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Abstract

Analytic Bethe ansatz is executed for a wide class of �nite dimensional Uq(B
(1)
r ) mod-

ules. They are labeled by skew-Young diagrams which, in general, contain a fragment

corresponding to the spin representation. For the transfer matrix spectra of the relevant

vertex models, we establish a number of formulae, which are Uq(B
(1)
r ) analogues of the

classical ones due to Jacobi-Trudi and Giambelli on Schur functions. They yield a full so-
lution to the previously proposed functional relation (T -system), which is a Toda equation
on discrete space-time.
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1. Introduction

In [KS1] analytic Bethe ansatz was worked out for all the fundamental representations
of the Yangians Y (Xr) of classical types Xr = Br; Cr and Dr. Namely, for any a 2

f1; 2; : : : ; rg, a rational function �
(a)

1 (u) of the spectral parameter u has been constructed,

which should describe the spectrum of the transfer matrices of the corresponding solvable
vertex models. It is a Yangian analogue of the character of the auxiliary space and satis�es a

couple of conditions required for it. In particular �
(a)

1 (u) has been shown pole-free provided

that the Bethe ansatz equation (BAE) holds. These results are also valid for Uq(X
(1)
r ) case

after replacing the rational functions by their natural q-analogues. See [R,KS1] for general

accounts on the analytic Bethe ansatz.

In this paper we extend such analyses beyond the fundamental representations for

Xr = Br. We introduce skew-Young diagrams � � � [M] and a set of tableaux on them

obeying a certain semi-standard like conditions. Then we construct the corresponding
function T���(u) in terms of a sum over such tableaux via a certain rule. The T���(u)
is to be regarded as the spectrum of the commuting transfer matrix with auxiliary space
labeled by � � �. It has a dressed vacuum form (DVF) in the analytic Bethe ansatz. We
shall rewrite T���(u) in several determinantal forms, where the matrix elements are only
those T�(u) for the usual Young diagrams with shapes � = (1a); (m) or (m+ 1; 1a). They

can be viewed as Uq(B
(1)
r ) analogues of the classical Jacobi-Trudi and Giambelli formulae

on Schur functions [M]. Pole-freeness of the T���(u) under BAE follows immediately from
these formulae and our previous proof for the case � = (1a) [KS1]. These results correspond
to the case where the auxiliary space is even with respect to the tensor degree of the spin
representation. We shall simply refer to such a case spin-even and spin-odd otherwise.
See the remark after (3.12) for a precise de�nition. We will also treat the spin-odd case
by using a modi�ed skew-Young diagrams and semi-standard like conditions on them.
Combining these results, we obtain a full solution in terms of the DVF to the transfer
matrix functional relation (T -system) proposed in [KNS]. This substantially achieves our
program raised in [KS1] for Br.

A natural question here is, what is the �nite dimensional auxiliary space labeled by

those skew-Young diagrams as a representation space of Uq(B
(1)
r ) or Y (Br)? We suppose

that it is an irreducible one in view that all the terms in T���(u) are coupled to make the
associated poles suprious under BAE. Moreover we specify, in the Yangian context, the

Drinfeld polynomial explicitly based on some empirical procedure. We shall also determine

how the irreducible Y (Br) module decomposes as a Br module through the embedding
Br ,! Y (Br) for the spin-even case.

The paper is organized as follows. In the next section we recall the results in [KS1]

on Uq(B
(1)
r ). We then introduce the basic functions T a(u) and Tm(u) for all a;m 2 Z�0.

These are analogues of a-th anti-symmetric and m-th symmetric fusion transfer matrices

(or its eigenvalues), respectively. For 1 � a � r�1, we have T a(u) = �
(a)

1 (u) = T(1a)(u) in

the above. The introduction of T a(u) with a � r is a key in this paper and we point out
a new functional relation (2.14) among them. In section 3 and 4, we treat the spin-even

and odd cases, respectively. In terms of the DVFs in these sections, we give, in section
5, a full solution to the T -system [KNS] with an outline of the proof. Until this point we
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will exclusively consider the situation where the quantum space is formally trivial. This

means that the vacuum part in DVF is always 1 as well as the \left hand side" of the
BAE. Section 6 includes a discussion on how to recover the vacuum part for the non-trivial

quantum spaces. A prototype of them is a tensor product of irreducible �nite dimensional

modules such as (6.1). The problem is essentially equivalent to specifying the left hand side

of the BAE (cf section 2.4 in [KS1]) for such a general quantum space. For the Yangian
Y (Xr), we propose quite generally for any Xr that it is just given by a ratio of the relevant

Drinfeld polynomials.y See (6.2). Then we shall brie
y indicate a way to recover the

vacuum parts.

Many formulae in section 3 are formally valid also for Uq(A
(1)
r ) under a suitable con-

dition. In particular � = � case of (3.5) has appeared in [BR], for which a representation

theoretical background is available in [C].

We hope to report similar results for Cr and Dr cases in near future.

2. Review of the results on fundamental representations

Here we shall recall the Br case of the results in [KS1]. Let f�1; : : : ; �rg and f�1; : : : ;�rg
be the set of the simple roots and fundamental weights of Br (r � 2). Our normalization
is t1 = � � � = tr�1 =

1
2
tr = 1 for ta = 2=(�aj�a). Then (�aj�b) =

2
ta
�a;b � �a;b�1 � �a;b+1

and (�aj�b) = �ab=ta. The Uq(B
(1)
r ) BAE for the trivial quantum space reads [RW]

�1 =

rY
b=1

Qb(v
(a)

k + (�aj�b))

Qb(v
(a)

k � (�aj�b))
for 1 � a � r; 1 � k � Na; (2:1)

Qa(u) =

NaY
j=1

[u� v
(a)

j ]; (2:2)

where [u] = (qu � q�u)=(q � q�1) and N1; : : : ;Nr are some positive integers. Throughout
the paper we assume that q is generic. The LHS of (2.1) is just -1 as opposed to the
non-trivial quantum space case (6.2), which will be discussed in section 6. Until then we
shall focus on the dress parts in the analytic Bethe ansatz.

Following [KS1] we introduce the set J and the order � in it as

J = f1; 2; : : : ; r; 0; �r; : : : ; �1g; (2:3a)

1 � 2 � � � � ;� r � 0 � �r � � � � ;� �1: (2:3b)

For a 2 J , de�ne the function z(a;u) by

z(a;u) =
Qa�1(u+ a+ 1)Qa(u+ a� 2)

Qa�1(u+ a� 1)Qa(u+ a)
1 � a � r;

z(0;u) =
Qr(u+ r � 2)Qr(u+ r + 1)

Qr(u+ r)Qr(u+ r � 1)
;

z(�a;u) =
Qa�1(u+ 2r � a � 2)Qa(u+ 2r � a+ 1)

Qa�1(u+ 2r � a)Qa(u+ 2r � a� 1)
1 � a � r;

(2:4)

y We thank E.K. Sklyanin and V.O. Tarasov for a discussion on this point.
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where we have set Q0(u) = 1. z(a; u) is the dress part of the box a in (4.4a) of [KS1],

which corresponds to a weight in the vector representation. For (�1; : : : ; �r) 2 f�g
r, de�ne

the function sp(�1; : : : ; �r;u) by the following recursion relation with respect to r and the

initial condition r = 2.

sp(+;+; �3; : : : ; �r;u) = �Qsp(+; �3; : : : ; �r;u);

sp(+;�; �3; : : : ; �r;u) =
Q1(u+ r � 5

2
)

Q1(u+ r � 1
2
)
�Qsp(�; �3; : : : ; �r;u);

sp(�;+; �3; : : : ; �r;u) =
Q1(u+ r + 3

2
)

Q1(u+ r � 1
2
)
�Qsp(+; �3; : : : ; �r;u+ 2);

sp(�;�; �3; : : : ; �r;u) = �Qsp(�; �3; : : : ; �r;u+ 2):

(2:5a)

sp(+;+;u) =
Q2(u�

1
2
)

Q2(u+
1
2
)
;

sp(+;�;u) =
Q1(u�

1
2
)Q2(u+

3
2
)

Q1(u+
3
2
)Q2(u+

1
2
)
;

sp(�;+;u) =
Q1(u+

7
2
)Q2(u+

3
2
)

Q1(u+
3
2
)Q2(u+

5
2
)
;

sp(�;�;u) =
Q2(u+

7
2
)

Q2(u+
5
2
)
:

(2:5b)

In (2.5a) �Q is the operation Qa ! Qa+1, namely,

�QF (Q1(u+ x11); Q1(u+ x12); : : : ; Q2(u+ x21); Q2(u+ x22); : : :)

= F (Q2(u+ x11); Q2(u+ x12); : : : ; Q3(u+ x21); Q3(u+ x22); : : :)
(2:6)

for any function F . sp(�1; : : : ; �r;u) is the dress part of the box

rz }| {
�1; �2; � � � ; �r in (4.25,26)

of [KS1].

Now we introduce the meromorphic functions T a(u) and Tm(u) of u for any a;m 2 Z�0
by the following \non-commutative generating series"

(1 + z(�1;u)X) � � � (1 + z(�r;u)X)(1 � z(0;u)X)�1(1 + z(r;u)X) � � � (1 + z(1;u)X)

=

1X
a=0

T a(u+ a� 1)Xa; (2:7a)

(1� z(1;u)X)�1 � � � (1� z(r;u)X)�1(1 + z(0;u)X)(1 � z(�r;u)X)�1 � � � (1 � z(�1;u)X)�1

=

1X
m=0

Tm(u+m� 1)Xm; (2:7b)

where X is a di�erence operator with the commutation relation

XQa(u) = Qa(u+ 2)X for any 1 � a � r: (2:8)
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Thus Xz(a;u) = z(a;u+ 2)X for any a 2 J . We set T a(u) = Tm(u) = 0 for a;m < 0. An

immediate consequence of the above de�nition is

�ij =

NX
k=0

(�)i�kTi�k(u+ i+ k)T k�j(u+ k + j) (2:9a)

=

NX
k=0

(�)i�kTi�k(u� i� k)T k�j(u� k � j) (2:9b)

for any N � 0 and 0 � i; j � N . De�ne T
(a)

1 (u) for 1 � a � r by

T
(a)

1 (u) = T a(u) for 1 � a � r � 1;

T
(r)

1 (u) =
X

�1;:::;�r=�

sp(�1; : : : ; �r;u):
(2:10)

Then T
(a)

1 (u) coincides with the dress part of �
(a)

1 (u) in [KS1] for all 1 � a � r.

Theorem 2.1. T
(r)

1 (u); T a(u) and Tm(u)(8a;m 2 Z) are pole-free provided that the BAE
(2.1) holds.

For T
(r)

1 (u) and T a(u) with a � r�1, this was proved in [KS1] in the more general setting

including the vacuum parts. The other cases can be veri�ed quite similarly. T
(1)

1 (u) and

T
(r)

1 (u) was considered earlier [R].

The functions z(a;u) and sp(�1; : : : ; �r;u) are related as follows. Given two sequences
(�1; : : : ; �r) and (�1; : : : ; �r) 2 f�g

r, we de�ne i1 < � � � < ik; I1 < � � � < Ir�k (0 � k � r)
and j1 < : : : < jl; J1 < : : : < Jr�l (0 � l � r) by the following.

�i1 = � � � = �ik = +; �I1 = � � � = �Ir�k = �;

�j1 = � � � = �jl = �; �J1 = � � � = �Jr�l = +:
(2:11)

Then we have

Proposition 2.2. For any a 2 Z�0,

sp(�1; : : : ; �r;u� r + a+
1

2
)sp(�1; : : : ; �r;u+ r � a�

1

2
)

=

aY
n=1

z(bn;u+ a + 1� 2n) if k + l � a;
(2:12a)

where

bn =

(
in for 1 � n � k

0 for k < n � a� l

ja+1�n for a� l < n � a

: (2:12b)
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For any a 2 Z�2r�1,

sp(�1; : : : ; �r;u� r + a+
1

2
)sp(�1; : : : ; �r;u+ r � a�

1

2
)

=

2r�1�aY
n=1

z(b0n;u+ 2r � a � 2n) if k + l � a+ 1;

(2:13a)

where

b0n =

(
Jn for 1 � n � r � l

0 for r � l < n � r + k � 1� a

I2r�a�n for r + k � 1� a < n � 2r � 1� a

: (2:13b)

This enables the evaluation of the product sp(�1; : : : ; �r;u�r+a+
1
2
)sp(�1; : : : ; �r;u+

r � a � 1
2
) for any f�ig; f�ig and a 2 Z in terms of z (2.4). For 1 � a � r � 1, (2.12) is

theorem A.1 in [KS1]. It is straightforward to extend it to any a 2 Z�0. Eq. (2.13) can
be derived from (2.12) by replacing a by 2r � 1� a. Note in (2.12b) that b1 � � � � � bk �

bk+1 = � � � = ba�l = 0 � ba�l+1 � � � � � ba 2 J . A similar inequality holds also for b0n.
Comparing them with (2.7a) and (2.10) we get

Theorem 2.3.

T a(u) + T 2r�1�a(u) = T
(r)

1 (u� r + a+
1

2
)T

(r)

1 (u+ r � a �
1

2
) 8a 2 Z: (2:14)

This is invariant under the exchange a$ 2r�1�a. If a < 0 or a > 2r�1, there is in
fact only one term on the LHS. The new functional relation (2.14) will play an important
role in this paper. It is also valid after including the vacuum parts. See section 6.
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3. Spin-even case

Let � = (�1; �2; : : :), �1 � �2 � � � � � 0 be a Young diagram and �0 = (�01; �
0
2; : : :)

be its transpose. We let d� denote the length of the main diagonal of �. By a skew-

Young diagram we mean a pair of Young diagrams � � �. It is depicted by the region
corresponding to the subtraction �� �. See the Fig.3.1 for example.

Fig.3.1

For de�niteness, we assume that �0�1 = ��01 = 0. A Young diagram � is naturally

identi�ed with a skew-Young diagram � � �. By an admissible tableau b on a skew-Young

diagram � � � we mean an assignment of an element b(i; j) 2 J to the (i; j)-th box in
� � � under the following rule: (We locate (1; 1) at the top left corner of �, (i+ 1; j) and

(i; j + 1) to the below and the right of (i; j), respectively.)

b(i; j) � b(i; j + 1); b(i; j) � b(i + 1; j) with the exception that

b(i; j) = b(i; j + 1) = 0 is forbidden; b(i; j) = b(i + 1; j) = 0 is allowed:
(3:1)

Without the exception this coincides with the usual de�nition of the semi-standard Young
tableau. Denote by Atab(� � �) the set of admissible tableaux on � � �.

Given a skew-Young diagram � � �, we de�ne the function T���(u) as the following
sum over the admissible tableaux.

T���(u) =
X

b2Atab(���)

Y
(i;j)2(���)

z(b(i; j);u + �01 � �1 � 2i+ 2j): (3:2)

Comparing this with (2.7) we have

T a(u) = T(1a)(u) : single column of length a; (3:3a)

Tm(u) = T(m)(u) : single row of length m: (3:3b)

We also prepare a notation for the single hook,

Tk;l = T(l+1;1k)(u): (3:3c)

Our main result in this section is

Theorem 3.1.

T���(u) = det

0
BBBBBBBB@

0 � � � 0 R11 � � � R1d�

...
. . .

...
...

...

0 � � � 0 Rd�1 � � � Rd�d�

C11 � � � C1d� H11 � � � H1d�

...
...

...
. . .

...
Cd�1 � � � Cd�d� Hd�1 � � � Hd�d�

1
CCCCCCCCA
; (3:4a)

where
Rij = T�j��i+i�j(u+ �01 � �1 + �j + �i � i� j + 1);

Cij = �T�
0
i��

0
j�i+j(u+ �01 � �1 � �0i � �0j + i+ j � 1);

Hij = T�0
i
�i;�j�j(u+ �01 � �1 � �0i + �j + i� j):

(3:4b)
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Two particular cases corresponding to the formal choices �i = �i or �0i = �0i for

1 � i � d� = d� yield simpler formulae. In these cases, rede�ning �i; �
0
i; �i and �

0
i so that

�0�1 = ��0
1
= 0, we have

T���(u) = det1�i;j��1 (T
�0i��

0
j�i+j(u+ �01 � �1 � �0i � �0j + i+ j � 1)); (3:5a)

= det1�i;j��01 (T�j��i+i�j(u+ �01 � �1 + �j + �i � i� j + 1)): (3:5b)

Eq.(3.5a) can be veri�ed, for example, by induction on �1, i.e., by showing the same
recursive relation for the tableau sum (3.2) as an expansion of the determinant. Then

(3.5b) follows from (2.9). Theorem 3.1 is proved from these results by applying Sylvester's

theorem on determinants. From (3.5a) and Theorem 2.1 one has

Corollary. T���(u) is pole-free provided the BAE (2.1) holds.

The admissibility condition (3.1) leads to the above conclusion although it is by no
means obvious in the de�ning expression (3.2). Despite the exception in (3.1), our formulae
(3.4) and (3.5) formally coincide with the classical ones due to Giambelli and Jacobi-Trudi
on Schur functions [M] if one drops the u-dependence (or in the limit juj ! 1). If
�0i+1 � �0i > 2r for some i, Atab(� � �) = �. Correspondingly, one can show that the
determinant (3.5a) is vanishing using the fact that T a(u) factorizes for a � 2r due to
Theorem 2.3. Henceforth we assume that �0i+1 � �0i � 2r for 1 � i � �1. (We set
�0�1+1 = �1.)

The T���(u) (3.2) describes the spectrum of the transfer matrix whose auxiliary space
is labeled by the skew-Young diagram � � � and u. Denote the space by W���(u). We

suppose it is an irreducible �nite dimensional module over Y (Br) (or Uq(B
(1)
r ) in the

trigonometric case) in view that all the terms in (3.2) seem coupling to make the apparent
poles suprious under BAE. Now we shall specify the Drinfeld polynomial Pa(�) [D] that
characterizesW���(u) based on some empirical procedure. Our convention slightly di�ers
from the original one in Theorem 2 of [D] in such a way that

1 +

1X
k=0

dik�
�k�1 =

Pi(� +
1
ti
)

Pi(� �
1
ti
)
: (3:6)

For any b 2 Atab(� � �), the corresponding summand (3.2) has the form

rY
a=1

Qa(u+ xa1) � � �Qa(u+ xaia )

Qa(u+ ya1 ) � � �Qa(u+ yaia)
; (3:7)

where xaj ; y
a
j and ia are speci�ed from b. This summand carries the Br-weight

wt(b) =

rX
a=1

� ta
2

iaX
j=1

(yaj � xaj )
�
�a (3:8)

in the sense that limqu!1 (3.7) = q
�2(wt(b)j

P
r

a=1
Na�a). From Atab(� � �), take such b0

that wt(b0) is highest, which corresponds to the \top term" in section 2.4 of [KS1]. In our
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case, such b0 is unique and given as follows. Fill the left most column of � � � from the top

to the bottom by assigning the �rst �01 � �01 letters from the sequence 1; 2; : : : ; r; 0; 0; : : :.
Given the (i � 1)-th column, the i-th column is built from the top to the bottom by

taking the �rst �0i � �0i letters from the sequence 1; 2; : : : ; r;

kz }| {
0; : : : ; 0; r; r � 1; : : : ; 1, where

k = max(0;min(�0i�1 � �0i; �
0
i � �0i � r)). (We set �00 = +1.) See the example in Fig.3.2.

Fig.3.2.

It turns out that (3.7) for the top term b0 can be expressed uniquely in the form

rY
a=1

MaY
j=1

Qa(u+ zaj �
1
ta
)

Qa(u+ zaj +
1
ta
)

(3:9)

for some Ma and fzaj j1 � j � Mag up to the permutations of zaj 's for each a. We then

propose that the Drinfeld polynomial P
W���(u)
a (�) for W���(u) is given by

P
W���(u)
a (�) =

MaY
j=1

(� � u� zaj ) 1 � a � r: (3:10)

In our case, it reads explicitly as follows.

P
W���(u)
a (�) =

Y
1�i��1
�0i��

0
i=a

(� � u� �01 + �1 + 1 + a + 2�0i � 2i)

�
Y

1�i��1�1

�0i+1��
0
i=2r�a

(� � u� �01 + �1 + 2 + a+ 2�0i � 2i) 1 � a � r � 1;

(3:11a)

P
W���(u)
r (�) =

Y
1�i��1

�0i+r��
0
i��

0
i�1+r

(� � u� �01 + �1 + 2�0i � 2i� r +
3

2
)

�
Y

1�i��1
�0i+1��

0
i+r��

0
i

(� � u� �01 + �1 + 2�0i � 2i+ r +
1

2
);

(3:11b)

where we have set

�0�1+1 = �1; �00 =1: (3:12)

We will call the irreducible �nite dimensional Y (Br) module spin-even (resp. spin-odd) if

and only if the characterizing Drinfeld polynomial Pr(�) is even (resp. odd) degree. The
one in (3.11b) is even for any skew-Young diagram � � �. For example, in the case of the
single column or row (3.3), (3.11) reads

P
W(1c)(u)
a (�) =

�
(� � u)�ac 1 � c < r�
(� � u+ c� r + 1

2
)(� � u� c+ r � 1

2
)
��ar

c � r
; (3:13a)

P
W(m)(u)
a (�) =

�
(� � u+m� 1)(� � u+m� 3) � � � (� � u�m+ 1)

��a1
: (3:13b)
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As a Br module, the Y (Br) module W���(u) decomposes as

W���(u) '
X
�

�X
�;�

LR�
��LR

�
(2�)0�

�
�O(2r+1)(V�); (3:14)

which is u-independent. Here LR
�

�� etc denote the Littlewood-Richardson coe�cients for
the universal character ring � of GL type introduced in [KT]. The sums run over all

the Young diagrams �; � and � = (�1; �2; : : :), where (2�)0 stands for the transpose of

2� = (2�1; 2�2; : : :). �O(2r+1)(V�) is the image of the specialization homomorphism [KT].

It is equal to (�1 or 0) \times" the irreducible Br module V�� with the highest weight
labeled by the Young diagram �� with (��)01 � r. They are determined according to the

equality �O(2r+1)(�(�)) = (�1 or 0)� �(��) at the character level [KT].

4. Spin-odd case

Consider the following subset Spin � Atab((1r )).

i1
...
ir

2 Spin,

(
i1 � � � � � ir 2 J;

0 is not contained;
only one of i and i is contained for any 1 � i � r:

(4:1)

There is a bijection � : Spin ! f(�1; : : : ; �r) j �j = �g sending (4.1) with 1 � i1 � � � � �

ik � r � r � ik+1 � � � � � ir � 1 to such (�1; : : : ; �r) that �i1 = � � � = �ik = +; �
ik+1

=

� � � = �
ir

= �, where we interpret k = i if k = i. Thus the latter of (2.10) can also be

written as T
(r)

1 (u) =
P

b2Spin sp(�(b);u). This type of � has also been utilized in [KN].
For a skew-Young diagram � � � with �01 � �01 � r, hatch the bottom r boxes in the

leftmost column, which we call an L-hatched skew-Young diagram � � �. See Fig.4.1.
Fig.4.1.

Consider a tableau b on it, namely, a map b : L-hatched � � �! J . We call a tableau b
on an L-hatched � � � L-admissible if and only if all of the following three conditions are
valid. (n = �02 � (�01 � r) and see Fig. 4.2 for the de�nitions of il and jl.)

(i) hatched part 2 Spin; and (3:1) for non-hatched part;

(ii) j0 � i1;

(iii) i1 � j1; : : : ; in � jn or there exists k 2 f1; : : : ; ng such that

i1 � j1; : : : ; ik�1 � jk�1 and r � jk � ik � 1:

(4:2)

Here (ii) is void when �01 � �01 = r and so is (iii) for n = 0.
Fig.4.2.

Denote by AtabL(� � �) the set of L-admissible tableaux on the L-hatched � � �. We

note that Atab(� � �) 6� AtabL(� � �) nor Atab(� � �) 6� AtabL(� � �). Given an
L-hatched skew-Young diagram � � �, we de�ne the function SL���(u) by

SL���(u) =
X

b2AtabL(���)

sp(�(hatched part);u)

�
Y

(i;j)2 non hatched part of (���)

z(b(i; j);u + 2�01 � r � 2i+ 2j �
3

2
):

(4:3)
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We have an L $ R (left vs. right) dual of these de�nitions as follows. For a skew-

Young diagram � � � with �0�1 � r (remember we assumed �0�1 = 0), hatch the top r

boxes in the rightmost column, which we call an R-hatched skew-Young diagram � � �.

See Fig.4.3.

Fig.4.3.

Consider a tableau b : R-hatched � � �! J . We call a tableau b on an R-hatched � � �

R-admissible if and only if all of the following three conditions are valid. (n = r � �0�1�1
and see Fig. 4.4 for the de�nitions of il and jl.)

(i) hatched part 2 Spin; and (3:1) for non-hatched part;

(ii) i1 � j0;

(iii) j1 � i1; : : : ; jn � in or there exists k 2 f1; : : : ; ng such that

j1 � i1; : : : ; jk�1 � ik�1 and 1 � ik � jk � r;

(4:4)

where (ii) is void when �0�1 = r and so is (iii) for n = 0.
Fig.4.4.

Denoting by AtabR(� � �) the set of R-admissible tableaux on the R-hatched � � �, we
de�ne

SR���(u) =
X

b2AtabR(���)

sp(�(hatched part);u)

�
Y

(i;j)2 non hatched part of (���)

z(b(i; j);u � 2�1 + r � 2i+ 2j +
3

2
):

(4:5)

Our �rst main results in this section is

Theorem 4.1.

SL���(u) = det1�i;j��1 (S
L
ij ) (4:6a)

= det1�i;j��02 (S
L

ij); (4:6b)

where

SLij =

(
T�

0
j��

0
i+i�j(u+ 2�01 � �0j � �0i + i + j � r � 5

2
) j � 2

T
(r)

1 (u+ 2i� 2 + 2(�01 � �0i � r)) j = 1
; (4:7a)

S
L

ij =

8<
:
T�i��j�i+j(u+ 2�01 + �i + �j � i� j � r � 1

2
) 1 � j � �01

HL
�i+�

0
1�i

(u+ 2�01 � 2�01 � 2r) j = �01 + 1

T�i�i+j�1(u+ 2�01 + �i � i � j � r + 1
2
) j > �01 + 1

; (4:7b)

HL
m(u) =

mX
l=0

(�1)lT
(r)

1 (u+ 2l)Tm�l(u+m+ r + l �
1

2
): (4:7c)

From (4.6a), (4.7a,c) and Theorem 3.1,HL
m(u) is equal to the L-hatched hook S

L
(m+1;1r�1)

(u).

For an R-hatched diagram � � �, let � � � be the sub-diagram obtained by removing

the rightmost column of � � �. See Fig. 4.5.
Fig. 4.5.

Thus for example �i = �1 � 1 for 1 � i � �0�1 � �0�1�1. Then another main result in this
section is the R-hatched version of the previous theorem as follows.
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Theorem 4.2.

SR���(u) = det1�i;j��1 (S
R
ij ) (4:8a)

= det1�i;j��01(S
R

ij); (4:8b)

where

S
R
ij =

(
T�

0
j��

0
i+i�j(u� 2�1 � �0i � �0j + i + j + r + 1

2
) j � �1 � 1

T
(r)

1 (u� 2�1 � 2�0i + 2i + 2r) j = �1
; (4:9a)

S
R

ij =

�
T�i��j�i+j(u� 2�0�1�1 � 2�1 + �i + �j � i� j + r + 1

2
) i 6= �01 � �01 + �0�1

HR
�i��j�i+j

(u� 2�0�1 + 2r) i = �01 � �01 + �0�1

(4:9b)

H
R
m(u) =

mX
l=0

(�1)lT
(r)

1 (u� 2l)Tm�l(u�m� r � l +
1

2
): (4:9c)

From (4.8a), (4.9a,c) and Theorem 3.1, one sees that HR
m(u) is equal to the R-hatched

\dual hook" SR
(mr�1)�((m+1)r)

(u). From Theorems 2.1, 4.1 and 4.2, we have

Corollary. SL���(u) and S
R
���(u) are pole-free provided that the BAE (2.1) holds.

Following a similar argument to the previous section, we propose the Drinfeld poly-
nomials corresponding to the auxiliary spaces WL

���(u) and WR
���(u) of SL���(u) and

SR���(u), respectively.

P
WL
���(u)

a (�) = P
W���(u+�

0
1+�1�r�

3
2 )

a (�) 1 � a � r � 1; (4:10a)

P
WL
���(u)

r (�) =
1

� � u+ 1
P
W���(u+�

0
1+�1�r�

3
2 )

r (�)

=
Y

2�i��1
�0i+r��

0
i��

0
i�1+r

(� � u+ 3 + 2(�0i � i� �01))

�
Y

1�i��1
�0i+1��

0
i+r��

0
i

(� � u+ 2 + 2(�0i � i� �01 + r));

(4:10b)

P
WR
���(u)

a (�) = P
W���(u��

0
1��1+r+

3
2 )

a (�) 1 � a � r � 1; (4:11a)

P
WR
���(u)

r (�) =
1

� � u� 1
P
W���(u��

0
1��1+r+

3
2 )

r (�)

=
Y

1�i��1
�0i+r��

0
i��

0
i�1+r

(� � u+ 2(�0i � i+ �1 � r))

�
Y

1�i��1�1

�0i+1��
0
i+r��

0
i

(� � u� 1 + 2(�0i � i + �1));

(4:11b)
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where we assume (3.12).

In AtabL(� � �) and AtabR(� � �), we have considered the hatched part (Spin (4.1))
only in the bottom left or top right position. A natural question may be whether it is

possible to de�ne a tableau sum that becomes pole-free and contains Spin simultaneously

in various places in a skew-Young diagram � � �. It is indeed possible to include Spin

both at the bottom left and the top right. However, we have found only few examples
beyond that so far.

5. Solution to the T -system

The functions T���(u) (3.2), S
L
���(u) (4.3) and S

R
���(u) (4.5) provide the solution to the

T -system for Br, one of the functional relations proposed in [KNS] for any Xr. (See [KS2]

for the T -system of twisted quantum a�ne algebras.) For m 2 Z�0, put

T (a)
m (u) = T(ma)(u) 1 � a � r � 1; (5:1a)

T
(r)

2m (u) = T(mr)(u); (5:1b)

T
(r)

2m+1(u) = SL((m+1)r)(u�m) = SR((m+1)r)(u+m): (5:1c)

The latter equality in (5.1c) can be shown easily by using (2.14), (4.7a) and (4.9a). The
de�nition (5.1) includes (2.10). Moreover, from (3.11) and (4.10,11), the Drinfeld polyno-

mial corresponding to T
(a)
m (u) is given by Pb(�) =

�Qm

i=1(��u+
m+1�2i

ta
)
��ba

for 1 � b � r,

in agreement with (2.3) of [KS1]. Thus T
(a)
m (u) here is the DVF for the transfer matrix

T
(a)
m (u) considered in [KS1].

Theorem 5.1. T
(a)
m (u) de�ned above satis�es the following functional relations.

T (a)
m (u� 1)T (a)

m (u+ 1) = T
(a)

m+1(u)T
(a)

m�1(u) + T (a�1)
m (u)T (a+1)

m (u)

for 1 � a � r � 2;

T (r�1)
m (u� 1)T (r�1)

m (u+ 1) = T
(r�1)

m+1 (u)T
(r�1)

m�1 (u) + T (r�2)
m (u)T

(r)

2m (u);

T
(r)

2m(u�
1

2
)T

(r)

2m (u+
1

2
) = T

(r)

2m+1(u)T
(r)

2m�1(u)

+ T (r�1)
m (u�

1

2
)T (r�1)

m (u+
1

2
);

T
(r)

2m+1(u�
1

2
)T

(r)

2m+1(u+
1

2
) = T

(r)

2m+2(u)T
(r)

2m(u) + T (r�1)
m (u)T

(r�1)

m+1 (u):

(5:2)

Outline of the proof. We use the determinantal expressions (3.5a) and (4.6a). Then
the �rst two equations in (5.2) reduce to the Jacobi identity. (cf. [KNS] eqs.(2.20)-(2.22).)

To prove the third equation, substitute (4.6a) into T
(r)

2m+1(u)T
(r)

2m�1(u). Expanding the

determinants with respect to the �rst column, we have

T
(r)

2m+1(u)T
(r)

2m�1(u) =

m�1X
i=0

mX
j=0

(�1)i+jR
(m)

j R
(m�1)

i

�
�
T r+j�i�1(u�m+ i+ j +

1

2
) + T r+i�j (u�m+ i+ j +

1

2
)
�
:
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Here, R
(m)

j denotes the cofactor of T
(r)

1 (u�m+2j) in T
(r)

2m+1(u) and we have used (2.14).

On taking the j-sum, the T r+j�i�1(u �m + i + j + 1
2
) term vanishes. After taking the

i-sum, the T r+i�j (u �m + i + j + 1
2
) term is non-zero only for j = 0 or j = m. Noting

that R
(m)

0 = T
(r)

2m(u +
1
2
) and R

(m)
m = T

(r�1)
m (u� 1

2
), one has the third equation. The last

equation in (5.2) can be veri�ed quite similarly.

The functional relation (5.2) is the unrestricted T -system for Br, (3.20) in [KNS]

(in a di�erent normalization). There was a factor g
(a)
m (u) in each equation as T

(a)
m (u +

1
ta
)T

(a)
m (u � 1

ta
) = T

(a)

m+1(u)T
(a)

m�1(u) + g
(a)
m (u)(� � �). The g

(a)
m (u) is 1 here because we are

considering the case where vacuum part = 1. The choice (5.1a) has been conjectured in

(4.20) of [KS1] including the vacuum parts. The case r = 2 had been proved earlier [K].

It may be interesting to regard u and m as discrete space-time variables and consider

(5.2) as a discretized Toda equation. Actually, a \continuum limit" of (5.2) (with g
(a)
m (u))

under an appropriate rescaling of u;m and g
(a)
m (u) leads to

(@2u � @2m) log �a(u;m) = const

rY
b=1

�b(u;m)�Aab ;

where �a(u;m) is a scaled T
(a)
m (u) and Aab =

2(�aj�b)

(�aj�a)
is the Cartan matrix. The constant

above can be made arbitrary by choosing the g
(a)
m (u) suitably. We remark that the T -

system proposed in [KNS] has this aspect for all the classical simple Lie algebra Xr.

6. On vacuum parts and BAE in terms of Drinfeld polynomial

So far we have treated the case where the quantum space is formally trivial. This cor-
responds to choosing the LHS of the BAE (2.1) to be just -1 and the vacuum parts in
the DVFs T���(u), S

L
���(u) and S

R
���(u) to be 1. To recover the vacuum parts for the

non-trivial quantum space


N
i=1W

(i); (6:1)

one needs to know the corresponding BAE. Assuming that eachW (i) in (6.1) is a �nite di-

mensional irreducible Y (Br) module characterized by the Drinfeld polynomial P
(i)
a (�) (1 �

a � r), we conjecture the BAE:

�
Pa(v

(a)

k + 1
ta
)

Pa(v
(a)

k � 1
ta
)
=

rY
b=1

Qb(v
(a)

k + (�aj�b))

Qb(v
(a)

k � (�aj�b))
1 � a � r; 1 � k � Na;

Pa(�) =

NY
i=1

P (i)
a (�):

(6:2)

Here we understand that q ! 1 in (2.2) for Y (Br). (On the other hand, for generic q,

we suppose that (6.2) is the correct BAE for Uq(B
(1)
r ) if P

(i)
a (�) is replaced by a natural

q-analogue.) The equation (6.2) has been formulated purely from the representation the-

oretical data, the root system and the Drinfeld polynomial. Thus we suppose that it is
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the BAE for any Y (Xr) (or Uq(X
(1)
r ) in the trigonometric case). This is actually true for

all the known examples in which alternative derivations of the BAE are known such as

the algebraic Bethe ansatz. It is also agreed in [ST]. Once (6.2) is admitted, the vacuum
parts are determined uniquely up to an overall scalar by requiring that the pole-freeness is

ensured by (6.2). This is a straightforward task and here we shall only indicate the initial

step concerning Theorems 2.1 and 2.3.

Rede�ne z(a;u) (2.4) and sp(�1; : : : ; �r;u) (2.5) by multiplying the vacuum parts
vac(� � �) (cf. (2.9a) in [KS1]):

vac z(a;u) =

a�1Y
j=1

Pj(u+ j � 1)

r�1Y
j=a

Pj(u+ j + 1)Pr(u+ r +
1

2
)Pr(u+ r �

1

2
)

�

r�1Y
j=1

Pj(u+ 2r � j)�(u) 1 � a � r;

vac z(0;u) =

r�1Y
j=1

Pj(u+ j � 1)Pr(u+ r �
1

2
)2

r�1Y
j=1

Pj(u+ 2r � j)�(u);

vac z(�a;u) =

r�1Y
j=1

Pj(u+ j � 1)Pr(u+ r �
1

2
)Pr(u+ r �

3

2
)

�

a�1Y
j=1

Pj(u+ 2r � j)

r�1Y
j=a

Pj(u+ 2r � j � 2)�(u) 1 � a � r;

(6:3a)

�(u) =

rY
b=1

b�1Y
j=1

Pb(u+ b � 2j �
1

tb
)Pb(u+ 2r � b + 2j � 1 +

1

tb
): (6:3b)

vac sp(�1; : : : ; �r;u) =  (1)n1
(u) � � � (r)nr

(u); (6:4a)

nb = ]fj j �j = �; 1 � j � bg; (6:4b)

 (b)n (u) =

n�1Y
j=0

Pb(u+ r � b+ 2j +
1

2
�

1

tb
)

�

b�1Y
j=n

Pb(u+ r � b + 2j +
1

2
+

1

tb
): (6:4c)

In terms of z(a;u) involving the above vacuum parts, rede�ne T a(u) by (2.7a) assuming

XPb(u) = Pb(u+ 2)X (1 � b � r) and modifying the RHS into

1X
a=0

Fa(u+ a� 1)T a(u+ a� 1)Xa;

Fa(u) =

rY
b=1

a�1Y
j=1

 
(b)

0 (u+ r � a�
1

2
+ 2j) 

(b)

b (u� r + a +
1

2
� 2j):
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It is easily seen that this T a(u) is of positive order 2b with respect to the Pb function (6.2).

One can check that Theorem 2.1 is still valid (for T
(r)

1 (u) and T a(u)) for the BAE (6.2).

Relations (2.12a) and (2.13a) also hold if the right hand sides are divided by Fa(u) and

F2r�1�a(u), respectively. Thus Theorem 2.3 remains valid without any changes. Along

these lines, one can proceed further to include the vacuum parts for general T���(u),
SL���(u) and S

R
���(u) so that they become pole-free under the BAE (6.2).
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Figure Captions.

Figure 3.1: An example of a skew-Young diagram � � �. Here � = (5; 42; 1); � =
(2; 1); �0 = (4; 33; 1) and �0 = (2; 1), respectively. The lengths of the main diagonal are

given by d� = 3 and d� = 1.

Figure 3.2: The way to assign the letters to each box is explained in the text. This is an

example for r = 3; �0 = (9; 7; 2); �0 = (3; 1). Notice that zeros are arranged lest they are
adjacent horizontally.

Figure 4.1: An example of an L-hatched skew-Young diagram r = 4; � = (43; 3; 2; 12); � =

(3; 1).

Figure 4.2: The bottom left part of an L-hatched skew-Young tableau and the assignment

of the letters filg and fjlg in (4.2).
Figure 4.3: An example of an R-hatched skew-Young diagram r = 4; � = (45; 3; 1); � =

(32; 2; 1).

Figure 4.4: The top right part of an R-hatched skew-Young tableau and the assignment
of the letters filg and fjlg in (4.4).
Figure 4.5: An R-hatched skew-Young diagram for r = 3 with � = (54; 3; 2; 1); � =
(4; 3; 12). Broken lines are guides to eyes for de�ning � = (43; 3; 2; 1); � = (3; 12).
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