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1. Introduction

Hermitian one matrix models were introduced and for the first time solved in the
large N limit in the seminal paper by Brézin, Itzykson, Parisi and Zuber [1]. These mod-
els generate ensembles of planar, random graphs whose vertex coordination numbers are
controlled by the matrix potential. By varying the potential, different classes of diagrams
may be obtained, e.g. random square or random triangular lattices. However, despite this
freedom, there is a class of physically important lattices that can not be generated by
simply tuning the potential: regular, flat lattices with fixed coordination numbers of both
vertices and faces. To attain them it is necessary to study planar graphs having coordi-
nation number dependent weights for both the vertices and faces. It is straightforward to
define modified hermitian matrix models producing such graphs, but they can no longer
be treated with the methods of [1]. In fact, until very recently this class of models of
dually weighted graphs seemed intractable. However, an important but little noticed ob-
servation due to Itzykson and Di Francesco [2] has made possible the explicit treatment
of dually weighted graphs. The number of degrees of freedom of these models is crucially
reduced by rewriting the model in the language of group theory. It should also be noted
that this method, based on expanding the matrix model potential in Weyl characters, was
already used presciently in a special case in another early paper by Itzykson and Zuber [3].
In a recent work [4] we demonstrated that this new approach leads indeed to a problem
amenable to mathematical analysis once the large N limit is taken.

The physical importance of matrix models has been elucidated through a large body
of work over the last ten years. In [5] [6] matrix models were first introduced to furnish
a description of two-dimensional quantum gravity and non-critical bosonic strings and
successfully used to calculate the critical properties of these theories. This approach is
based on the representation of the sum over world-sheet metrics as a sum over dynamical
triangulations as originally proposed in [5] [6] [7]. Studying the crossover from random,
dynamical graphs to regular, static graphs, then, will correspond to suppressing the curva-
ture fluctuations of the world-sheet metric and result in a flat two-dimensional metric. Our
work, in conjunction with [4], should thus be seen as representing a first attempt towards
establishing a connection between integrable two-dimensional models both coupled to and
decoupled from quantum gravity.

To be precise, let us consider general planar graphs and introduce a set of couplings
1,15, .1, ... , namely the weights of vertices with 1,2,..., ¢, ... neighbours, and a dual set
t1,t2,...tg, ..., the weights of the dual vertices (or faces) with appropriate coordination
numbers. The partition function of closed planar graphs G is defined to be

Zt =Y [ t#e# (1.1)
G

v;‘,quG
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where vy, v, are the vertices with ¢ neighbours on the original and dual graph, respectively,
and #vy, #v, are the numbers of such vertices in the given graph G. Choosing t; = t, =

64,4 the only allowed graphs are regular square lattices (see Fig. 1.a).
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(a) flat space

(b) positive curvature ¢) negative curvature

Fig. 1: Flat space and curvature defects

However, it is easy to see that a regular square lattice cannot be of spherical (i.e. pla-
nar) topology. Positive curvature defects have to be added in order to be able to close the
surface. Considering for the moment only even couplings, we must therefore “turn on”
couplings t5 or t3, or both (see Fig. 1.b). Exactly four such defects are needed to close
the square lattice. Adding more defects, then requires balancing the total curvature by
also adding negative curvature defects. The simplest examples for such negative defects,
corresponding to the couplings t¢ and t§, are shown in Fig. 1.c. Allowing for an arbitrary
number of positive and negative curvature defects we expect to generate random graphs
which, at critical values of the couplings, corresponding to very big graphs dominating the
sum in the partition function (1.1), allow us to reach a continuum limit lying in the uni-
versality class of pure two-dimensional quantum gravity [5] [6]. On the other hand, having
“tuned away” the negative curvature couplings t,, t; with ¢ > 4, no such continuum limit
is possible. Then, only a small, finite number of positive curvature defects are allowed;
this brings us back to the phase of essentially flat surfaces. The main physical motivation
for studying the models of dually weighted graphs, then, is to understand the transition
between these two very distinct phases.

In the present paper we continue to develop powerful techniques which permit us to
address this physical problem. Furthermore, we will present the full and explicit solution of
a non-trivial problem: the case of flat, planar graphs with an arbitrary number of positive
curvature defects and a single negative curvature defect (see Fig. 2(a)) adjusted to balance
the total curvature. We call the resulting lattice surfaces “almost flat planar diagrams”.

A typical surface of this type is shown in Fig. 2(Db).
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This model illustrates a non-trivial example that can be solved by the method pre-
sented in this paper. This model cannot currently be solved by standard matrix model

techniques

Fig. 2 (a) Negative curvature defect of angle (2 — ¢)m and (b) a typical surface.

It should be stressed that the methods we develop here are general and could have
applications going beyond the problem under investigation. Given that the model of dually
weighted graphs seemed entirely inaccessible even a short while ago, we regard the present
approach to be an important step in extending current large N techniques.

We will quickly recall in the next section some of the results of our previous paper [4]
and precisely define the class of models we are studying. Then, in section 3, we demonstrate
how to derive the large N limit of group theoretical characters. The model of almost flat
planar diagrams will be solved and interpreted in section 4. The full model capturing the
transition from flat to random graphs will be briefly discussed in section 5. We demonstrate
how to reformulate it as a well-posed Cauchy-Riemann problem. We conclude in section
6 and present an outlook on how our approach might be put to further use in the near

future. Technical details and additional illustrations are included in two appendices.

2. Review of the character expansion method for matrix models of dually

weighted graphs

The partition function (1.1) for dually weighted graphs can be formulated as the

following matrix model:

Z(t*,t) = / DM ¢~ 5T M+ Tr Vp(MA) (2.1)
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with
1
=> - TrB* (MA)*. (2.2)
k=1

The matrices A and B are fixed, external matrices encoding the coupling constants through

1 1
t;‘ =¥ Tr BY and tg = N Tr AY. (2.3)

The model generalizes, for A # 1, the standard one matrix model first solved by Brézin,
Itzykson, Parisi and Zuber [1]. It can no longer be solved by changing to eigenvalue
variables; a reduction to NV variables is nevertheless possible. An expansion of the potential
into a sum over invariant group characters allows all integrations to be performed and (2.1)
to be reformulated as a statistical mechanics model in “Young-tableau weight space”. This
reformulation should be called, after its discoverers, the “Itzykson-Di Francesco formula”

[2] and reads

Z HH h(h_ 1)’;52;” X(ny(A) x(ny(B) (2.4)
{he,poy Lli

Here ¢ is a constant that we can drop, the weights {h¢} are a set of N/2 even, increasing,
non-negative integers while the weights {h°} are N/2 odd, increasing, positive integers, and
the sum is taken over all such sets. The characters can be defined through two equivalent
formulae. The first is the Weyl formula:

det, ,(ay')

X (4) = —202

N (2.5)

where the ay are the eigenvalues of the matrix A and A(a) is the Vandermonde determinant.
The second definition makes use of Schur polynomials, P, (), defined by

EmE =N (8) with 6 = L Tafai), (2.6)
7

n=0

in terms of which the character is

Xy (A) = det, , (Ph,+1-1(0)). (2.7)

It was demonstrated in [4] how to take the large N limit of this expansion. In this
limit, the weights %hl condense to give a smooth, stationary distribution dh p(h), where
p(h) is a probability density normalized to one. For technical reasons we restrict our
attention to models in which the matrices A and B are such that traces of all odd powers

of A and B are zero. This means that the our random surfaces are made from vertices and
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faces with even coordination numbers only. As was discussed in [4], this ensures that the

support of the density p(h) lies entirely on the real axis, and thus simplifies the solution of

the problem!. The matrix A will satisfy this condition if we introduce an % X g matrix

va in terms of which A and the character yj)(A) are given by

a= [ 0a] = s ey @) sl [T ) 29

i,

We now focus our attention on three intimately related models which capture the

transition from flat to random graphs.

I Va(MA) = i L Tr[A%F] (M A)?F.

2k
k=1
1
I1. Va,(MA) = 1 (MA)*. (2.9)
=1
L Va(MAy) =) o Tr[A%*] (MAy)**
k=1

Here A, is defined to satisfy Tr[(A44)*] = Nép4 and A is as defined in (2.8). The first
model is self-dual, i.e. vertices and faces having the same coordination number have the
same weights. The second and third models are dual to each other (the lattice of one
corresponds to the dual lattice of the other) and are in turn related to model I by a simple
line map. That is, we place the diagonal of a square belonging to model III (or alternatively
a four-vertex belonging to II) onto each propagator of model I. Thus the vertices and face
centres of model I become the vertices of model III (or alternatively the faces of II). We

illustrate this in Fig. 3 below?.

1" We do not want to suggest that models with odd coordination numbers cannot be treated

with our methods.

2 Note that this line-map is only valid on the sphere. The % corrections of I and III will

thus be different. A careful analysis shows that the spherical free energy of model I is precisely
twice the free energy of models II and III (since there are two ways of choosing the diagonal of
a square in III, or alternatively two ways of splitting a four-vertex of model II). Note also that
this non-trivial correspondence is predicted from our formalism, since we indeed obtain the same

N = oo equations in all three cases.



Model 1.

.......... Model II.

.......................... Model III.

Fig. 3: Graphical relationship between models I, IT and III

From this line map one can see that the expectation values in models I and III are also

the same. More specifically

(LAY = (TRl A) 1o (210)

Notice, however, that they are not equivalent to <%Tr[(MA)k]>H in model II.
We can now return to the discussion of the large N limit and write the saddlepoint
equation for these three models. Looking for the stationary point in (2.4), one finds from

[4], in all three cases, the following equation, valid on an interval [b,a] with 0 < b <1 < a:

a hl
2F(h)—|—][ ant PPy (2.11)
; h— 1

The solution requires, evidently, the knowledge of the large N limit of the variation of the

characters in eq.(2.8):
0 X{E}(a)
F(hi)=2 1 2
(he) one T A(he)

The determination of F(h) is the subject of the next section. Let us also recall here the
definition of the resolvent H(h):

(2.12)

H(h) = /0 dh’ % (2.13)

In [4] we demonstrated, via a simple functional inversion, how to relate the results of the

weight formalism to the resolvent W(P) = ({Trs257) of the matrix model (2.1). In

the model investigated in this paper, however, it is more natural to study the correlators

<%Tr((MA)2q)> . The results of the following section will provide a simple way to calculate

such moments.



3. Large N limit of the character

In the saddle point equation (2.11) we introduced the function F(h) defined in eq.
(2.12) as the derivative of the logarithm of a character. This function F(h) depends upon
the moments of the matrix A, i.e. it contains all the information on the weights that one
assigns to the faces of our discrete surfaces. In order to proceed with the solution of the
saddle point equation, one would like to take the large N limit of (2.12) and express F'(h)
in terms of H(h) (which specifies the Young tableau) and the set of moments ¢, of the
matrix A (the weights assigned to the faces).

In [4] a contour integral formula relating H(h), F(h) and the set of moments ¢, was
derived. We recall here a single essential step of the derivation, which we will make use of
shortly. We observed that

N2,
X{E} “ Te e
Trla?] = Z 2 where h{ = b + 2¢6; 1, (3.1)
k=1 X{%}(a)
and the matrix a is the % X % matrix introduced in (2.8). For notational simplicity we

omit an index k on h. In the large N limit (3.1) was then reduced to a simple contour
integral

1 dh 2
o1 CHIHFM)  here  ty, — —Telad]. 3.2
2q q% 2m,e where 13, N r[a?] (3.2)

Note that the definition of F(h) (2.12) differs from that in the derivation in [4] since we
are now restricting our attention to the case where only the even moments of the matrix
A are non-zero®.

As it stands, formula (3.2) is of little direct use. It can however be dramatically

simplified as we sketch out below. We introduce a function G(h) defined as
G(h) = HPWFER) (3.3)

in terms of which (3.2) becomes

toy = 3% I ny. (3.4)

q 27

3 Indeed, it might be asked why we do not directly use formula (3.5) derived in section 3. of

[4]. There, the contour integration relation was derived for the general case where both even and

odd moments are non-zero. However, in the special case where we then set all odd moments to

H(h).

zero, e'®) contains a cut overlapping with the cut of e In this case defining the contour

H(R)

encircling the cut of e is ambiguous. We have therefore rederived the result for the reduced

case of only even non-zero moments. The same note of caution applies to formula (3.8) of [4].
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Changing integration variables from % to G we arrive at

dG
tog = hMG) G 3.5
0= o G) G, (35)
where h(G) is the inverse of the equation for G(h) given in (3.3), and the contour in the
complex G plane encircles the origin. We now assume that there are only a finite number

of non-zero couplings ¢,. We obtain immediately the solution:

Q
h—1=)Y Z—Z + (G). (3.6)

Here ¢(G) is an as yet unknown function, analytic in the vicinity of the origin, with
(0) = 0. It is trivial to see that this satisfies (3.5). Note that, strictly speaking, we can
not solve equation (3.5) for ¢ = 0 since (3.4) is not defined there. The 1 on the Lh.s. of
(3.6) comes from the normalization of the density p(h) (See appendix A).

The unknown function ¥(G) is not fixed by (3.4) and depends on the specific model
being studied. We now give a very simple physical interpretation to this function. Let us
return to the Schur polynomial definition of the character (2.7) . Differentiating eq. (2.6)

with respect to 6; we see that

N
9 p) = Pooy6) with 6, = ty. (3.7)
q

N/2 \ .

2q a X{E}(a) ~

=4 1 — 2 h hE = RS — 2¢6; 1. :
¥ gy (X (0) = 30 T where = 0 - 200 (3.8)

From (2.1), (2.4) and (2.8), we see that the left hand side of this equation is equivalent to
differentiating the logarithm of the original matrix integral (2.1) with respect to t3,. In
terms of the dual to this matrix integral (in which the weights ¢5, assigned to the faces are
now the weights of the vertices) this is equivalent to differentiating the coupling constants
of the dual potential. So, denoting the dual matrix by M, the left hand side of eq. (3.8) is
equivalent to the expectation value (Tr(MB)??). Now, comparing the right hand side of
(3.8) to equations (3.1) and (3.2), we see that we have the following relation in the large
N limit,

( THTB)) = f foG h@) G, (39)

8



G(h) being defined by (3.3). It is now simple to follow identical arguments to those used
to simplify (3.4) to (3.6) to arrive at

L=}

Q 0o
t 1
=3 L 3T (B GO, (3.10)

g=1 g=1

D

Given G(h), we have, after a functional inversion, the correlators of the dual model.

To find G(h) we have to connect eq. (3.10) with the saddle point equation (2.11).
From (2.13) we obtain

H(h)=In + H(h) with ﬁ(h):/a apr L) (3.11)

h—10 ho—h'’

where the first term on the right is the contribution from the flat part of the density, i.e. the
empty part of the Young tableau. The integral from b to a is the contribution from the
“excited” part of the density, i.e. the non-empty part of the Young tableau. Noting, from
the definition of G(h) (3.3), that In G(h) = H(h) + F(h), we replace the integral of (3.11)

by the contour integral

N di' In G(R')
Hh) = ¢ 5= 5

(3.12)

where the contour encircles the [b, a] part of the cut of H(h). The discontinuity across
this cut is precisely +imp(h). Note also that F(h) has — at least for some range of the
couplings — no cut on the interval [b, a]. If we now change the variables of integration from
h to G, as previously, and shrink the contour in the complex G plane catching poles on
the way (see appendix A), we arrive at the following simple relationship between equation
(3.6) and H(h):

1 Q
eHM = (-DEh [ Gan). (3.13)

tg ok
Some words of explanation are in order to clarify the meaning of this equation. Inverting
eq. (3.6) leads to a multi-sheeted function G(h). The general picture is illustrated in Fig.

4. One of the sheets is the physical sheet and has two cuts, one corresponding to e(%)

the other to ¢”®: we label this sheet G1(h). The sheets Go(h), ... ,Gg(h) are all the
sheets connected to G1(h) by the cut of ef'(M): there are exactly Q of these sheets, where

() is the maximum inverse power of G in (3.10).
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et of () other sheets H(h)

cut of e

Fig. 4: Analytic structure of G(h)

In appendix B several examples are presented to illustrate explicitly this general analytic
structure.

Equation (3.13) together with (3.10) contains sufficient information to find the loga-
rithmic derivative of the character. These two equations represent a well-defined Cauchy-
Riemann problem for F(h) which can be explicitly solved. We will present the solution

elsewhere.

4. Almost flat planar diagrams

We now have all the tools necessary to reduce our model of dually weighted graphs to
a well defined Cauchy-Riemann problem. In this section we will analyse the case in which
only positive curvature defects are allowed on the surface, arbitrary amounts of negative
curvature being introduced at a single point. This is done by studying the particular case
ty = t2042 + 14044, which generates the flat patches (see Fig. 1(a)) and the positive defects
(see Fig. 1(b)). The correlators (2.10) then correspond to the insertion of a single defect of
curvature (2 — k) m (see also Fig. 2). They will be extracted using eq.(3.10), after explicit
calculation of the function h(G).

From the analysis of the large N limit of the character in the previous section, we
know that the product in (3.13) contains only two sheets G(h) (see Fig. 4). We label the
physical sheet G1(h) and the sheet connected to it by the cut of ef'(®), Gy(h). Taking the
logarithm of equation (3.13), we summarize the information extracted from the large N

limit of the character by

Fu(h) + Fo(h) + H(h) = —In(— "), (4.1)
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where InG;(h) = Fi(h) + H(h). The two sheets G1(h) and Gz(h) are glued together by
the square root cut coming from F(h). The combination Fy(h)+ F3(h), evaluated on the
cut of F(h), is twice the constant part of F(h) on the cut (the discontinuous part of F(h)
is of opposite sign on Fy(h) and Fy(h) and is therefore canceled). We thus have the two

equations

2F(h) + H(h) = - 1n(_£) "

2F(h) 4+ H(h) =—1nh,
the first coming from the large N limit of the character (3.13) and the second being
the saddlepoint equation (2.11). These two equations tell us about the behaviour of the
function 2F(h) 4+ H(h) on the cuts of F(h) and H(h) respectively. We have introduced
the notation F'(h) to denote the real part on the cut of F(h), and similarly for H(h). The
principal part integral in (2.11) is thus denoted in (4.2) by H(h).

Our object now is to reconstruct the analytic function 2F(h)+ H(h) from its behaviour
on its cuts. To do this we have to understand the complete structure of cuts. First we
notice from (3.6) that G(h) is non zero everywhere in the complex h plane except at infinity.
The combination F(h)+ H(h) thus has no logarithmic cut point except for the one which
starts from h = b. This corresponds to the end of the flat part of the density p(h). We
introduce two functions F(h) and H(h) defined by

F(h)=F(h)—Inh and H(h)= H(h)+In — (4.3)
in terms of which (4.2) becomes
2F(h) + H(h) =In(—ty(h — b)) 4)
2F(h) + H(h) =In(h — b). '

These two equations define the behaviour of QF(h) + I;T(h) on all of its cuts. By standard
methods we now generate the full analytic function QF(h) + ﬁ(h) We introduce three cut
points, a, b and ¢ whose values are fixed by boundary conditions (the points a and b define
the cut of H(h) and ¢ defines the starting point of the cut of F(k) which goes from ¢ to

—o0) and generate the full analytic function by performing the contour integral

2F(h) + H(h) = /(h = c)(h = b)(h — a) [fc % (h — SN(inESc)_(j)— b)(s - a)

_I_f ds In(—t4(s — b))

p 270 (h—s5)\/(s — )5 = 0)(s —a) |
(4.5)
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The contours Cy and Cp are illustrated in Fig. 5(a). The slanted zigzag line corresponds
to the cut of In(h — b). Expanding the contours, catching poles on the way and using the

fact that logarithmic cuts have a discontinuity of +i7, we arrive at

ds 1
=5) /(s = c)(s = b)(s —a)

ty b
2F(h) + H(h) =1In — + V(h—e)(h =b)(h —a) [/ T

* ds —lInt,
o (=) Vo= — D)

Fig. 5(b) clarifies the sign convention for \/(h — ¢)(h — b)(h — a) on the real axis above
and below the cuts. Note that, for the cuts of 1/y/(h — ¢)(h — b)(h — a) the signs on the
cuts are inverted compared to Fig. 5(b), i.e. +i <> —i. The integrals in (4.6) are defined

to be along the upper side.

P —ve BZLE e
—1 +1
(a) Contours for (4.5) (b) Sign convention for \/(h —c)(h — b)(h — a)

Fig. 5: Contours and sign conventions for (4.5) and (4.6)

To fix the constants a, b and ¢, we expand (4.6) for large h and compare the resulting

power series expansion to that obtained from inverting (3.6):

21 1 % 1
2F(h)+H(h):1nﬁ+ﬁ\/—g + O(m

The terms of O<th) depend on the as yet unknown function ¢(G). Expanding (4.6) for

). (4.7)

large h and comparing to (4.7) we find the two boundary conditions

' t
ty =¢q= e_”% and \/—% = %va -G (4-8)

with K and K’ complete elliptic integrals of the first kind, defined in terms of their re-
spective moduli k& and &' = /1 — k? through

a—2>b

a — ¢

k=

(4.9)

12



The first condition fixes k and hence the ratio of the distances separating the cut points,
, 1.e. the scale. The condition needed to fix the
position of the cut points along the real axis is provided by the condition that the density

and the second condition fixes a — ¢

must be normalized to one.

We now perform the integrals in (4.6) and, after using the first boundary condition

4
)

T la —h

where sn™!(z, k) is the inverse Jacobi elliptic function. Using the saddle point equation
2F(h)+ H(h) = —Inh and the fact that the resolvent for the Young tableau can be written
as H(h) = H(h) Finp(h), we can immediately write down the expression for the density

p(h) = %sn—l(,/%,k). (4.11)

The Jacobi elliptic function sn(z, k) is a generalisation of sin(z) with quarter period

and an identity between elliptic functions*, we obtain

of Young tableau boxes as

K. In fact, in the limit ¥ — 0, which corresponds to 4 — 0, the expression for the density
becomes precisely (2/7)sin™'(\/(a — h)/(a — b)).
Integrating p(h) from b to a and equating the answer to 1 — b to ensure that the

density is normalized to 1 (the flat portion from 0 to b gives a contribution b), gives the
final boundary condition
t2
=14+ —2(K*-EK 4.12
0=1+ 2 ) (412
where E is the complete elliptic integral of the second kind.
From the expression for the density we now generate the full Young tableau resolvent,

H(h), in the standard way and obtain following expression:

h C o ph)
H(h) =—— dh'

(h) h—b + /b h—n'

T —1 a—h

~ _ 7 04| 5570 —
zlnh—gsn_l a —|—21n( <2[ 1;4 )

K a=b ¢!/ [(a—e)a =) " 6:(0)
Using the above expression for H(h), the eq. (4.10) for 2F(h) + H(h) and the quasi-
(h),

1 T a—h iK'
h)=——8 -1 4.14
Glh) =—-45 4<2KSH v TR > (4.14)

(4.13)

periodicity of theta functions, we can write the expression for G(h

4 For this and many other relations between Jacobi’s elliptic functions and theta functions

useful for performing the calculations of this section see e.g. [8],[9].
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and its inverse

3/2 16, [0, (~GD)] 12
q 1%
h=a-— 4.15
REE { 6.(0) } ’ (4.15)
where the constant D is given by
e '

7rq5/4 - 2q5/4 )

To simplify (4.15) we have used the definition of the Jacobi elliptic function in terms of
theta functions. In view of eq.(3.10), we see that we have now explicitly calculated the
generating function for the correlators for models I and III.

We will now expand eq.(4.15) and read off the correlators as the coefficients of the
positive powers of G. Notice that (4.15) is a multivalued function since the function 6,4(z)
is periodic as z is varied in the real direction and quasiperiodic in the imaginary direction.
We must thus choose the correct zero of the 6,(z) function about which to expand. The
physical sheet corresponds to expanding about the zero z = % Using the definition of
the Jacobi elliptic function sn(u) in terms of theta functions and shifting the arguments of

the theta functions using their quasi-periodicity, we rewrite (4.15) as the pair of equations

¢ /02N . tG L 0i(2)
h=a+ E(e 94(0)> with z the solution of 2—q = e 9,1(0)-

(4.17)

Expanding this for small G we find that the first three terms give (as expected from (3.10))
h = % + %" + 1+ O(G). Expanding three orders further, permits us (using (3.10)) to read

off the first three moments of model III (which are also the moments of model I):

3
(5 T IOLA] bios =550+ £)
4
(5 T OLAD!] bias =2 (51 + ) + 365 — 4afa + o) (4.18)
5
{ % Tr [(MA4)°] Yirz :%@1 +90fs —30f7 +40f2f3 + 105 — 104 — f5>

where for convenience we have defined

f2 :Z{fggi = %(K2 — EK)
1, :9951:'((00)) _ 16752 (3 — 2k*)K? — GEK + 3E?)
h=00 2t o)k _sER) o
0 (0) 2
1
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and have then expressed these derivatives as combinations of the complete elliptic integrals
K, FE and their modulus k.

We can now give a simple physical interpretation of these moments. The first two
are directly related to the free energy F(t3,t4). The latter is defined as the sum over all
possible surfaces with the topology of a sphere that can be constructed out of flat space
and positive curvature defects. It is impossible to put a flat surface onto the sphere, so
positive curvature defects are needed to close the surface. Since the defects in this model
have a deficit angle of 7 it takes precisely four of them to close the surface into a sphere.
The surfaces are in the form of a cylinder with both ends flattened. The four t5 defects sit

at the corners. Below we illustrate the free energy for model III:

(4.20)

Note that the flattened ends can have an angle of twist between them. The four t5 defects
correspond to vertices %2 Tr [(MA4)?], and all other vertices (with four legs) correspond
to the vertex % Tr [(MA4)*]. We see that the first two moments can be written in terms

of the free energy F(tz,t4) as

1 0
(& T (MAD ] )iir =25-F(t2, 1)
to
) 3 (4.21)
< N Tr [(MA4)4] >[[[ :4a—t4f(t2,t4)
We thus read off the free energy
t4
Flta,ts) = —1922q2 (1+ f3). (4.22)

Using (4.19), the identity a% = 21‘:2’“;/2 %, along with standard identies for differentiating
complete elliptic integrals with respect to the modulus k&, it is trivial to verify that the
moment ( % Tr [(MA4)*] )rrr given in (4.18) is indeed four times the derivative of the

free energy with respect to t4 = ¢.

Using the definition of f3 in terms of derivatives of the first theta function, 6;(z),
along with the standard definition of the theta function as an infinite product, allows us

to write the free energy as

Pt = g [TT0 -] = %

n=1
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In this form we recognize the argument of the logarithm to be the partition function for
the torus. The derivative operator acts to mark a single point. We have thus found, as
illustrated in equation (4.23), that the free energy can be written as the free energy for a
marked torus. Below we illustrate the connection between a marked torus and the flattened

cylinder diagrammatically.

Fig. 6 Diagrammatic connection between marked torus and flattened cylinder.

Starting from the mark on the twisted torus, flatten the torus across its width (this defines
a point on the opposite side), then cut along the flattening and open out the crimped torus
into a cylinder with flattened ends. The two points at either end of the flattening on the
torus become the four 5 defects of the flattened cylinder.

Higher order moments correspond to inserting a single negative curvature defect. The
lowest order defect of this type is the insertion of negative curvature of deficit angle —x
introduced by the vertex Tr[(MA4)°%] (see Fig. 1(c) and eq. (4.18)).

As a final check of our solution, we expand ( % Tr [(MA4)®] )rrr in powers of ¢

(this can be done directly from the expression for the moment in terms of theta functions

(4.18)):

1
<N Tr [(MA)] Yrrr =15 (9¢% + 27¢* + 81¢° + ...). (4.24)

It is easy to verify that this correctly counts the number of diagrams.

Further moments can be calculated by expanding (4.17) to higher order. They can
always be written as sums of products of complete elliptic integrals.

We now look for a continuum limit in which the size of graphs tends to infinity. One
can see that the critical point, at which the size of the graphs diverges, is at ¢ = 1. Note,
however, that (since the critical ¢ is 1), in stark contrast to two-dimensional quantum
gravity [5] [6], the leading behaviour for the growth of diagrams is not exponential but
merely power-like. To extract the power, notice that the product [] _ (1 —¢*") in (4.23)

—1/12

can be written in terms of the n function as ¢ n(ir) where ¢ = e~™". Making use of the

16



modular invariance of the n(7) function under the the modular transformation 7 — 1/7,

we extract

s 1
ty,l—p) ~ —2— 4.25
where we have defined a “continuum cosmological constant” p through ¢ = 1 — p 1.e.

p = 77 + O(r%). We thus see, changing from fixed cosmological constant to fixed area
by Laplace transform, that the number of graphs grows as a linear power of the area.
Employing the conventions of quantum gravity [5] [6], this would formally correspond to
a “string susceptibility” vs¢ = 4.

We can easily understand this result by performing the calculation directly in the con-
tinuum limit. We thus integrate over cylinders of all possible lengths ¢ and circumferences
s weighted with a factor s (corresponding to the modular twist between the two flattened
ends) and a delta function for the area so as to count the number of surfaces of a given

area A. We thus perform the following integral:

.7:N/ dtdssé(ts—A):A/
0 0

We see immediately a linear dependence on the area A, but also a divergently large con-

oo
f—zt. (4.26)
tribution coming from small . The most important contribution comes from the cylinders
which are infinitely short and thus have the maximum amount of entropy coming from the
modular twist.
It is interesting now to investigate the behaviour of the correlators in the large area
(¢ — 1) limit. Quite generally, for matrix models the correlators correspond to surfaces
with a boundary of length proportional to the power of the correlator, and one seeks a
continuum scaling limit for very long boundaries. The correlators ( + Tr [(MA4)*"] ) in
the present model, however, introduce point-like negative curvature and we cannot look for
a scaling limit involving long boundaries®. Nevertheless we can find the limiting behaviour
of these negative curvature insertions in the limit of large area.
Using the modular transformation 7 — 1/7 (with ¢ = e™™") for the formula (4.15), we
can also extract a scaling limit for the generating function for the moments. Specifically,

for the theta functions 6;(z) and 64(z), we find that the dominant contributions are

04(2) :Le_%y22q'1/4 (coshy + O(q'2)>

T

1 .

2 (4.27)
61(2) :We_?y 2¢'1/4 (sinhy + O(q'2)>,

> In principle, it is possible to study boundaries of arbitrary length by taking correlators of
( & Tr [(MAZ)*] ), which correspond to a boundary in the form of the end of a cylinder.

Technically, however, we do not at present have the means to calculate such quantities.
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R
P

where y = z/7 and ¢’ = ¢~ 7. Holding y fixed as a parameter of order 1, we take the limit

as 7 — 0 (corresponding to ¢ — 1) and work to the first two orders in 7. Remembering

that ¢ =1 — w7 + ..., the constants D and a to the first two orders in 7 are given by
L i 5 o 1 1 w1
We can now define a natural rescaled parameter + = % and perform the inversion of the

theta function to the first two orders in 7 to find the generating function for the correlators.

The lowest order term gives the contribution &z in (3.10) and also a part that cancels with

a — 1. The next order gives the contribution %2 along with the generating function which

we read off as:

(. @)

Sy T (A7 6"

n=1

1y sin"ta —x (sim_1 x)? — 2?
- 2

t
with = % (4.29)

T

T 22 2rx

This has a simple square root singularity at the point # = 1. The series expansions for
sin”!z and (sin”'(2))? then give us the dominant contribution to the correlators in the
large area limit:

7r2"(n!)2

1 n Coty ™ Con = 7@t rd D)
( N Tr [(MA4)*"] ) ~ : with 2 +71r)2"5'2—(|—21r3—|—2)!

CZn—i—l == 25T ((nF+1)N2(2n+3)°

e (4.30)

where we have again introduced the parameter u defined by ¢ = 1—pie. p =774+ O(7?).
The number of surfaces of fixed area A for a correlator ( & Tr [(MA4)*"] ) is thus seen
to be of the order of A", with entropy coming from modular twists analogous to those for
the free energy. The rather curious structure of the considered surfaces is thus evident -
they consist of cylindrical “fingers” growing out from the negative curvature defect (see
Fig. 2(b)). The square root singularity at @ = 1 means that there is a tree-like growth of
the number of ways to attach the fingers to their base at the negative defect. As in the
case of the free energy, modular integrations cause a filamentary structure of very long

cylinders to dominate in the large area limit.

5. The onset of quantum gravity: Adding negative curvature defects

The introduction of arbitrary numbers of negative defects, specifically ¢4, alongside
the components t4, tj and positive curvature defects, f2, gives us a model in which we
can tune away the curvature fluctuations of two-dimensional quantum gravity. The large

N limit of the character in section 3 allows us to understand the analytic structure of
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the solution and thus reduce the model to a well defined Cauchy-Riemann problem. The
function G(h) now consists of two sheets below the physical sheet (see Fig. 4). An extra
sheet which we label G3(h) is now attached to the sheet G3(h) of the previous section by

a square root cut. We thus have the following two equations

2F(h)+ H(h) =—1nh
Lo (5.1)
Fi(h) 4+ Fy(h) + F3(h) 4+ 2H(h) = — 1n(t_)

6

The first is the saddle point equation (2.11). The second comes from the logarithm of
eq. (3.13), where we define, as before, F;(h) by InG;(h) = H(h) + F;(h). Along with the
boundary conditions provided by the coefficients of the negative powers of G in (3.10), the

system of equations (5.1) completely determines the solution to this problem.

6. Conclusions and outlook

In the present work we have demonstrated that our technique of character expansions
for large N matrix models may be successfully applied to the study of a novel, up to now
inaccessible phase of almost regular planar diagrams. This required determining — quite
generally — the large N limit of Weyl characters through the functional equation (3.13).
Specializing to almost flat graphs, we have then found the exact generating function (3.10),
(4.15) of planar square lattices endowed with a single negative curvature insertion balanced
by a number of positive defects.

We feel that our observations could trigger the investigation of many new phenomena
in two-dimensional physics and the combinatorial theory of planar graphs. However, most
urgent is the understanding of the crossover phenomenon from the phase of almost flat two-
dimensional space to the phase of two-dimensional quantum gravity. It requires the careful
analysis of the well-posed Cauchy-Riemann problem of the last section. This investigation
is pending. Aside its obvious mathematical interest, the solution of this problem could
help to solve the hitherto inaccessible problem of R? quantum gravity in two dimensions.

In addition to the even lattices considered in this paper, our methods allow the study
of the “melting” of more general regular, or almost regular, lattices; e.g. triangular lattices.

It is well known that there are many intriguing relations between integrable two-
dimensional models on regular lattices and dynamical planar random lattices. It is tempt-
ing to try to unify the two classes of models, a project one might term GUT,. Our work
should be considered a first attempt into this direction, even though it must be noted that
further methods will have to be developed in order to successfully treat matter coupled to

dually weighted graphs.
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Some of the results presented above could be interpreted as insights into the structure
of the group SU(oo) (see section 3 on the large N limit of Weyl characters.). Further
insights into this direction might prove very useful for the treatment of higher dimensional

matrix models, e.g. the principal chiral field, discrete string theories in physical dimensions

and, one hopes, QCD.
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Appendix A. Derivation of the inversion formula

We start by proving that the constant coefficient in (3.6) is equal to 1 (the normal-

ization of the density). To correctly normalize the density, p(h), we have to ensure that

1-b= / dhp(h). (A.1)

Using the fact that In G(h) = H(h)+ F(h), we replace the integral by the contour integral

dh
1-b= f — InG(h), (A.2)
cy 2T
with the contour C}, encircling the [b, a] part of the cut of H(h), as shown in Fig. 7. The
zig-zag line corresponds to the logarithmic cut starting at h = b. Note that this is not a
closed contour since at b there is a discontinuity across the cut of +iw. Evaluating G(h)
around this contour we see that its argument goes from +i7 at h = b (below the cut) all
the way around to —im at h = b (above the cut). We now change integration variables
from h to G, with (in light of the comment above) the contour Cg in the complex G plane
encircling the origin (see Fig. 7):
dG dG ;. 0 h(G)
1—b=- —h(G)InG(h) = — — | =—=(hM(G)InG) — —— A3

fogremem =~ § LmEme - S ()
where h(G) is defined through (3.6). The contour starts and finishes on either side of the
cut generated by In G illustrated in Fig.7 by a zig-zag line. The total derivative term picks
up the discontinuity across the cut giving —b. The final term, which picks up the constant

coefficient of h(G), is thus equal to 1.
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Fig. 7: Definition of contours C in the complex h plane and
C¢ and Cy in the complex G plane.

We now complete the derivation of (3.13). As discussed in section 3. we start by
generating H(h) (related to the full resolvent by H(h) = H(h)+1n ﬁ ) from the contour

integral
- dhy1 h
H(h) = f dhn InG(h) (A.4)
c, 2m h— Dy
Changing integration variables from % to G, as above, this can be written as
- dG r(G)
H(h)=— —InG——— A5
) fCG owi b — h(G)’ (4.5)

where h(G) is defined through (3.6) and 2'(G) is the derivative with respect to G.

We now simplify this contour integral by evaluating it for large h. Knowing the
solution in any neighbourhood of & means that, by analytic continuation, we know it
everywhere. For large enough h, we see from (3.6) that the contour in (A.5) will encircle
precisely @) zeros of h(G), the zeros corresponding to the inverse powers of G. If we shrink
the contour in (A.5) so that the contour hugs either side of the cut (see Fig. 7, contour
Cy) we pick up these @) poles:

: < G h(G)

H(h) = ;m Gy (h) — fc %mam. (A.6)
The remaining contour integral is relatively easy to evaluate provided careful attention
is paid to the contribution coming from encircling the origin. The net result is that the
contour Cy contributes In((—1)?7't,g) from encircling the origin and In(h — b) from the
discontinuity across the end points of the contour. Putting these results together and
making use of the relationship between H (%) and H(h) we arrive at (3.13).

Appendix B. Analytic structure of G(h)

As is discussed in Appendix A, the sheets G4(h) in the product of (3.13) are the
physical sheet and all the sheets attached to the physical sheet by the cut of e/® . To

clarify this we provide some simple examples.
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B.1. Example 1. Vg(MA) =0

In this simplest case it is immediate from eq.(3.10) (since B = 0 and thus ¢(G) = 0)
that

‘ K

(B.1)

Q t
h=1=)Y"
qg=1

e

D

This is a polynomial equation of degree (). G(h) will thus be a multivalued analytic function
with () sheets. The different sheets are connected by square root cuts, represented in Fig.

8 below by the vertical walls.

pole at h =1

physical sheet

Fig. 8: Analytic structure of G(h) for Vg(MA) =0

Note that cube roots and higher order roots are just special cases of the above structure.
For example, a cube root in the diagram above is generated when the two square root cut
points touch.

The G,4(h) that enter the product in (3.13) are precisely all the solutions, i.e. all the
sheets. It then follows that

h
H(w) M B.2
‘ h—1 (B.-2)

which corresponds to a completely flat density p(h) = 1 with support [0, 1].
It is seen from equation (B.1) that at h = 1, G(h) becomes infinite on one of its sheets,
so there is a pole at h = 1 on what we call the physical sheet. For ¢(G) non zero, the

positive powers of G “soften” this pole and stretch it into a cut. The cut corresponds to

exciting boxes in the Young tableau. The next example illustrates this.
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B.2. Example 2. Vg(MA)=MA

Here B = A;. It follows from eq.(3.10) and a simple diagrammatic inspection that

‘ K

+ G (B.3)

D

q

Q t
h—1=)
qg=1

This increases the degree of the polynomial by one from the previous example, introducing
an extra sheet. The pole that was at h = 1 has now opened into a cut (the cut of eH(h))

connected to this extra sheet (see Fig. 9).

sheet of he_H(h)

cut of eH )

Fig. 9: Analytic structure of G(h) for Vg(MA) = MA

The G,4(h) that go into the product of eq.(3.13) are the physical sheet and all the
sheets below. We thus obtain ,
H(h) _ M B.4
= (B.4)
where G7(h) is the topmost sheet.
B.3. Ezample 3. Vg(MA) = (MA)?

By inspecting the moments of the dual model, we obtain
< 1
h—1= t <@+Gq>' (B.5)
qg=1

The sheet structure is still polynomial, but now, due to the symmetry G — G~ of equation

(B.5), the top sheets are the mirror image inverses of the bottom sheets.
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G

Fig. 10: Analytic structure of G(h) for Vg(MA) = (M A)?

Again, what was a pole at h=1 has opened into a cut connecting the physical sheet
to the mirror image inverses of the bottom sheets.

The above three examples clarify the meaning of equations (3.10) and (3.13). A simple
functional inversion developed in [4] allows us to relate H(h) to the resolvent, (Tr [ﬁ] )
of the matrix model. To verify the methods of section 3, we have directly calculated the

matrix resolvent of these models using loop equations and simple diagrammatic arguments.
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