsymmetric �eld equations to detect and tame would-be

horizons. An examination of the dynamics of the full theory reveals no indi-

cation that black holes should form. For these reasons, one cannot conclude

from their analysis that nonsymmetric gravity has black holes. A de�nitive

answers awaits a comprehensive study of gravitational collapse, using the full

�eld equations.
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I. INTRODUCTION

Anyone that has looked at alternative gravity theories will have been struck by just

how ubiquitous black holes are. On closer inspection, it becomes clear why black holes are

so hard to get rid of. The experimental success of Einstein's theory in describing weak

gravitational �elds requires that all alternative theories reduce to Einstein's for weak �elds.

Indeed, for weak �elds this implies that all tenable alternative theories can be recast as

Einstein gravity coupled to some e�ective matter source constructed from the additional

gravitational degrees of freedom. Now, we know that a black hole horizon is an entirely

regular place so far as local quatities such as curvatures are concerned. For a large black

hole the curvatures can be very small at the horizon, and we may conclude that the weak �eld

description of alternative gravity theories should continue to hold. This line of reasoning

suggests that the gravitational collapse of a very massive body will proceed in much the

same way in an alternative theory as it does in Einstein's theory. For most theories, such as
Jordan-Brans-Dicke scalar-tensor theory, this is exactly what is found.

There is, however, one escape clause in this black hole contract. While it is true that a
free-fall observer sees nothing special at the event horizon, static observers feel an in�nite

force. In addition, the redshift between the horizon and any point outside the horizon
diverges. If the alternative theory violates the equivalence principle or employs non-local
notions, then the horizon can be a very irregular place indeed.

We wish to examine how the preceding considerations apply to nonsymmetric gravity
theory (NGT) [1,2]. In earlier work we showed that the unique, static, spherically symmetric

vacuum solution for NGT did not describe a black hole [3]. This result held despite the fact
that NGT can be recast as Einstein gravity coupled to an e�ective matter source for weak
gravitational �elds. Recently, Burko and Ori [4] considered the lowest-order linearisation of
NGT about an Einstein gravity background and concluded that black holes will form in NGT.
We show that their conclusion follows as an immediate consequence of the approximation

they used. We stress that the approximation fails to capture the crucial equivalence principle
violations which only occur at higher orders of approximation. If a horizon is present, the
higher order terms can dominate. By considering gravitational collapse described by the full
NGT �eld equations we �nd no reason to expect that black holes will form.

II. THE LINEARISED THEORY

We shall �rst consider the lowest-order linearised NGT �eld equations used to study

black hole formation in Ref. [4]. To �rst order, the NGT vacuum �eld equations linearised
about a Einstein gravity (GR) background read [2]

R�� = 0 ; (1)

r�F��� + �2h[��] � 4R� �

[� �]h[��] = 0 ; (2)

where F��� = hf[��];�g is the �eld strength formed from the linearised skew metric h[��], and
�2 is a type of cosmological constant. At this order, the NGT �eld equations are identical to

those of a massive, curvature coupled Kalb-Ramond �eld. The standard no-hair theorems
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guarantee that a black hole with h[��] = 0 must form as the result of the gravitational collapse

of matter coupled to such a Kalb-Ramond �eld [5]. The preceding analysis summarises the

treatment presented in Ref. [4].

Since violations of the equivalence principle are restricted to benign curvature couplings

at this order, the theory has been robbed of its ability to see horizons. It is only at higher

orders that interesting violations of the equivalence principle can make themselves felt in

NGT, as we shall explain at the end of this section.

The lowest order equations do correctly predict the breakdown of the perturbative treat-

ment for a static h[��] on a Schwarzschild background. Of course, this has nothing to do with

violations of the equivalence principle as the same goes for a minimally coupled scalar �eld.

The breakdown of the linearised analysis requires that the full �eld equations be studied. In

the case of a scalar �eld, the pathological behaviour at the horizon persists in the full �eld

equations, turning the horizon into a curvature singularity. Thus, before we even begin to

study the collapse of a star coupled to a scalar �eld we already know what the outcome must
be - a black hole with no scalar hair. In contrast, the full NGT �eld equations reveal that
a non-zero static h[��] is permitted as curvatures remain small at the Schwarzschild radius

and the horizon is destroyed. Clearly, there is no a priori reason to exclude the possibility
of a static h[��] remaining after a star has collapsed.

We now take a closer look at why we expect higher orders in the skew metric expansion
to introduce important equivalence principle violations. One example of an e�ect which
only occurs at higher orders involves the volume form. In GR it is always possible to �nd

a coordinate patch in the neighborhood of any regular point in terms of which the volume
form is identical to that in Minkowski space. The same is not true in NGT. Importantly, this
e�ect cannot be seen at �rst order, so it is an example of an equivalence principle violating
e�ect missed in the analysis of Ref. [4]. Another example of an e�ect missed at lowest order
is due to the local anisotropy of spacetime caused by the skew �eld. This local anisotropy
alters the propagation of light [6]. A related, but more serious e�ect is the modi�cation to

the propagation of skew perturbations due to non-linear self-interaction [7]. Because of this
e�ect, skew waves will not follow geodesics of the background geometry in the geometrical
optics approximation. This departure from geodesic motion can lead to divergent results

at the horizon. Such an e�ect can be important as non-geodesic trajectories su�er in�nite
proper accelerations at the event horizon.

We see that the breakdown in the skew perturbation theory can only been expected
when higher-order terms are taken into account and a horizon is present in the background

geometry. Since the �rst order analysis fails to capture vital features of the full theory, we
conclude that the �rst-order analysis is at best inconclusive, at worst totally misleading.

Unfortunately, the NGT �eld equations are realted non-polynomially to GR so there are

an in�nite number of higher order terms which must be considered. We would have to

prove that divergences do not occur at any order for the �rst order analysis to be trusted.

Clearly, this is an impossible task so a perturbative approach using a GR background must
be abandoned. The full �eld equations must be consulted.

An analogous result has recently been found for string theory in the presence of horizons

[8]. The intrinsic non-locality of strings allows them to respond to redshifts. When a

horizon is present, the standard low-energy e�ective action must be modi�ed to include

massive, extended string modes. The usual description of low energy string gravity consists
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of Einstein gravity coupled to a massless dilaton and a massless Kalb-Ramond �eld. For

weak �elds, the higher-order massive modes are suppressed and can be neglected. The

standard dogma states that the horizon for a large black hole is a weak �eld region, so we

might expect the massless low energy string theory to continue to be valid when a horizon is

present. In the case of strings, the standard dogma fails because the theory is non-local. For

NGT, the standard dogma fails because the theory incorporates a special kind of equivalence

principle violation. It should be mentioned however, that the higher order stringy e�ects

considered in Ref. [8] are intrinsically non-local, and are not expected to impact on the local

dynamics of gravitational collapse [9].

III. THE FULL THEORY

Since the linearised treatment cannot be trusted, we must look at the full �eld equations.

While we do not claim that the following argument is rigorous, it does give some idea about
what we might expect to �nd for gravitational collapse described by the full theory.

The static spherically symmetric metric in NGT can be written as

g = e�dt
 dt� �(�)d� 
 d� � r2d� 
 d� � r2 sin2�d�
 d� + f(�) sin� d� ^ d� : (3)

The radial variable r is a function of �. For the vacuum Wyman solution [10] we �nd that
r(�) is given implicitly by

e�(cosh(a�)� cos(b�))2
r2

2M2
= cosh(a�) cos(b�)� 1 + s sinh(a�) sin(b�) ; (4)

where

a =

sp
1 + s2 + 1

2
; b =

sp
1 + s2 � 1

2
; (5)

and s is a dimensionless constant which varies from body to body. At large r we �nd

r ' �2M

�
: (6)

It is instructive to consider the massless scalar wave equation in the metric (3). Using

the full NGT connection, we �nd that the monopole mode of a scalar �eld obeys the relation

e��
@2�

@t2
� 1

�

@2�

@�2
= 0 : (7)

When we study this equation on a Wyman background, we see that small � perturbations

remain small everywhere as the background is everywhere regular. This is true even in the

static limit where the wave equation has the explicit solution

� = �0 + �1� : (8)

Since the maximum value for � is roughly �=s, we can always choose �0 and �1 so that � is

small everywhere. The NGT vacuum solution admits scalar hair. This is in stark contrast
to the situation in GR where
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� = �0 + �1 ln

�
1 � 2M

r

�
; (9)

and we must set �1 = 0 to obtain a solution regular at r = 2M .

A similar, but far more complicated, analysis can be made for skew metric perturbations

about the metric (3). Indeed, these kind of skew metric perturbations about the static

solution have to be included as NGT does not have an analog of Birko�'s theorem. The

skew metric perturbations lead to a set of coupled hyperbolic di�erential equations. This

is because a �rst order skew perturbation excites �rst order perturbations in the symmetric

metric functions. We note that this is in contrast to what we found for skew perturbations

about a GR background, where the skew and symmetric sectors remain uncoupled at �rst

order. Despite these technical complications, the physical picture is the essentially the

same as what we have described for scalar perturbations. Since the background metric is

everywhere regular, small skew perturbations will remain small.

The same holds for skew perturbations about a star described by NGT. The NGT metric
inside the star is regular, and it matches smoothly onto an exterior Wyman vacuum solution.
Small skew perturbations about the static solution remain small. This continues to be the
case if the star undergoes gravitational collapse. The endpoint of collapse is likely to be some

kind of matter distribution supported by the repulsive skew �elds and matter pressure.
Since skew perturbations on top of the full NGT metric for a collapsing star are expected

to remain small, it is di�cult to see how a black hole might form. This is because the
end-state of spherically symmetric gravitational collapse in GR, the Schwarzschild metric,
di�ers from the NGT vacuum metric by a non-perturbative amount. Thus, we require
non-perturbative skew uctuations to occur if we wish to recover a black hole. As the

linearised skew perturbations show no sign of diverging, the required non-perturbative skew
uctuations are ruled out.

IV. CONCLUSIONS

We have pointed out that the lowest order linearisation used in Ref. [4] cannot be trusted
when the background geometry contains a horizon. For this reason, we �nd the analysis in
Ref. [4] to be inconclusive, and the claim that black holes form in NGT to be premature.

Moreover, a parallel treatment using a NGT background, rather than a GR background,

leads to the opposite conclusion - black holes will not form in NGT. The only way to really
�nd out whether or not black holes form in NGT is to solve the collapse problem using the

full NGT �eld equations. Until that is done properly, the jury is out.
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