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Abstract

The electroweak phase transition is investigated by means of the perturbatively calculated

high temperature e�ective potential. An analytic result to order g4; �2 is presented for

the Abelian Higgs model, the SU(2)-Higgs model and the standard model and a complete

on-shell renormalization at zero temperature is performed. Higher order corrections are

found to increase the strength of the �rst order phase transition in the non-Abelian model,

opposite to the Abelian case. This e�ect is traced back to the infrared contributions from

the typical non-Abelian diagrams. The dependence of several phase transition parameters

on the Higgs mass is analysed in detail. A new, gauge invariant, approach based on the

composite �eld �y� is introduced. This method, which supports the above Landau gauge

results numerically, permits a conceptually simpler treatment of the thermodynamics of the

phase transition. In particular, it enables a straightforward comparison with lattice data

and the application of the Clausius-Clapeyron equation to the electroweak phase transition.

Zusammenfassung

Der elektroschwache Phasen�ubergang wird mit Hilfe des st�orungstheoretisch berechneten

e�ektiven Potentials der Hochtemperaturfeldtheorie untersucht. F�ur das abelsche Higgs-

Modell, das SU(2)-Higgs-Modell und das Standardmodell werden analytische Ergebnisse der

Ordnung g4; �2 angegeben, und eine vollst�andige Renormierung im On-Shell-Schema bei

Temperatur Null wird durchgef�uhrt. Im Gegensatz zum abelschen Fall f�uhren die Korrektu-

ren h�oherer Ordnung beim nichtabelschen Modell zu einer Verst�arkung des Phasen�ubergan-

ges erster Ordnung. Dieser E�ekt wird auf die infraroten Beitr�age typischer nichtabelscher

Diagramme zur�uckgef�uhrt. Die Abh�angigkeit mehrerer Parameter des Phasen�uberganges

von der Higgs-Masse wird einer detaillierten Analyse unterzogen. Ein neuer, eichinvarianter

Zugang, der sich auf das zusammengesetzte Feld �y� st�utzt, wird eingef�uhrt. Diese Metho-

de best�atigt numerisch die obigen, in Landau-Eichung erzielten Resultate und erlaubt eine

begri�lich einfachere Behandlung der Thermodynamik des Phasen�uberganges. Insbeson-

dere erm�oglicht sie den unmittelbaren Vergleich mit Gitter-Daten und die Anwendung der

Clausius-Clapeyron-Gleichung auf den elektroschwachen Phasen�ubergang.
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Introduction

The whole known universe consists almost exclusively of matter, with no considerable amount

of antimatter in our galaxy cluster and no known mechanism to separate matter and anti-

matter on such large scales [1]. This baryon asymmetry of the universe is one of the most

interesting cosmological problems to be resolved by particle theory.

As pointed out by Sakharov in 1967 the baryon asymmetry may be a calculable result

of particle interactions [2], the necessary conditions being baryon number violation, C{ and

CP{violation, and departure from thermal equilibrium.

Kirzhnits and Linde realized in 1972 that at high temperatures the spontaneously broken

electroweak symmetry is restored, thus suggesting a phase transition in the early universe [3].

Since anomalous baryon number violation in the standard model is rapid at high temper-

atures, the departure from equilibrium in a �rst order electroweak phase transition opens

the possibility of standard model baryogenesis. This scenario, �rst suggested by Kuzmin,

Rubakov and Shaposhnikov in 1985 [4], provides the main motivation for the present investi-

gation. Although more recent analyses seem to discourage baryogenesis within the minimal

standard model due to the small CP-violation, simple non-minimal models may produce a

su�cient asymmetry (see [5] and references therein). In any case it is clear that the present

baryon asymmetry of the universe has been �nally determined at the electroweak phase

transition, since baryon-number violating processes fall out of thermal equilibrium at the

corresponding critical temperature.

A quantitative understanding of the electroweak phase transition is a basic prerequisite

for the discussion of any model of baryogenesis at the weak scale. This includes reliable

knowledge of its order and of the strength of the phase transition, if it is of �rst order. Several

approaches have been used to investigate the electroweak phase transition. Important results

have been obtained by use of 3-dimensional e�ective theory [6, 7], �-expansion [8], average

action [9] and lattice simulations [10{12]. In particular, the detailed lattice data for physical

phase transition parameters from refs. [11, 12] permit explicit comparison with results from
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perturbation theory.

The present investigation is concerned with the extraction of thermodynamic parame-

ters of the electroweak phase transition, based on the perturbative calculation of the high

temperature e�ective potential, i.e. the free energy of the system.

Perturbative calculations of the potential to the order g3; �3=2 suggest a �rst order phase

transition for di�erent Higgs models (g denotes the gauge coupling and � the scalar coupling).

These calculations, based on the one-loop ring summation, have been carried out in refs. [13,

14] for the Abelian Higgs model and in refs. [15, 16] for the standard model. Two-loop

summation has been done to order g4; � in ref. [17], where scalar masses have been neglected

with respect to gauge boson masses, and by use of another approximation in ref. [18]. The

results of ref. [17] include both the Abelian and the non-Abelian case.

However, there is a need to extend the work of Arnold and Espinosa [17] to a complete

g4; �2-calculation. In the present investigation, assuming formally � � g2 and keeping the

full dependence on the Higgs �eld ', its zero temperature vacuum expectation value v and

the temperature T , the necessary corrections are calculated [19, 20]. To obtain information

about the importance of speci�c non-Abelian e�ects and to have a particularly simple model,

the Abelian case has been considered �rst [19].

Besides the above extension of a conventional approach, a gauge invariant calculation of

phase transition parameters is presented [21,22]. Using this method a better understanding

of the physics of the phase transition is obtained. The numerical results of the gauge invari-

ant approach are similar to conventional Landau gauge calculations, thus supporting their

reliability.

Chapter 1 starts with some well known facts about the e�ective potential, its thermody-

namic interpretation, its loop expansion and the relevance for the description of �rst order

phase transitions. After that the resummation of masses, necessary at high temperature, is

discussed. Here the emphasis is on a method based on Dyson-Schwinger equations [19, 20]

to be used in the sequel.

In chapter 2 the complete g4; �2 calculation of the �nite temperature e�ective potential

is performed for the Abelian Higgs model [19]. This includes a zero temperature renormal-

ization in the on-shell scheme. The absence of a linear '-term, explicitly veri�ed at this

order, is shown to survive to all orders. Latent heat, surface tension and jump of the order

parameter are calculated as functions of the Higgs mass from di�erent approximations to

the e�ective potential. The higher order scalar corrections, added to the previous results,
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are found to be important at not too small Higgs masses.

The above analysis is extended to the standard model in chapter 3 which is based on

ref. [20]. First, the case of the pure SU(2)-Higgs model, which is much simpler, is discussed

in detail. The importance of speci�cally non-Abelian contributions is stressed and the un-

certainties of perturbation theory are traced back to infrared problems. A qualitatively

similar situation is found for the complete standard model. The main quantitative change

is introduced by the large top mass, which reduces the strength of the �rst order phase

transition.

In the last chapter the gauge invariant approach to the phase transition, suggested in

ref. [21], is described. The phase transition parameters obtained from a one-loop calculation

are compared with the Landau gauge results, showing good agreement for not too large Higgs

masses. Several additional questions of the analysis of the electroweak phase transition are

discussed in the sequel [22]. They include two-loop resummation problems, the connection of

gauge invariant and Landau gauge approach, and the use of the Clausius-Clapeyron equation

in the present context.

After the discussion of conclusions to be drawn from the above investigation several

analytic formulae are listed in the appendices. Appendix A contains some useful integrals.

The explicit analytic results for the �nite temperature e�ective potential in the Abelian

Higgs model, the SU(2)-Higgs model and the standard model are displayed in appendix B.

Self energy corrections at zero temperature, necessary for the on-shell renormalization, are

given in appendix C.
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Chapter 1

The e�ective potential

1.1 De�nition and loop expansion

The present investigation is concerned with equilibrium thermodynamics, which, as is well

known, can be completely described as soon as the partition function

Z = tr exp
�
��(H +

Z
V
J')

�
(1.1)

of the system under consideration is given. Here the inverse temperature is denoted by � and

H is the Hamilton operator. The source J is coupled to the �eld ', speci�ed later on as the

Higgs �eld, which is used as the order parameter for the description of the phase transition.

In this section it is su�cient to consider the simplest possible case of a '4-model with one

degree of freedom. The generalization to more complicated �eld theories is straightforward.

The fundamental thermodynamic potential per unit volume, W (J), is related to the

partition function by

Z = exp(��
W ) ; (1.2)

where 
 denotes the three dimensional volume of the physical system. The temperature

dependent e�ective potential is now de�ned by the transition from the variable J to the

variable ', realized by a Legendre transformation:

V ('; T ) =W (J; T )� J' ; ' =
@W (J; T )

@J
: (1.3)

It is straightforward to derive the two identities

< ' >= ' =
@W

@J
;
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<H >

���
< ' >= '

� TS = V ('; T ) (1.4)

clarifying the physical interpretation of the e�ective potential as the free energy of the

system. Here the brackets < ::: > symbolize the thermal expectation value of an operator

and S = �@W=@T is the entropy.
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The perturbative calculation developed later on is based on the path integral represen-

tation of the partition function [23]

Z = tr exp
�
��(H +

Z
V
J')

�
=
Z
D'period. exp

"Z �

0
d�

Z
d3~x(L � J')

#
: (1.5)

Here L is the Euclidean Lagrangian and the path integral is taken over all �elds periodic

in time direction. Compacti�cation of Euclidean time results in the replacement of the well

known loop integral by the integral-sum

ZP
dk =

T

(2�)3

n=+1X
n=�1

Z
d3~k (1.6)

and correspondingly in the introduction of the Euclidean propagator with discrete Matsubara

frequencies k0
1

k2 +m2
=

1

k20 + ~k2 +m2
; k0 = 2�Tn: (1.7)

This imaginary time formalism, used exclusively in the following, is the simplest formulation

of �nite temperature �eld theory and perfectly suited for the investigation of the desired

equilibrium parameters.

While Z is the sum of all Feynman diagrams, �
W = � lnZ contains the connected

graphs only. The potential V , obtained from W by means of a Legendre transformation,

is the momentum independent part of the generating functional of one-particle irreducible

diagrams. It has to be evaluated at non-vanishing external �eld, thus requiring the summa-

tion of in�nitely many graphs at each loop order. This problem is solved by the following

identity [24]:

V ('̂) = Vtree('̂) +
1

2

ZP
dk ln(k2 +m2

'̂) +
n
one-particle irred. vacuum diagrams

o
: (1.8)

Here Vtree denotes the tree-level potential, i.e. the momentum independent part of the free

Hamiltonian. The curly bracket represents the sum of all one-particle irreducible vacuum

graphs calculated from the `shifted' Lagrangian

L'̂(') = L('̂+ ')�
n
terms, constant and linear in '

o
: (1.9)

Correspondingly, m2
'̂ is the mass term generated after this shift.

The perturbative methods described in section 1.3 are based on the above representation

of the potential. Note that in the following sections, the shift '̂ will often be denoted by '

for brevity, if no confusion is possible.
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In the remainder of this section a short derivation of the identity (1.8) shall be given. To

keep the notation compact, let � = 
 = 1 during these manipulations.

Shifting the integration variable in eq. (1.5) by some arbitrary but �xed function ~' results

in

W [J ] = � ln
Z
D' exp

" Z
L('+ ~')� ('+ ~')J

#
; (1.10)

where the Lagrangian after the shift can be written in the form

L('+ ~') = �Vtree( ~')� 'g( ~') + L ~'(') : (1.11)

Note that J is not necessarily constant and W is a functional. The e�ective action is de�ned

by

�['̂] = �W [J ] +
Z
J'̂ ; '̂ =

�W

�J
; (1.12)

where arguments have been dropped for brevity in the functional derivative. Introducing

the notation ~J = J + g( ~') and using the generating functional of the `shifted' theory

W ~'[J ] = � ln
Z
D' exp

" Z
L ~'(')� 'J

#
; (1.13)

the e�ective action takes the form

�['̂] = �Vtree( ~')�W ~'[ ~J ] +
Z
('̂� ~')J : (1.14)

Observe that

'̂ =
�W [J ]

�J
=

�W [J ]

� ~J
= ~'+

�W ~'[ ~J]

� ~J
: (1.15)

Now the shift ~', which has not yet been speci�ed, is set to ~' = '̂. This gives an explicit

result for the e�ective action:

�['̂] = �Vtree('̂) �W '̂[ ~J] at
�W '̂

� ~J
= 0 : (1.16)

Since the e�ective potential is given by minus the momentum independent part of �, the

identity (1.8) follows.

1.2 Description of a �rst order phase transition

The intuitive picture of a �rst order phase transition, described by the free energy density

of the system, is based on the double well structure of the free energy as a function of the

order parameter. In this picture the barrier between the two minima is responsible for the
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Fig.1.1 Schematic graph of the coarse-grained free
energy, f(c), and the corresponding true free en-
ergy, ~f(c). The dotted sections denote the ana-
lytic continuation of ~f(c) into the metastable re-
gion (from Langer, [25])

necessity of an activation energy for a transition between the phases, thus rendering the

phase transition �rst order. However, a rigorous de�nition of such a non-convex free energy

is not trivial. First the phenomenological discussion of Langer [25] shall be brie
y described:

Assume the existence of a coarse-grained free energy, F (c), of the form

F (c) =
Z
V

�
1

2
(@c)2 + f(c)

�
; (1.17)

with some function f(c) characterizing the homogeneous state and an order parameter c of

the system. The free energy density f , typically of the form given in �g. 1.1, is well suited

for the description of the metastable and unstable region. However, even in the region where

f has a positive second derivative it is not identical with the true free energy density ~f . The

later one is a convex function and connects the two di�erent physical states of the system by a

straight line. In the metastable, though not in the unstable region, the analytic continuation

of ~f(c) does still describe the thermodynamic properties of the one-phase physical system.

The perturbatively calculated high temperature e�ective potential is by de�nition an

analytic function of the order parameter '. Therefore, assuming its convergence to the true

free energy in the stable region [26,27], it can be naturally interpreted in the above sense as

the free energy of the metastable states. This, however, does not clarify the interpretation

in the unstable, non-convex region of the potential.

Following Langer, the coarse-grained free energy can be calculated by integrating out

the short wavelength components of the microscopic variable only. This corresponds to

the introduction of some infrared cuto� characterizing the coarse-graining size. Note that

the one-loop results for the e�ective potential are not very sensitive to a small enough

infrared cuto�. In fact, in the Abelian model no infrared problems are expected at any

loop-order (see section 2.3). Even the non-Abelian two-loop results of section 3.3.1 do not

change qualitatively when a small infrared cuto� is introduced. This could be taken as a

justi�cation to interpret the non-convex region of the obtained e�ective potential in the spirit
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of the coarse-grained free energy. A detailed discussion of the coarse-grained free energy in

high temperature �eld theory can be found in ref. [28].

At one-loop level such an interpretation is supported by the analysis of ref. [29]. There it

is shown that in some approximation the e�ective potential V (') gives the energy density of

a homogeneous state with wave functional concentrated on con�gurations near the classical

value '.

It has to be admitted that the understanding of the perturbatively calculated e�ective

potential in the non-convex region does not seem to be satisfactory. This implies some

doubts about the physical interpretation of quantities calculated from the potential in that

region. In particular, the surface tension, as it is de�ned and calculated in chapters 2 and 3

is a�ected by this uncertainty.

Nevertheless, critical temperature, latent heat and jump of the order parameter are, in

principle, calculable by standard methods from the e�ective potential. This is due to the

fact that they can be obtained from the minima of the free energy, which, following the

above discussion, are trustworthily described by the potential.

1.3 Resummation

The loop expansion of the potential given by eq. (1.8) formally corresponds to an expansion

in coupling constants. Unfortunately, due to the e�ectively three dimensional integrals

arising from contributions with vanishing Matsubara frequencies in the high temperature

theory terms proportional to (T=m)n do appear. Owing to the Higgs mechanism masses

are proportional to coupling constants in the relevant theories. Therefore a formal loop

expansion does not generate the desired expansion in coupling constants. This problem is

well known and can be solved by resummation. In the following this shall be described in

detail for some unspeci�ed theory with a generic coupling constant g, to be used as the

expansion parameter:

Consider a general Lagrangian with interaction terms generating 3- and 4-vertices pro-

portional to g2 and 3-vertices proportional to g k�. Here k� is a momentum variable, as it

appears at the vertex in gauge theories. All masses are considered to be of order g. Note

that this structure is suggested by the standard model Lagrangian, where the square root

of the scalar coupling
p
�, the Yukawa coupling gY , the electroweak gauge couplings g1; g2

and the strong gauge coupling gs play the role of the generic coupling g. The Abelian Higgs

model and the SU(2)-Higgs model �t this general structure as well [14,16,30].
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Resummation now means that the leading self-energy corrections of order g2T 2 have to

be added to the mass squares, thereby collecting an in�nite series of graphs with increasing

powers of (gT=m). Having realized that in a systematic way, the remaining higher loop cor-

rections are always connected with higher orders in the couplings, which ensures a systematic

expansion of the potential [16].

Working in that spirit, the main task is now to identify all graphs contributing to the

order g4.

1.3.1 Method based on Dyson-Schwinger equations

In this subsection a method for the calculation of the e�ective potential based on Dyson-

Schwinger equations is presented [19, 20]. A similar way of summing the di�erent contribu-

tions to V for the '4-theory has been considered in ref. [31].

To circumvent the combinatoric problems of resummation it is useful not to calculate

the potential V (') itself but its derivative with respect to the �eld ', i.e. the sum of all

one-particle irreducible one-point functions. This `tadpole' method has been suggested in

refs. [32].

The Dyson-Schwinger equation [33] for the e�ective potential has the form

� @

@'
(V � Vtree) = A+B = ; (1.18)

where the internal lines represent all particles of the relevant theory and the external lines

stand for the shifted scalar �eld. The two di�erent sorts of blobs are full propagator and full

3-vertex respectively. Therefore the �rst term has the explicit form

A = trW(')
ZP dk

k2 +m2
tree +�(k)

: (1.19)

In general, mass, self-energy and vertex W are matrices and \tr" denotes the sum over the

suppressed indices. The '-dependence of the mass mtree, introduced by the shift (1.9), is

obvious.

No corrections are needed for the vertex function in the second term of eq. (1.18). This

can be veri�ed by the following argument: Any correction to that vertex corresponds to a

proper three-loop contribution to the potential. Here by proper, the absence of self-energy

insertions, which would require resummation, is meant. The three-dimensional contribution
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to the three-loop graph, arising when all Matsubara frequencies vanish, results in a g5-

correction. This can be seen most easily by scaling all loop momenta according to ~k ! ~kg.

Similar arguments do also prove that the parts of three-loop diagrams with non-vanishing

Matsubara frequencies do not contribute '-dependent terms to the potential up to order g4.

This way of argumentation is explained in more detail in ref. [30]. Appendix A of ref. [16]

contains a proof of the su�ciency of self-energy resummation for the order g3-potential,

which can be generalized to higher orders.

The self-energy insertions needed in both terms of eq. (1.18) can again be obtained from

a Dyson-Schwinger equation, which, to the required leading order, reads

��(k) = �(�a(k) + �b(k)) = : (1.20)

It is easily veri�ed that the omitted parts would result in proper three-loop terms in the

potential which do not contribute to the order g4. In the following the indices 2 and 3

denote contributions of order g2 and g3 respectively. The tadpole part of the self-energy can

be written as

�a(k) = �a2 +�a2(k) + �a3 + � � � ; with �a2(0) = 0 : (1.21)

Here the momentum dependent part �a2(k) does only arise in the case of a non-Abelian

gauge theory. It is introduced by the corresponding projection operator when calculating

the longitudinal self-energy of the gauge boson (see section 3.1).

The third order term in g does not contribute in the case of nonzero k0. If k0 = 0, by

the above scaling argument ~k ! ~kg only its momentum independent part �a3 is needed.

The leading order momentum independent g2-part of �b(k) will be called �b2. All these

contributions to the self-energy �(k), needed below, are obtained by iterating eq. (1.20)

twice.

Using these de�nitions and introducing the corrected mass term m2,

m2 = m2
tree +�a2 +�b2 ; (1.22)

equation (1.19) can be written as

A = trW(')
ZP dk

k2 +m2 +�a2(k) + �a3 +�b(k)��b2

12



= trW(')
ZP
dk

 
1

k2 +m2 +�a2(k)
� 1

k2 +m2
�a3

1

k2 +m2

+
1

k2 +m2
�b2

1

k2 +m2
� 1

k2 +m2
�b(k)

1

k2 +m2

!
: (1.23)

Here the second equality is obtained by expanding the integrand in g. Separate treatment

of the parts with k0 = 0 and k0 6= 0 together with the above scaling argument show that all

contributions of order g4 are taken into account.

Inspection of the last term of eq. (1.23) and term B of eq. (1.18) shows that their sum is

equal to the derivative �@V	=@', where �V	 represents the sum of all two-loop diagrams

of the type shown in �g. 1.2.a (setting sun diagrams). To see this, notice that

W(') = �1

2

@

@'
m2 ; (1.24)

a direct consequence of the shift generating both mass terms and 3-vertices from the inter-

action Lagrangian. This observation simpli�es the actual calculation signi�cantly.

Furthermore, the contribution

Vz =
Z '

d'0trW('0)
ZP
dk

1

k2 +m2
�a3

1

k2 +m2
(1.25)

is treated separately. It is equal to the sum of all terms bilinear in masses coming from

two-loop diagrams of the type shown in �g. 1.2.b, i.e. the sum of their three-dimensional

parts. Note that here and in the setting sun diagrams discussed above, masses resummed to

leading order have to be used.

a.) b.)

Fig.1.2 Typical two-loop diagrams

The remaining part

VR = �
Z '

d'0 trW('0)
ZP
dk

 
1

k2 +m2 +�a2(k)
+

1

k2 +m2
�b2

1

k2 +m2

!
(1.26)

can be easily rewritten as

VR =
1

2

Z
dm2 tr

ZP dk

k2 +m2
+
1

2
tr
ZP dk

k2 +m2
(�a2(k)��b2) : (1.27)

Therefore the complete potential is given by

V = Vtree+ V	 + Vz + VR : (1.28)
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Denoting by V3 the sum of the tree level potential and the g3-order part of VR and calling

V4 the fourth order corrections of VR,

V3 + V4 = Vtree + VR; (1.29)

the following �nal formula is obtained :

V = V3 + V4 + V	 + Vz: (1.30)

This representation, used for the explicit results in the appendix, has the advantage of a

separation of the third order part from the higher order corrections.

1.3.2 Counterterm method

Another possibility of a systematic resummation at high temperature is based on the in-

troduction of thermal counterterms [34]. The simplest form of this method is to add and

subtract a temperature dependent mass term for every �eld in the Lagrangian. Let

L = Lkin + Lmass + LI with Lmass = �X
i

1

2
m2

0i'
2
i (1.31)

be the Euclidean Lagrangian depending on several �elds 'i, with kinetic term, mass term

and interaction term. The leading temperature dependent mass corrections are given by

� �m2
i = ��2i(0) = ; (1.32)

where only the g2T 2-pieces of the diagrams are considered. The Lagrangian is now rewritten

according to

L = Lkin + L0mass + L0I ;
(1.33)

L0mass = �X
i

1

2
(m2

0i + �m2
i )'

2
i ; L0I = LI +

1

2

X
i

�m2
i'

2
i :

The main point is now in the cancellation occurring between the thermal counterterms from

the new interaction Lagrangian and those contributions from higher loop diagrams which are

of low order in the couplings and require resummation. For example, the sum of the diagrams

from �g. 1.3 does not contribute to the �eld dependent part of the e�ective potential up to

order g4. Here the dot symbolizes the thermal counterterm. If the thermal counterterm is
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considered as increasing the formal loop order by one, all of these diagrams are of three-

loop order. Treating the proper three-loop diagrams, i.e. those without self-energy parts,

separately, it can be shown that the sum of all three-loop diagrams does not contribute to

the desired g4-potential.

Fig.1.3 Three-loop diagrams with self-energy parts

Arguments of that kind can be generalized to higher loop orders. Therefore, to obtain

the full g4-result in this approach, the diagrams shown in �g. 1.4 are su�cient. Here the

circle symbolizes the one-loop contribution which is proportional to the logarithm of the

determinant of the propagator. It has to be kept in mind that the notation in this chapter

is merely a generic one, so that the lines in the diagrams stand for all the di�erent particles

of the theory.

Fig.1.4 Typical diagrams contributing to the g4-potential in the counterterm method.

In ref. [17] a slight modi�cation of this method is used. There, the resummation is applied

only to the zero Matsubara frequency modes. Thereby many constant terms and terms which

would cancel each other in the �nal result are omitted from the beginning. Also, using this

method, it is not necessary to keep the dependence on the space dimension in the thermal

counterterms, if dimensional regularization is used. The details of this will not be discussed

here, because the following calculations are based on the method of section 1.3.1. However,

the results of chapters 2 and 3 have been checked by use of the counterterm method.

15



Chapter 2

Abelian Higgs model

The simplest gauge theory with spontaneous symmetry breaking, the Abelian Higgs model, is

believed to exhibit the main features of the electroweak phase transition [35,36]. At one-loop

order the e�ective potential shows a �rst order phase transition at high temperature, driven

by a term cubic in the vector mass in complete analogy to the standard model case [13,14].

The study of the Abelian Higgs model might prove useful for the understanding of the

electroweak phase transition, because this simple model does not su�er from the severe

infrared problems of the non-Abelian theory. No magnetic mass is expected to arise. This

does not present a problem due to the absence of the higher-loop non-Abelian contributions,

which are divergent in the symmetric phase.

In this chapter a complete calculation up to the order e4; �2, with gauge coupling e and

scalar coupling �, is presented, supplying the results of ref. [17] with scalar corrections. An

analysis of the phase transition parameters shows that these corrections are important if the

Higgs mass is not too small.

2.1 Calculation of the potential

The e�ective potential is calculated by expanding it in the coupling constants, as described

in section 1.3.1. Consider the Euclidean Lagrangian

L = �1

4
F��F�� � jD��j2 + �j�j2 � �j�j4 ; (2.1)

with

D� = @� + ieA� and � =
1p
2
('̂+ '+ i�): (2.2)

Using the tree level vacuum expectation value v the Higgs mass term is rewritten as � = �v2

and counted as order �. Then the identi�cation with the the generic coupling g of section 1.3
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reads g � e �
p
�. At this point it is necessary to describe in more detail the resummation

procedure for the vector particle [14,23]:

The choice of the Landau gauge, which will be used throughout this investigation, is

justi�ed by the absence of vector { Goldstone boson mixing together with the '-independence

of the gauge. Two-loop calculations for the three-dimensional model do also show that the

convergence of the perturbation series is best in Landau gauge [37]. The bare propagator

can be given in the form

D0(k) =
1

k2 +m2
(PL + PT ) ; (2.3)

where

PT �� =
3X

i;j=1

��i

 
�ij � kikj

~k2

!
�j� and PL�� = ��� � k�k�

k2
� PT �� : (2.4)

Here the full covariance has been broken down to SO(3), which is the symmetry left after

the speci�cation of a rest frame intrinsic in the formalism of thermal �eld theory. In ref. [14]

the full propagator is shown to have the form

D(k) =
1X
n=0

D0(k)[�(k)D0(k)]
n =

1

k2 +m2 +�L(k)
PL +

1

k2 +m2 +�T (k)
PT ; (2.5)

thus permitting a simple derivation of the mass corrections from the self-energy �(k).

Note that PL and PT are orthogonal projection operators.

Now the calculation of the di�erent contributions to the potential, listed in eq. (1.28),

will be described in some detail. This is possible due to the extreme simplicity of the model.

The explicit results are found in appendix B.1. Throughout this investigation dimensional

regularization is used. This means that the naively three dimensional parts of the integral-

sums are evaluated in n � 1 = 3 � 2� dimensions. This section together with the relevant

parts of the appendix describe the calculation of the MS-potential which will be improved

by the zero-temperature renormalization of section 2.2.

The �rst step is the calculation of the leading order temperature corrections to the masses.

Here basically the results of ref. [14] have to be supplemented with the �-dependent parts

which produce �nite contributions to the potential due to one-loop divergences. The results,

which can be obtained using the integrals of appendix A.1, are given in appendix B.1.

Consider the contribution VR �rst. Due to the particle content of the theory, given by

Higgs particle, Goldstone boson, transverse and longitudinal vector boson, the �rst term of

eq. (1.27) reads

VR1 =
1

2

�Z
dm2

'I(m') +
Z
dm2

�I(m�) + (2� 2�)
Z
dm2

T I(mT) +
Z
dm2

LI(mL)
�
; (2.6)
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with the standard temperature integral

I(m) =
ZP
dk

1

k2 +m2
: (2.7)

Similarly, the second term of eq. (1.27) is given by

VR2 = �1

2
(2 � 2�)�b2;T I(mT)� 1

2
�b2;L I(mL) : (2.8)

Note, that this type of corrections does only exist for the vector particles and that �a2(k) = 0

in the case of the Abelian model. The sum of both terms VR = VR1 + VR2 enters the

contribution V4 which can be found in appendix B.1.

The two-loop contributions of Vz are of vector-scalar and of scalar-scalar type. Figure

2.1 shows the setting sun diagrams of the Abelian Higgs model, contributing to V	. The

labelling follows the standard model case. As usual, dashed and wavy lines represent scalar

and vector propagators respectively. When solving the integrals, it is useful to write the

propagator as a sum of a covariant part and a longitudinal correction

D(k) = D0(k) +

 
1

k2 +m2
L

� 1

k2 +m2

!
PL : (2.9)

This is possible, because the transverse mass receives no leading order temperature correc-

tion, due to gauge invariance.

a.) b.) p.)

Fig.2.1 Setting sun diagrams in the Abelian Higgs model

A straightforward calculation of all the terms described above results in the explicit formulae

given in the appendix.

The necessary MS-counterterms are generated by a multiplicative renormalization of

couplings, mass term and scalar �eld

�b = Z�� ; e2b = Ze2e
2 ; �b = Z�� ; �2

b = Z'2�
2 ; (2.10)

where the index b denotes the bare parameters. No renormalization of the vector �eld is

required because it does not enter the �nal formula for the potential. The counterterms for

the potential are now easily obtained by expressing the bare parameters, which enter the
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order g2; � part of the potential, through the MS-quantities, de�ned by eq. (2.10). Note that

the corrections �Z = Z � 1 are de�ned to have no �nite part. They are given explicitly in

appendix B.1 together with the correction to the potential which they generate.

2.2 Renormalization at T = 0

To get rid of the arbitrary scale �� the potential is rewritten in terms of physical parameters

de�ned at zero temperature. Such parameters are the Higgs and vector masses and the

vacuum expectation value of the physical Higgs �eld '2
phys = Z�1'2 '

2
b. Note that here, in

contrast to the MS-de�nitions of the previous section, the counterterms �Z do have �nite

parts, to be speci�ed below.

Returning for the moment to Minkowski space, the usual on-shell de�nitions of �eld

renormalization factor, Higgs mass and vector mass read

Z'2 � 1 =
@

@q2
Re �'(q

2)
���
q2=m2

'

; (2.11)

m2
' +Re �'(m

2
') = m2

';phys ; m2 +Re �(m2) = m2
phys :

They are completed by the speci�cation of the vacuum expectation value v

@V

@'phys

�����
'phys=v

= 0 ; (2.12)

where the Landau gauge zero temperature e�ective potential to the order e4; �2 is given by

V = Vtree + V1 = ��b

2
'2
b +

�b

4
'4
b �

m4
�

64�2

 
1

�
+
3

2
+ ln

��2

m2
�

!

(2.13)

� m4
'

64�2

 
1

�
+
3

2
+ ln

��2

m2
'

!
� 3m4

64�2

 
1

�
+
5

6
+ ln

��2

m2

!
:

The one-loop self-energies of Higgs particle and vector �eld in Landau gauge are given in

appendix C.1. Note that in this approach, no one-particle reducible tadpole contributions

need to be considered because they vanish due to eq. (2.12).

Requiring the validity of the tree-level relations

m2
';phys = 2�v2 ; m2

phys = e2v2 ; � = �v2 (2.14)

at one-loop, the above equations permit a straightforward derivation of the necessary coun-

terterms:
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�Z'2 = Re�0

'(m
2
') ; �Z� = �Re�0

'(m
2
') +

1

2�

�
1

v
V 0

1(v)� Re�'(m
2
')
�
;

(2.15)

�Z� =
1

2�

�
3

v
V 0

1(v)� Re�'(m
2
')
�

; �Ze2 = �Re�0

'(m
2
')�

1

m2
Re�(m2):

The correction to the potential can now be obtained by renormalization of its leading order

part, i.e. by inserting these counterterms into eq. (B.3). This results in a potential, explicitly

independent of the renormalization scale ��. However, in view of the principal features of the

potential considered here, the numerical e�ect of the performed �nite renormalization is not

very important (see �g. 2.4).

2.3 Absence of a linear term

In the early days of the perturbative treatment of the phase transition in the U(1)- and

SU(2)-Higgs models, the possibility of a linear '-term in the order-g3-potential has been

discussed. It has however been realized that no such term is present, if the resummation

is performed correctly [14, 38{40]. Of course, in the present calculation the cancellation of

linear mass terms to order g3 is reproduced. These terms are not displayed in the �nal

formulae in the appendix to make them more compact.

However, the presence of linear terms in higher orders has not been completely clari�ed

before. Their cancellation is claimed in ref. [40] in a variational approach and in ref. [38] by

some gauge invariance argument which is not further speci�ed. Therefore it is interesting to

observe that in the present result the linear '-terms cancel to order g4: Consider the explicit

formulae of appendix B.1 at temperatures above the barrier temperature Tb de�ned by the

vanishing of the '-independent scalar mass term. Expanding these expressions in ' at the

point ' = 0, linear terms are found in Va and Vz, which cancel each other exactly. This

feature, formulated more precisely as

lim
'!0

@V

@'
= 0 to all orders in e and � ;

can be shown to survive to all orders of small couplings resummed perturbation theory. The

proof is based on an identity following from global U(1)-symmetry:

1

'

@V

@'
= m2

�(q
2 = 0) : (2.16)
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Obviously it su�ces to demonstrate the �niteness of the self energy ��(q2 = 0) in the limit

'! 0. Due to the positive temperature masses of � and ' singularities can only arise from

the transverse gauge boson propagator above the barrier temperature. Therefore diagrams

of the kind shown in �g. 2.2 have to be investigated. Here the wavy lines symbolize leading

order resummed vector propagators and the blobs are full vertices without internal vector

lines, meaning the sum of all diagrams built from scalar propagators with the correct number

of external vector lines and possibly one or two �-lines. Notice that the vector resummation

a�ects only the longitudinal modes, and is therefore irrelevant for the discussion of small-'

singularities.

χ χ χ χ
, , . . .

Fig.2.2 Higher loop self-energy corrections to m2
�

Consider �rst the full vertices with external vector lines only denoted by

�2n
��:::��(k1; : : : ; k2n; ') (2.17)

below. Since in the contributing diagrams all propagating particles are massive scalars, the

vertices � are analytic in ki.

Above the barrier temperature scalar masses are analytic in '2. In addition, explicit

'-factors appearing at the vertices of some diagrams are always paired, due to the structure

of the unbroken theory, which has no vertices with an odd number of scalar lines. This shows

that � is also analytic in '2.

Furthermore the three-dimensional part of � with vanishing external Matsubara frequen-

cies satis�es

�2n
��:::��(k1; : : : ; k2n; ' = 0) � j~k1j : : : j~k2nj (2.18)

for small j~kij and k0i = 0 ; �� : : : �� 2 f1; 2; 3g :

This follows from a gauge covariance argument, completely analogous to the zero temperature

case. Having established these properties of �, the small-' behaviour of the �-self-energy

can be derived as follows:
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Consider the most dangerous lowest power of ' stemming from the maximal infrared

divergence, which is obtained by setting k0 = 0 for all transverse vector propagators. It can

be calculated by scaling the loop momenta according to ~k ! ~k'. The above discussion of

the pure vector vertices � shows that after this scaling they can be counted as order '2 at

least. In the case where no scalar line connecting two external �-lines exists (see the �rst

diagram of �g. 2.2), the power counting in ' proceeds as follows: a factor '3 for each of

the L loops, '�2 for each of the I internal vector lines, '2 for each of the V � 2 full vector

vertices and an explicit factor ' for each of the two vertices with a �-line. Together this

gives the minimal over all power of '

n' = 3L� 2I + 2(V � 2) + 2 (2.19)

for a diagram with V vertices (compare the argumentation in appendix A of ref. [16]).

If there is at least one scalar line connecting the two external �-lines (compare the second

diagram of �g. 2.2), V �1 full vector vertices contribute factors '2. In this case however the

last term +2 does not exist because a vertex with two �-lines need not have an explicit

'-factor. Therefore eq. (2.19) is valid in the second case as well and consequently in general.

Now the well-known formula V + L � I = 1 immediately gives

n' = L � 0 ; (2.20)

or equivalently: There is no divergence for '! 0.

If some of the vector propagators have non-zero Matsubara frequencies, the vertices

connected by those "heavy" lines may be formally fused. Now repetition of the above

argument leads again to the desired result, thus completing the proof.

This nice feature of the Abelian model strongly supports the hope for a reliable pertur-

bation series in the symmetric phase. Unfortunately, due to the 3- and 4-vector vertices of

the non-Abelian theory, the above argument does not apply there.

2.4 Numerical results and discussion

For the numerical investigation of the phase transition standard model values are chosen

for vacuum expectation value v and vector boson mass mW at zero temperature (see sec-

tion 3.3.1). Of course the analogy has to be used with caution, because even at one-loop

level, the three vector degrees of freedom of the SU(2) increase the strength of the phase

transition considerably if compared to the U(1) case. Nevertheless, assuming the standard
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Fig.2.3 Di�erent approximations of the e�ective potential plotted at their respective critical
temperatures at mHiggs = 38 GeV (the e4; �-potential is a result of ref. [17])

model situation, in the following analysis the Higgs mass will be considered as an unknown

parameter.

As is well known, the potential suggesting a �rst order phase transition is generated

at order g3; �3=2 by the combination of quadratic, cubic and quartic '-terms, where the

coe�cient of the quadratic term is of the form T 2 � T 2
b and therefore strongly depends on

the temperature (see V3 in appendix B.1). Figure 2.3 shows the di�erent approximations

to the potential at their respective critical temperatures and mHiggs = 38 GeV, all of them

suggesting a �rst order phase transition, but of quite di�erent strength. Calculations of

order e3; �3=2 [13,14], of order e4; � [17] and the present e4; �2-calculation [19] are compared,

showing a dramatic decrease of the barrier height in both higher order results.

Obviously, reliability of perturbation theory has to be questioned already at this small

Higgs mass. A more detailed picture can be obtained by considering the surface tension [41]

s =
Z '+

0
d'
q
2V ('; Tc) ; (2.21)

which may be seen as a measure of the strength of the phase transition. The reliability of
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Fig.2.4 Dependence of the surface tension calculated from the di�erent potentials on the
zero temperature Higgs mass

the present calculation of this quantity is of course doubtful, because it relies essentially

on the non-convex region of the potential, where the physical interpretation is still unclear.

Nevertheless s can be used conveniently to discuss the properties of the potential as a function

of the Higgs mass. The results are shown in �g. 2.4.

The reasons for the di�erence between the e3; �3=2 and the e4; �2-results are twofold. Con-

sider the region of small Higgs masses �rst. Here the e4'4-term, being a large correction to

the tree-level term �'4=4, is mainly responsible for the decrease of the barrier height. This

is illustrated in �g. 2.5, where in addition to the consistent third and fourth order results a

potential containing the third order terms together with the e4'4-correction (see V4 in ap-

pendix B.1) is investigated. The e�ect is not removed by zero temperature renormalization,

although the temperature independent constant c1 forms the largest part of the coe�cient of

e4'4. Notice that this large constant arises from the expansion of the temperature dependent

part of the one-loop integral I(m) [42], and is therefore absent at T = 0.

As it can be seen from �g. 2.5, two-loop contributions are not too important at small
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Fig.2.5 In
uence of the e4'4-correction on the surface tension at small Higgs masses

Higgs mass and perturbation theory appears to be in a relatively good shape.

For Higgs masses above � 30 GeV another higher order e�ect becomes more important:

The three-dimensional pieces of two-loop temperature integrals generate terms of the form

'2 ln(m + m';�) and the like (see Va and Vb in appendix B.1), which, in spite of their

numerical smallness, in
uence the potential signi�cantly. This can be understood by recalling

that at the critical temperature the leading order '2-terms essentially cancel and that a '-

dependence in a coe�cient of '2 can not be absorbed in a correction of Tc. These logarithmic

terms with a positive sign decrease the barrier height, which is clear from the shape of

the function x2 ln(x + const.). In summary, the most infrared sensitive contributions of

the high temperature �eld theory introduce large corrections and prevent the reliability of

perturbation theory.

The e�ect of the above logarithmic terms is overestimated by the approximation used in

ref. [17]. There, scalar masses are counted as order �1=2 and neglected systematically against

vector masses, resulting in contributions of the type '2 lnm. These terms, lacking the scalar

mass cuto� in the logarithm, destroy the �rst order phase transition for Higgs masses above
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Fig.2.6 Higgs mass dependence of the latent heat �Q of the phase transition

� 40 GeV. The plot at 38 GeV of �g. 2.3 does already show the arising pathology of the

e4; �-potential, which can be somewhat eased but not cured by addition of the �3=2 terms.

The latent heat of the phase transition is another interesting quantity to be calculated

from the e�ective potential :

�Q = T
@

@T
V ('+; T )

���
Tc
; (2.22)

where '+ is the position of the asymmetric minimum of the potential V , normalized to zero

at the origin. This relation follows easily from the de�nition of �Q together with the formula

relating entropy and free energy:

�Q = T�S = T (Ssymmetric � Sbroken) ; S = �@V ('; T )

@T
: (2.23)

Figure 2.6 shows that the change of the latent heat, introduced by the g4; �2-corrections, is

very large, but not as dramatic as for the surface tension. The phase transition appears to

be much weaker �rst order at two-loop.

The vacuum expectation value in the broken phase at Tc, shown in �g. 2.7, does not

re
ect the dramatic change of the surface tension, introduced by higher order corrections.
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Fig.2.7 Position of the second minimum '+ at the phase transition in units of the critical
temperature Tc

This quantity, the jump of the order parameter, seems to be the most reliable characteristic

of the phase transition, accessible in perturbation theory.

Note that the critical temperature is, here as well as in the standard model case, very

close to the uncorrected barrier temperature, de�ned by the vanishing of the quadratic term

in eq. (B.7). Therefore a graphic representation does not seem advisable.

Depending on the considered quantity and the standards to be chosen the phase transition

can be regarded as understood in principle for Higgs masses below 30:::50 GeV. For larger

masses it is likely to be much weaker �rst order, although even such a qualitative description

is not really well founded due to the infrared problems. The next sections will show that

reliability at physically relevant large Higgs masses remains a problem in the non-Abelian

theory as well.
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Chapter 3

Standard model

In the following standard model discussion the technical parts will be con�ned to the new

features not present in the Abelian model. While the non-Abelian character of the theory

changes the numerical e�ect of two-loop corrections qualitatively, fermions and the additional

U(1)-symmetry are less important. Therefore it suggests itself to concentrate on the much

simpler SU(2)-Higgs model for a detailed analysis of the two-loop e�ective potential.

This chapter is based on ref. [20].

3.1 Calculation of the potential

To �x the notation the essential parts of the standard model Lagrangian are given:

L = LHiggs + Lgauge + Lfermion + LY ukawa: (3.1)

De�ning the covariant derivative as

D� = @� + ig1
Y

2
B� + ig2

� a

2
W a

� (3.2)

the gauge part and fermionic part for nf fermion families are unambiguous. The Higgs

contribution reads

LHiggs = �jD��j2 + �j�j2 � �j�j4 ; where � =
1p
2

 
'3 + i'4

'̂+ '1 + i'2

!
(3.3)

denotes the Higgs doublet and the shift has been applied according to '1 ! '̂ + '1.

All fermions except the top quark are considered to be massless. The resulting Yukawa

Lagrangian is

LY ukawa = �gY �qL ~�tR ; qL =

 
tL
bL

!
; ~� = i�2�

�: (3.4)
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Following section 1.3 the formal power counting rule

g1 � g2 � gY � �1=2 (3.5)

is used.

The resummation of the scalar and vector degrees of freedom proceeds in analogy to

sections 1.3.1 and 2.1. Explicit formulae are found in appendix B.2. The vector resummation

is complicated by the mixing of the W3{ and B{�elds, characterized by the well known

Weinberg angle � in the transverse part and by a di�erent, temperature dependent angle

~� in the longitudinal part. To implement this in the evaluation of Feynman diagrams the

notation of a transverse and longitudinal propagator is introduced:

DT =
1

k2 +m2
PT ; DL =

1

k2 +m2
L

PL : (3.6)

Now the W3-W3-propagator is conveniently rewritten as

DW3W3 = DZ
T cos

2 � +D

T sin

2 � +DZ
L cos

2 ~� +D

L sin

2 ~� (3.7)

= DZ
0 cos2 � +D



0 sin

2 � + (cos2~� � cos2 �)
h�
DT +DZ

L

�
� (DT +D



L)
i
:

Here the masses are speci�ed by the indices Z and 
. From this the B-B-propagator is

obtained by exchanging sine and cosine. Similarly, the B-W3-propagator reads

DBW3 =
�
D



T �DZ

T

�
sin � cos � +

�
D



L �DZ

L

�
sin ~� cos ~� : (3.8)

Several comments are in order concerning the calculation of VR. Calculating the �rst term

of eq. (1.27) the �-dependent part of m4

L+m4

ZL is needed (compare eq. (2.6)). It is obtained

most easily from the last line of eq. (B.18). For the second part of VR, corresponding to the

second term of eq. (1.27), the self energy contribution �a2(k), introduced in eq. (1.21), is

required. It is nonzero for the W -�eld only and can be found in appendix B.2 together with

the contributions of type �b2. These terms are displayed most conveniently in the original

B-W3-basis.

Vz contains two-loop contributions of vector-vector, vector-scalar and scalar-scalar type.

The setting sun diagrams are shown in �g. 3.1, where the labelling follows ref. [17], to make

comparison more easy.

V	 = Va + Vb + Vi + Vj + Vm + Vp: (3.9)

Note that ghost contributions have been included in Vm, and that the purely scalar diagram

Vp has not been considered in ref. [17]. The calculation of all these terms is long but
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straightforward. All the integrals with complicated covariant structure can be reduced to

the basic types given in appendix A.1, as described in ref. [17].

Dropping the appropriate terms of V the lower order g4; �-result, as it is given by Arnold

and Espinosa in ref. [17], can be derived. This is also valid for the Abelian model discussed

in the previous chapter. Another calculation for the SU(2)-Higgs model appeared in ref. [7],

where the complete g4; �2 result is derived from the e�ective three-dimensional theory to-

gether with some corrections from ref. [17]. The analytic results of the actual loop-calculation

are found to be in agreement with the present analysis. However, due to a speci�c way to

apply the renormalization group method the numerical outcome of ref. [7] di�ers from the

results to be presented here.

a.) b.) i.)

j.) m.) p.)

Fig.3.1 Setting sun diagrams for the standard model

Note that there are linear '-terms of fourth order in the couplings present in Va, Vm and

Vz . As in the Abelian model, these terms cancel each other, thus ensuring the relation

lim'!0 @V=@' = 0 for all allowed temperatures. This cancellation is essentially the same

e�ect which leads to a vanishing third order transverse gauge boson mass term in the sym-

metric phase [16], as can be seen in the contributions of diagrams �g. 6.o, 6.q, 6.t and 6.u

of ref. [16].

3.2 Renormalization at T = 0

In the Abelian Higgs model the performed zero temperature renormalization has not a�ected

the calculated phase transition parameters signi�cantly. Nevertheless, it is not possible to

pro�t from that experience by just setting �� = 1=� in the standard model case. The reason

for that is the large negative g4Y '
4-term which dominates over the tree level quartic term.

This leads to an MS-potential unbounded from below for small Higgs mass.

The zero temperature renormalization is performed in the on-shell scheme, as described
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in ref. [43]. Slightly modifying the procedure of section 2.2, the physical parameters chosen

are Higgs mass, top quark mass, W- and Z-boson masses and the �ne structure coupling �,

de�ned in the Thompson limit [44]. The physical masses and the wave function renormaliza-

tion of the Higgs �eld are de�ned in analogy to eq. (2.11). A multiplicative renormalization of

the coupling constants, the tree level Higgs mass square �� and the Higgs �eld is performed.
The required one-loop corrections are of course well known in Feynman-'tHooft gauge [43].

However, here they are needed in Landau gauge. There is no problem with the correction to

the electric charge �e = eb � e, which is gauge independent [45]. This can be easily checked

explicitly using the results of ref. [46], where the gauge dependence of several self-energy and

vertex corrections has been calculated. Therefore in the present calculation the formula for

�e from [43] is used. The logarithmic terms with the �ve light quark masses are treated in

the way described in ref. [47], with data from ref. [48], resulting in the vacuum polarization

contribution

Re �̂

(5)

had
(M2

Z) = Re�

(5)

had
(M2

Z)��

(5)

had
(0) = �0:0282 � 0:0009 : (3.10)

The dependence of the one-loop self energy corrections on the gauge parameters has been

calculated in ref. [46] for gauge bosons. Therefore the corrections in Landau gauge, needed

here, can be taken from [46, 49]. The self energy corrections for the physical Higgs boson

and the top quark can be easily calculated in Landau gauge. The results are displayed in

appendix C.2.

De�ning v as in the Abelian model by eq. (2.12), no one-particle reducible tadpole dia-

grams need to be added to the self energies. The zero temperature one-loop e�ective potential

Vtree + V1 , required for that, is easily obtained from eq. (2.13) by including the additional

degrees of freedom. The renormalized couplings and the renormalized Higgs mass square are

de�ned by

c =
MW

MZ

; cg1 = sg2 = e ; � =
M2

Hg
2
2

8M2
W

; M2
H = 2� ; (3.11)

where s = sin �W and c = cos �W . Now the counterterms follow easily from the de�nitions

of the physical parameters:

�Zg2
1
= 2

�e

e
� �Z

M2
Z

+
�W

M2
W

; �Zg2
2
= 2

�e

e
+
c2

s2
�Z

M2
Z

� c2

s2
�W

M2
W

; �ZgY =
�mt

mt

� 1

2
�0

'

(3.12)

�Z� = 2
�e

e
+
c2

s2
�Z

M2
Z

+
s2 � c2

s2
�W

M2
W

� �'

M2
H

+
g2V

0

1

2MWM2
H

; �Z� = � �'

M2
H

+
3g2V 0

1

2MWM2
H

:
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Here � and �0 stand for the real parts of the self-energies and their derivatives at the on-shell

point.

The renormalized, ��-independent potential can now be obtained by applying eqs. (3.12)

and the �eld renormalization �Z'2 = �0

' to the leading order contribution, given by the �rst

line of eq. (B.21).

Clearly, the resulting formula for the potential is too long to be given explicitly. However,

it seems worthwhile to give the numerically most important parts of the corrections to enable

a simpli�ed usage of the analytic result in the appendix. As it has already been mentioned,

the main contributions come from the g4Y -corrections to parameters of order � (see also [17]):

�� =
3g4Y
8�2

ln
mt

��
; �� =

3g4Y v
2

16�2
: (3.13)

Introducing these corrections in all terms in the potential contributing to order � and using

standard model tree level relations to calculate the couplings one obtains a result which

is `partially renormalized at zero temperature'. The corresponding correction to the MS-

potential reads

�V =
'2

2

 
��� + 1

2�2
��

!
+
��

4
'4 : (3.14)

As it will be seen later (section 3.3.2), the numerical e�ect of this drastic simpli�cation is

not too severe.

3.3 Numerical results and discussion

3.3.1 SU(2)-Higgs model

To obtain an understanding of the qualitative e�ects of higher order corrections the pure

SU(2)-Higgs model is studied �rst. In this subsection the additional U(1)-symmetry and the

e�ect of fermions are neglected. A discussion of this simpli�ed version is also useful in view

of lattice investigations, which deal with the pure SU(2)-Higgs model presently and probably

also in the near future.

The relevant potential can be easily derived from the formulae given in the appendix

B.2 by performing the limit g1; gY ! 0 and setting the number of families nf to zero. This

results in the potential of appendix B.3, which is the basis for the numerical investigation of

the present subsection.

Standard model values for W-mass and vacuum expectation value v are used, unless

stated otherwise : MW = 80:22 GeV and v = 251:78 GeV. The parameter �� of dimensional
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Fig.3.2 The surface tensions calculated from the di�erent potentials as functions of the zero
temperature Higgs mass

regularization is set to T = 1=�. This can be justi�ed by the small dependence on the

renormalization procedure. The di�erences between the results obtained in this scheme and

in a scheme with on-shell T = 0 renormalization are relatively small. This phenomenon is

observed in the Abelian Higgs model as well.

In analogy to the investigation performed in section 2.4 the potentials from calculations

to order g3; �3=2 [15,16], to order g4; � [17] and to order g4; �2 [20] are compared. All suggest

a �rst order phase transition in a wide Higgs mass range. The form of the potentials at

the critical temperature is the standard one (see �g. 2.3) and will not be shown here again.

However, comparing the barrier height in the di�erent approximations the picture di�ers

signi�cantly from the Abelian case in the region of large Higgs masses: Both g4; �- and

g4; �2-potential suggest a much stronger �rst order phase transition than the lowest order

result. The pathological behaviour of the e4; �-potential of the Abelian model does not arise.

In the following, the surface tension (see eq. (2.21)) will be used to illustrate the features

of the potentials at di�erent Higgs masses. Figure 3.2 shows the similarity of the situations
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Fig.3.3 In
uence of the most infrared sensitive contributions on the surface tension as a
function of the Higgs mass

in the Abelian and the non-Abelian case in the small Higgs mass region. The g4'4-term

from the one-loop vector contribution is responsible for the strong decrease of the barrier

height in the higher order results.

At larger Higgs masses, approximately above 40 GeV, the infrared two-loop contributions

become more important. Their e�ect is however quite di�erent from the Abelian case.

Compare the results of order g3; �3=2 and g4; �2 �rst. The increase in the strength of the

phase transition, studied already in ref. [18], can be traced back to the infrared features

of a non-Abelian gauge theory. The crucial contribution is the one coming from the non-

Abelian setting sun diagram (�g. 3.1.m). It produces contributions to the potential of type

'2 ln(�mW ) with a negative sign. Recall, that the logarithmic terms from diagrams 3.1.a and

3.1.b (or 2.1.a, 2.1.b), discussed in the Abelian case, have a positive sign. Notice also, that

the new terms are non-analytic at ' = 0. The reason why these kind of corrections a�ect

the form of the potential strongly has already been discussed in section 2.4. To demonstrate

its importance the '2 ln(�mW )-term of Vm has been deleted by hand. The corresponding
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Fig.3.4 Higgs mass dependence of the latent heat �Q of the phase transition

surface tension is shown in �g. 3.3 (long-dashed line).

The comparison of the potentials to order g4; � [17] and g4; �2 shows a picture very similar

to the Abelian Higgs model. Neglecting scalar masses in the logarithms results in spurious

'2 ln(�mW )-terms, which reduce the surface tension. Another important contribution, less

signi�cant in the Abelian case, is the one proportional to g2(m1 + 3m2)mWL from Vz. This

term comes from scalar-vector diagrams of type of �g. 1.2.b and it was neglected in ref. [17].

On the relevant scale (' < T ) it produces a very steep behaviour of the potential, again

increasing the surface tension. The observed di�erence between the result of ref. [17] and

the complete g4; �2 calculation presented here is mostly due to these two e�ects, together

with the well known in
uence of the cubic scalar mass contributions from V3. However, in

sharp contrast to the Abelian case, both the g4; �- and the g4; �2-calculation suggest a much

stronger �rst order phase transition than the lowest order result.

Another interesting e�ect of higher order �-corrections is the complete breakdown of

the phase transition at a Higgs mass of about 100 GeV, where the surface tension is very

large. In this region the above mentioned term, proportional to g2(m1+3m2)mWL, becomes
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Fig.3.5 Position of the second minimum '+ in units of the critical Temperature Tc

important. For a temperature close to the uncorrected barrier temperature Tb, at which the

scalar masses vanish for ' = 0, it produces an almost linear behaviour in the small ' region.

This results in a potential for which at T = Tb the asymmetric minimum is not a global

minimum but only a local one. Note that Tb is the lowest temperature accessible in this

calculation. In other words, the temperature region in which the phase transition occurs can

not be described by the given method, due to infrared problems.

In order to illustrate the possible e�ects of the unknown infrared behaviour of the trans-

verse vector propagator, the dependence of the surface tension on the magnetic mass can

be studied. A magnetic mass of order g2T=3� is motivated by the solution of gap equa-

tions [16] and supported by the numerical investigation of gauge invariant gap equations

with resummed vertices [50]. Following the approach of ref. [16] the transverse vector mass

takes the form

m2
W =

�
g'

2

�2
+

 

g2

3��

!2

; (3.15)

where 
 is some unknown parameter. One can introduce this rede�ned transverse mass
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Fig.3.6 Surface tensions from the third and fourth order potentials for a model with
MW = 20 GeV in the Higgs mass range where the values di�er by a factor of 2 at most

in the most in
uential infrared contributions, i.e. in the m3
W - and in the '2 ln �mW -terms.

Figure 3.3 shows the results obtained for 
 = 0, 2 and 4, supporting the qualitative behaviour

found in ref. [16]. The main di�erence is due to the fact that the higher order result suggests

a stronger �rst order phase transition, thus for a given mHiggs a larger magnetic mass is

necessary to change the phase transition to second order.

A complete fourth order calculation of the surface tension has to include the wave function

correction term Z'('2; T ) calculated in ref. [28]. Using the results of ref. [28] the surface

tension

s =
Z '+

0
d'
q
2 (1 + Z'('2; T ))V ('; Tc) ; (3.16)

has been determined for Higgs masses between 25-95 GeV. The numerical e�ect of this Z-

factor is very small, only 1%� 4%. This is due to the smallness of the potential in the only

region where Z' is signi�cant, i.e. at small '.

The latent heat �Q (see eq. (2.22))is plotted in �g. 3.4 as a function of the Higgs mass. In

contrast to the Abelian model, here the higher order results show an almost linear increase of
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the latent heat with the Higgs mass. This somewhat surprising behaviour can be understood

by observing that for those potentials neither the position of the degenerate minimum nor the

height of the barrier change signi�cantly with increasing Higgs mass (see �g. 3.2). Therefore

@V=@T does not change dramatically over a wide Higgs mass range. On the other hand the

critical temperature increases with growing mHiggs.

As in the Abelian case the quantity '+=Tc, shown in �g. 3.5 as a function of the Higgs

mass, is least a�ected by higher order corrections.

Now the question arises whether a good convergence of the perturbation series, which

can not be claimed in the whole range of � for a realistic gauge coupling g = 0:64, could

be present in the region of much smaller gauge coupling constants. This seems indeed to be

the case, as can be seen in �g. 3.6, where the surface tensions of order g3; �3=2 and g4; �2 are

plotted for a model with a vector mass of 20 GeV, i.e. g = 0:16. In the used Higgs mass

range the two results for s di�er by a factor of two at most. The relative size of this range,

i.e. the ratio of the minimal and maximal values of the Higgs mass, is 4, which is twice as

large as the corresponding range for the model with MW = 80 GeV.

The phase transition parameters calculated in this section can be compared to new lattice

data available at a low Higgs mass point (mHiggs � 18 GeV) and a high point (mHiggs �
49 GeV) [11,12]. These data include critical temperature, jump of the order parameter �y�,

latent heat and surface tension at both Higgs mass values. The g4; �2-results are in good

quantitative agreement with lattice data (explicit numbers will appear soon [22]). This is

highly non-trivial, since quantities change by large factors between low and high point. An

exception is formed by the surface tension at the high point, which is larger by a factor

of � 2:5 in perturbation theory. All other parameters agree between the perturbative and

the lattice calculation with deviations compatible with the observed scaling violation on the

lattice and the uncertainties of perturbation theory. Note, that the simulations have been

performed with a maximum number of three lattice points in time-like direction, thus the

results may change somewhat on larger lattices. To obtain the good agreement quoted above

the renormalization e�ect of the vector boson on the very light Higgs particle has to be taken

into account at the low point [22].
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Fig.3.7 The surface tensions obtained from the standard model e�ective potentials as func-
tions of the zero temperature Higgs mass with mtop = 170 GeV

3.3.2 Complete standard model

In the case of the full standard model the qualitative behaviour of the potential is essentially

the same as for the SU(2)-Higgs model. The main di�erence is a decrease of the surface

tension by a factor � 4. This can be traced back to the large top quark mass which

in
uences the potential by lowering the barrier temperature (see B.21). The additional

U(1)-symmetry and the light fermions are less important. Also the characteristic points of

the surface tension plot of �g. 3.2 are shifted to higher values of the Higgs mass. Figure

3.7 shows the surface tension as a function of mHiggs. The complete breakdown of the g4; �2

calculation, observed at mHiggs � 100 GeV for the pure SU(2) case, occurs at mHiggs �
200 GeV in the full model. These quantitative di�erences do not change the qualitative

features of the potential, thus the discussion given in the previous section does also apply

to the standard model. The di�erence between the fully renormalized potential and the

partially renormalized potential (see eqs. (3.13),(3.14)) is not too severe in view of the huge
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Fig.3.8 Position of the second minimum '+ in units of the critical temperature Tc in the
case of the standard model with mtop = 170 GeV

uncertainties still present in the perturbative approach. Again, the position of the second

minimum at the critical temperature given in �g. 3.8, does not depend as strongly on the

order of the calculation as the height of the barrier. Unfortunately, the region mHiggs �
40 GeV, in which the reliability of the perturbative approach is the best and '+=Tc � 1, is

well below the experimental Higgs mass bound.
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Chapter 4

Gauge invariant approach

In this chapter the gauge invariant treatment of the electroweak phase transition is presented

following ref. [21]. The main new point is the introduction of a gauge invariant source

term [51]

Z = exp(��
W ) = tr exp
�
��(H +

Z
V
J �y�)

�
(4.1)

and the subsequent de�nition of an e�ective potential by the Legendre transformation

V (�; T ) = W (J; T )� J
�

2
;

�

2
=

@W (J; T )

@J
; (4.2)

which is performed perturbatively. The new variable �=2 =< �y� > describes the thermal

expectation value of a gauge invariant quantity.

This approach is perfectly well suited for comparison with lattice investigations, which

usually proceed without gauge �xing and consider the expectation value of the operator

�y�. Note also, that e�ective actions for composite operators have been de�ned previously,

for example in ref. [52], and that a formulation based on a �eld linearly related to �2 has

been given in ref. [53].

4.1 One-loop calculation of W (J) for the

SU(2)-Higgs model

The analysis is restricted to the pure SU(2)-Higgs model, which is su�cient to illustrate the

main features of this method at the one-loop level. Note that a comparison with the Abelian

model makes no sense at one-loop level since qualitative di�erences start to appear only at

the next loop order. Using the Lagrangian L from section 3.1, where the appropriate limits

have been taken (see section 3.3.1), the thermodynamic potential W can be calculated from
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the path integral

exp(��
W ) =
Z
D�D�yDW� exp

"Z �

0
d�
Z
d3~x(L � J�y�)

#
: (4.3)

To evaluate this integral the extremum of the static, �-dependent part of the action with

source term, characterized by Vtree, has to be determined:

LJ = L � J�y� = �Vtree + � � � ; (4.4)

Vtree = (�� + J + �0T
2)�y� + �(�y�)2 : (4.5)

Here, following the philosophy described in section 1.3.2, a thermal counterterm for the

scalar �eld has been introduced. Its leading and next to leading order contributions read

�0 = �01 + �02 =
�
1

2
� +

3

16
g2
�
� 3g3

16�

s
5

6
: (4.6)

The g3-term, generated by the one-loop self-energy contribution of the longitudinal vector

boson (see ref. [16], eqs. (41),(42)), is taken into account for reasons to be explained below.

Two di�erent regimes have to be distinguished for the calculation of W (J). Consider

the case with J < � � �0T
2 �rst. In this situation Vtree develops a non-trivial minimum at

'1 = '̂(J) (see eq. (3.3) for the conventions), de�ned by

�'̂2 = M2 = � � J � �0T
2 : (4.7)

Performing the shift '1 ! '̂+ '1 a tree-level contribution

Wtree(J) =
1

2
(�� + J)'̂2 +

�

4
'̂4 ; (4.8)

which is independent of the resummation, is generated. The one-loop contribution in Lorentz

gauge (cf. ref. [42]) with gauge �xing parameter � reads

W1(J) =
1

2

ZP
dk

"
9 ln(k2 +m2) + ln(k2 +m2

1) + 3 ln(k4 + k2m2
2 + �m2m2

2)� 6 ln k2
#

+
1

2

Z
d3~k

(2�)3�

"
3 ln(~k2 +m2

L)� 3 ln(~k2 +m2)

#
: (4.9)

Here Higgs mass, Goldstone mass, vector mass and longitudinal vector mass are given by

m2
1 = 2M2 ; m2

2 = 0 ; m2 =
1

4
g2'̂2 ; m2

L =
1

4
g2'̂2 +

5

6
g2T 2 : (4.10)
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Note that only the zero Matsubara frequency mode of the longitudinal vector degree of

freedom has been resummed. This simpli�es the calculation in Lorentz gauge and does not

change the result up to order g3 extracted from the one-loop formula.

If, on the other hand, J > � � �0T
2, no shift of the �eld is necessary and W (J) has no

tree-level contribution. The one-loop term can be easily obtained from eq. (4.9) by setting

m1 = m2 = M with M2 = �� + J + �0T
2 (4.11)

and replacing transverse and longitudinal vector masses by zero and mL;0 =
q
5=6gT respec-

tively.

In both the symmetric and the broken phase eq. (4.9) gives explicitly gauge independent

results since the product m2m is always zero. Working in R�-gauge the same answer is

obtained. The integrals are easily performed using appendix A.1 and terms of fourth and

higher order in the masses are neglected together with constant terms common to both

phases.

The one-loop thermodynamic potential W (J) in broken and symmetric phase is given by

W (J) = Wb(J)�(� � J � �0T
2) +Ws(J)�(�� + J + �0T

2) ; (4.12)

where

Wb(J) = �T 2

6
M2 � 1

4�
M4 (4.13)

� T

12�

h
(2M2)3=2 + 6m3 + 3m3

L

i
� '2

2
�02T

2 ;

Ws(J) =
T 2

6
M2 � T

12�

h
4M3 + 3m3

L;0

i
(4.14)

and M2 is given by eqs. (4.7) and (4.11) respectively.

4.2 Gauge invariant e�ective potential

The one-loop gauge invariant e�ective potential can now be obtained by a perturbative

Legendre transformation according to eq. (4.2). In the usual approach, based on the order

parameter ', the perturbatively de�ned e�ective potential is the sum of the one-particle

irreducible vacuum graphs of the shifted theory. However, no such interpretation is known

for the gauge invariant potential V (�). Therefore, after writing W (J) and J as a sum of

contributions of increasing order

W (J) = W0(J) +W1(J) +W2(J) + � � � ; J = J0 + J1 + J2 + � � � ; (4.15)
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the de�nition (4.2) has to be implemented order by order in perturbation theory [21, 54].

The �rst terms of the resulting potential are given by

V (�) =

"
W0(J0)� �

2
J0

#
+

"
W1(J0)

#
+

"
W2(J0)� 1

2

 
@W1(J)

@J

����
J0

!2,
@2W0(J)

@J2

����
J0

#
+ � � � ;
(4.16)

where J0 is a function of � de�ned by the leading order relation

@W0(J)

@J

����
J0

=
�

2
: (4.17)

Consider the phase with broken symmetry �rst. Here W (J) has to be decomposed into

a leading term W0 (order g2; �) and a next to leading term W1 (order g3; �3=2), de�ned by

the �rst and second line of eq. (4.13) respectively.

In the symmetric phase, where no tree-level term exists, the Legendre transformation can

be performed exactly at one-loop order. Neglecting constant terms common to both phases

the resulting potential is given by

V (�) = Vs(�
0)�(�0) + Vb(�

0)�(��0) ; �0 = � � T 2

3
; (4.18)

where

Vb(�
0) =

1

2
(�01T

2 � �)�0 +
�

4
�02 (4.19)

� T

12�
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�
1

4
g2�0

�3=2

+ 3
�
1

4
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5

6
g2T 2

�3=2
#
;

Vs(�
0) =

1

2
(�0T

2 � �)�0 � �2

6

�03

T 2
� T

4�

�
5

6
g2T 2

�3=2

: (4.20)

Here the new variable �0 has been introduced to separate the shift of the �eld variable

generated by the interaction from the basic, model independent thermal expectation value

T 2=3 [35]. Note the similarity of Vb to the order-g3; �3=2 Landau gauge result, eq. (B.31).

The new values of the scalar masses, namely zero for the Goldstone boson mass and 2��0

for the Higgs mass square, form the main di�erence of Vb and V3.

The gauge invariant potential de�nes a critical temperature at which its two minima,

one in the symmetric and one in the broken phase, are degenerate. This is illustrated in �g.

4.1. For comparison, the Landau gauge potential to order g3; �3=2 is plotted at its critical

temperature in �g. 4.2. The interaction induced shift �0 seems to play a role similar to the

squared �eld expectation value '2 of the usual approach (compare the discussion in section

4.4).
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Fig.4.1 Gauge invariant e�ective potential at critical temperature, mHiggs=70GeV

Fig.4.2 E�ective potential in Landau gauge at critical temperature, mHiggs=70 GeV
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Fig.4.3 Latent heat as a function of the zero temperature Higgs mass, calculated from the
potential in Landau gauge and from the gauge invariant potential

The main di�erence of the gauge invariant and the Landau gauge potential lies in the

description of the symmetric phase. Choosing the expectation value of the basic �eld oper-

ator as order parameter the symmetric phase corresponds to exactly one point, where this

parameter must vanish. In contrast to this, the gauge invariant coupling of the source per-

mits a description of the symmetric phase by a non-trivial minimum of the free energy as a

function of the �eld square expectation value. This expectation value can be made smaller

than its value at the minimum by turning the source, i.e. the mass term, on. Therefore the

gauge invariant potential exhibits a very steep behaviour left from the symmetric minimum,

but no de�nite smallest value of �0.

Note, that the gauge invariant potential is continuous together with its �rst derivative at

the matching point �0 = 0. This is due to the di�erence of the �rst terms of eqs. (4.19) and

(4.20) which compensates the contribution of the last term of eq. (4.19) to the derivative at

�0 = 0. The additional resummation up to order g3 performed in section 4.1 is responsible

for that matching. However, the same result for V (�) can also be obtained with leading
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Fig.4.4 Shift of the Higgs �eld as a function of the Higgs mass, calculated from the potential
in Landau gauge and from the gauge invariant potential

order resummation only. In that case the contribution

3g2T 2

32�2
MmL;0 =

1

2
�02T

2�0 (4.21)

from the scalar-vector diagram of the type of �g. 1.2.b appears in the symmetric phase, thus

rescuing the above matching of the �rst derivatives.

At small Higgs masses the symmetric minimum of the gauge invariant potential is not

important numerically. Therefore in this region the form of the potential at the critical

temperature and the derived phase transition parameters are very close to the Landau gauge

results. However, already at mHiggs = 70 GeV the symmetric minimum leads to an increase

of the barrier height by a factor of � 2 (compare �gs. 4.1 and 4.2). This e�ect becomes

even more important for larger Higgs masses. The latent heat plotted in �g. 4.3 does also

show a stronger �rst order phase transition at large Higgs mass values suggested by the new

approach. Note that a similar behaviour of the latent heat as a function of the Higgs mass

has been obtained from the two-loop results in Landau gauge (see �g. 3.4). The jump of

the order parameter shown in �g. 4.4 is not seriously a�ected by the new approach. This
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justi�es the conjecture of section 3.3.1 that this parameter is reliably determined by the

Landau gauge calculation.

Due to the separate treatment of the symmetric and the broken phase in the gauge

invariant approach, it is not clear at present how the surface tension can be calculated.

However, due to the strong increase of the barrier height at large Higgs masses in the new

approach signi�cant changes with respect to the Landau gauge results are expected.

4.3 Problems at higher orders

It is, in principle, straightforward to extend the calculation of the previous sections to the

order g4; �2, as it has been done in the conventional Landau gauge calculation of chapters 2

and 3. Nevertheless, the concrete realization of this project is hampered by some problems

to be discussed in the sequel.

The �rst step is to supply the leading order results for W (J), given by eqs. (4.13)

and (4.14), with higher order corrections. It is advantageous to calculate in Landau gauge,

although of course the �nal result should be gauge independent by de�nition. The necessary

corrections include the next term of the high temperature expansion of the one-loop integrals

and the leading contributions of the two-loop graphs. The later ones, which form the main

part of the calculation, can be obtained using the formulae of appendix B.3 and changing

the masses appropriately. Note that in the broken phase, one-particle reducible two-loop

graphs have to be considered.

To makeW (J) �nite, the parameters of the Lagrangian are renormalized multiplicatively

in the conventional way, using e.g. the SU(2)-limit of eqs. (B.20). Note that the multiplica-

tive mass renormalization has to be applied to both �� and J . However, a �nite result is

obtained only after the additional counterterm

Wc:t: =
1

16�2�
(J � �)2 (4.22)

has been added to W (J) in both the symmetric and the broken phase calculation (compare

ref. [55]). It is claimed that a possible �nite part of this counterterm, common to both phases,

does not a�ect the physical parameters derived from the calculation. Firstly, constant and

linear term in J do only shift the Legendre transformed function along vertical and horizontal

axis respectively. Applying such a shift to both phases does not change the description of

the phase transition. Secondly, the quadratic term in J does not a�ect the minimum of the

Legendre transformed function, since at the minimum J = 0 and the quadratic correction
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vanishes together with its �rst derivative [53]. To see this more explicitly introduce the

corrected function ~W (J), de�ned by

~W (J) = W (J) + CJ2: (4.23)

The new position of the minimum of the potential is given by

~�min

2
=
@ ~W

@J

�����
J=0

=
@W

@J

�����
J=0

=
�min

2
; (4.24)

and analogously

~Vmin = ~W (0) = W (0) = Vmin : (4.25)

Performing the Legendre transformation perturbatively a higher order dependence of the

result on the �nite part of Wc:t: is nevertheless present.

Now the obvious way to proceed is to calculate V (�) using eq. (4.16). In the broken

phase W2 is given by the order g4; �2 corrections and the �rst three terms of the perturbative

expansion of V can be calculated. In the symmetric phase, where no tree-level term exists,

these two-loop corrections de�neW1 and only the �rst two terms of eq. (4.16) are to be used.

It has been checked that the complete potential is continuous at the matching point

�0 = 0. However, its �rst derivative is logarithmically divergent at this point. Since all

physical information is extracted from the minima of the potential this pathology should, in

principle, have no importance.

The convincing form of the potential illustrated in �g. 4.1 has been obtained due to

the additional resummation of the scalar mass. More precisely, the scalar mass has been

resummed to the same order to which the whole calculation was performed. Therefore it ap-

pears necessary to extend the resummation to the order g4; �2 in this section. Unfortunately,

this can not be done in a straightforward manner, because the two-loop scalar self-energy is

divergent at zero momentum. Another possible way to organize the higher order resumma-

tion would be to demand the continuity of the �rst derivative of the potential. This fails due

to the same infrared divergences. However, it has been seen numerically that such a higher

order resummation can change the physical picture of the phase transition signi�cantly.

It is not known at present, how the above problems, which are essentially connected with

the infrared divergences of a massless three-dimensional �eld theory, can be resolved.
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4.4 On the relation to the conventional e�ective

potential

The gauge invariant thermodynamic potential W (J), introduced in the beginning of this

chapter, has a simple relation to the e�ective potential, as it can be calculated in any �xed

gauge [56]:

exp(��
W ) =
Z
D�D�yDW� exp

�Z
�
dx(L � J�y�)

�
(4.26)

= 2�2
Z
'3d'

Z
D�D�yDW� �

 
'� 1

�


Z
�
dx'1(x)

!

4Y
i=2

�

 
1

�


Z
�
dx'i(x)

!
exp

�Z
�
dx(L � J�y�)

�

= 2�2
Z
'3d' exp [��
V ('; J)] :

Here 'i are the real components of � (see eq. (3.3)) and V ('; J) is the Landau gauge e�ective

potential of a theory with mass square ��+J . In the in�nite volume limit only the absolute

minimum 'min of V contributes to the '-integral in eq. (4.26), resulting in the relation

W (J) = V ('min; J) : (4.27)

The thermodynamic potential W (J), calculated by this method, is continuous, but its �rst

derivative has a discontinuity at the critical temperature and J = 0, generated by the jump

of the absolute minimum 'min from zero to the non-trivial, symmetry-breaking minimum

'+. This discontinuity corresponds to the shift of the �eld square expectation value �

� 1

2
�� =

@W

@J

�����
J=0

�

� @W

@J

�����
J=0+

=
@

@J

h
V ('+; J)� V (0; J)

i
: (4.28)

Considering only the leading terms of the Landau gauge potential V , the approximate result

is

� 1

2
�� =

@

@J

h 1
2
(�� + J + �01T

2)'2
+ + � � �

i
� 1

2
'2
+ : (4.29)

This relation justi�es the way in which the Landau gauge and the gauge invariant calculations

have been compared in section 4.2, in particular in �gures 4.1, 4.2 and 4.4.

The conventional de�nition of the latent heat fromW (J) gives immediately, via eq. (4.27),

the formula used in the Landau gauge investigation (eq. 2.22)).

Note however, that the gauge invariantW (J) has been calculated in a completely di�erent

manner in section 4.1. There, it has only played an intermediate role in the calculation
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of V (�). The approach was based on the identi�cation of the minimum of the tree-level

potential and a subsequent loop expansion around this minimum.

In contrast to the paragraph above, a di�erent approach has been taken in this section.

After shifting the scalar �eld, the e�ective potential V ('; J) which includes loop corrections,

is determined. Its minimum then gives the thermodynamic potential W (J).

The way in which the scalar masses have been resummed in the Landau gauge calculations

of chapters 2 and 3 is not unique. If only the minima of the potential are to be considered,

as suggested by eq. (4.27), it may be advantageous to resum di�erently in the symmetric

and in the broken phase. In particular such a method can take into account the fact that

the Goldstone boson mass has to be zero at the broken minimum. One-loop calculations,

based on this idea, reproduce the numerical results of section 4.2 exactly. A corresponding

two-loop investigation is under way [22].

The above method, based on the derivatives of W (J; T ) near its non-analytic point, has

its disadvantage. No information can be extracted concerning the metastable and unstable

states, thus disabling the usual derivative expansion approach to the surface tension.

4.5 Clausius-Clapeyron equation

In classical thermodynamics there is a well known relation between the latent heat of a phase

transition and the change of the molar volume, the Clausius-Clapeyron equation [57]. In

complete analogy a relation between latent heat and jump of the order parameter � can be

written down.

Describing the state of the system by the gauge invariantly coupled source J and the

temperature the phase transition curve is given by a function Jcrit:(T ). Since W (J; T ) is

continuous in the J -T -plane, the total derivative of W along the phase curve

dW

dT
=

@W

@J

dJcrit:

dT
+
@W

@T
(4.30)

is equal in both phases. The partial derivatives of W can be easily related to the �eld square

expectation value � and the energy density E:

@W

@J
=

1

2
� ;

@W

@T
=

1

T
(W � E) : (4.31)

Now, evaluating eq. (4.30) in both phases and equating the results gives

1

2
��

dJcrit:

dT
=

�Q

T
; (4.32)
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where �Q = Esymmetric � Ebroken is the latent heat.

Neglecting e�ects of higher loops und renormalization dJcrit:=dT can be easily evaluated

by dimensional arguments. Since the Higgs mass term �� + J is the only dimensionful

parameter of the SU(2)-Higgs model the dependence of the critical temperature on J is

given by

T = const.
q
� � Jcrit: : (4.33)

From this

T
dJcrit:

dT

�����
J=0

= �2� (4.34)

and therefore the jump of the order parameter and the latent heat are related by

�Q = �1

2
m2

Higgs�� ; (4.35)

where mHiggs is the zero temperature Higgs mass.

This relation has been checked against the available data from one- and two-loop cal-

culations of the e�ective potential. The Landau gauge results are in very good agreement

with eq. (4.35) at small Higgs masses, with deviations increasing up to � 25% at mHiggs=80

GeV. It is interesting to observe that the gauge invariant one-loop calculation of section 4.2

satis�es the above relation exactly. This can be proven analytically, by writing the gauge

invariant potential in the form

V (�) = ��

2
� + T 4 ~V (�=T 2) (4.36)

with some dimensionless function ~V , which has no implicit temperature dependence. From

this general form of V and the de�nitions of �� and �Q the relation (4.35) can be easily

extracted.

Note also, that the lattice results of ref. [12] verify eq. (4.35) quite well. For Lt=3

lattices the deviation amounts to no more than 1...2 standard deviations, de�ned by the

statistical error of the simulation. Here Lt denotes the lattice size in time like direction.

An improvement of the validity of eq. (4.35) is observed when going from Lt = 2 to Lt = 3

lattices.
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Conclusions

The thermodynamic parameters of the electroweak phase transition have been analysed in

a perturbative approach based on the high temperature e�ective potential. A complete

calculation of the g4; �2-potential has been performed for the Abelian Higgs model, the

SU(2)-Higgs model and the standard model. The Abelian calculation has been shown to

have no infrared problems in the systematic coupling constant expansion in the symmetric

phase. This does not hold in the general case, where the typical non-Abelian diagrams

become important in higher orders. This is seen explicitly at the order g4, where, opposite

to the Abelian case, logarithmic mass terms increase the strength of the �rst order phase

transition dramatically.

Critical temperature, latent heat, surface tension and jump of the order parameter �y�

have been calculated for di�erent Higgs masses and di�erent approximations to the poten-

tial. The reliability of the perturbative expansion is clearly worsening with increasing Higgs

mass. In particular, in the non-Abelian case, any information on an infrared cuto�, e.g. a

magnetic mass value, would increase the accuracy of the calculation drastically. However,

infrared problems are also connected with scalar masses, which become small at the critical

temperature.

Comparing the complete standard model with the pure SU(2)-Higgs model no qualitative

change is found. The main di�erence is a decrease of the strength of the phase transition

due to the large top quark mass.

Newly available lattice data at mHiggs � 18 GeV and at mHiggs � 49 GeV [11, 12] are

in good quantitative agreement with the perturbative two-loop results. This may be seen

as a justi�cation to take the calculated parameters more seriously at larger Higgs mass

values, where convergence of the perturbation series is bad and no lattice data is available.

Perturbative results suggest a weak �rst order phase transition at realistic Higgs mass values.

However, a change to an analytic crossover is also a possibility [50]. Unfortunately, the

region where reliable predictions are available and where ' � T , an important condition for
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baryogenesis, is at mHiggs � 40 GeV and therefore well below the experimental bound. The

present results seem to disfavour scenarios of electroweak baryogenesis relying on a strong

�rst order phase transition within the minimal standard model.

The gauge invariant description, elaborated in the last chapter, allows a better physical

understanding of the thermodynamics of the phase transition. In this approach, coupling

the source term in a gauge invariant manner, a more direct access to physical quantities

is possible. In particular, the symmetric phase is described by a non-trivial minimum of

the potential as well. Since the numerical results obtained in the gauge invariant approach

at one-loop are similar to the Landau gauge results, the latter ones are strongly supported

by the new, conceptually more satisfactory treatment. Applying the Clausius-Clapeyron

equation to the electroweak phase transition a simple relation between latent heat and jump

of the order parameter has been derived in the above context. Being in good agreement

with perturbative as well as with lattice data, it improves con�dence in the correctness of

the treatment of the phase transition.

In agreement with recent results of other methods the performed investigation predicts

a �rst order electroweak phase transition of decreasing strength when the Higgs mass is

increasing up to mHiggs � 70 GeV. At larger Higgs mass values the calculation is strongly

a�ected by infrared problems. If, in spite of this di�culty, perturbation theory without

explicit infrared cuto� is taken seriously, the phase transition is found to remain weakly �rst

order.
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Appendix A

Some integrals

A.1 Integrals of thermal �eld theory

In this section the basic temperature integrals [17, 34, 42, 58], needed throughout the calcu-

lation, are listed. The notation follows the general formalism introduced in section 1.1. At

one-loop level, the fundamental integral is [17,42]

I(m) =
ZP dk

k2 +m2
=

�2�

(2�)n�1�

X
k0

Z
dn�1k

1

k2 +m2

(A.1)

=
1

12�2
(1 + ���)� m

4��
� m2

16�2

�
1

�
+ ln ��2�2 +

3

2
� c1

�
+ : : : ;

where

c1 =
3
2
+ 2 ln 4� � 2
E � 5:4076 : (A.2)

Here terms of higher order in m� have been neglected because in the present calculation

they do not contribute to the g4-potential. The renormalization scale of the MS-formalism

is de�ned by

ln ��2 = ln �2 + ln 4� � 
E ; (A.3)

where 
E is Euler's constant. The coe�cient

�� = 2
E + ln
��2�2

4
� 12

�2
� 0(2) (A.4)

of � from the leading contribution

I�� =
1

12�2
(1 + ���) (A.5)

will cancel in the �nal formula for the potential, similarly to the temperature dependent

divergences [17].
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The fermionic analogue of this integral is

If(m) =
Z
f

P dk

k2 +m2

(A.6)

= � 1

24�2
(1 + �(�� � ln 4))� m2

16�2

�
1

�
+ ln ��2�2 +

3

2
� c1 + 2 ln 4

�
:

Its leading, mass independent, part will be denoted by I�f�.

Another bosonic one-loop integral, appearing due to the non-covariant structure of the

vector propagator, is given by

II(m) =
ZP k20 dk

k2(k2 +m2)
=
�
�1

2
+ �

�
I�� �

m2

64�2

�
1

�
+ ln ��2�2 +

7

2
� c1

�
: (A.7)

At two-loop level the basic problem is the calculation of the scalar setting sun diagram

(see �g. 1.2.a). This has �rst been done in ref. [34] and extended to the case of three di�erent

masses in ref. [17]. Neglecting terms of order m2�2 the integral reads

H(m1;m2;m3) =
ZPZP dk dq

(k2 +m2
1)(q2 +m2

2)((k + q)2 +m2
3)

(A.8)

=
3

16�2�
I�� +

1

64�2�2

 
ln ��2�2 � 4 ln

�(m1 +m2 +m3)

3
� c2

!
;

where the constant

c2 = 2

 

E � � 0(2)

�(2)
+ ln

9

2
� 1

!
� 3:3025 (A.9)

has �rst been obtained analytically in ref. [58].

In the standard model calculation the fermionic analogue of this two-loop integral, i.e. the

corresponding integral where two of the propagators have fermionic Matsubara frequencies

k0 = (2n + 1)�T , is needed. However, as has been shown in ref. [17], this integral vanishes

in leading order in dimensional regularization when �! 0:Z
f

P ZP dk dq

(k2 +m2
1)(q2 +m2

2)((k + q)2 +m2
3)

=
1

�2
O(m2�2): (A.10)

A.2 One- and two-point functions

For the convenience of the reader the usual one- and two-point functions, necessary for the

renormalization at T = 0, are displayed. Working in n = 4 � 2� dimensions only the pole

and the �nite parts are shown.

A(m2) =
�2�

(2�)n

Z
dnk

k2 �m2 + i"
=

im2

16�2

 
1

�
+ 1 + ln

��2

m2

!
; (A.11)
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B(q2;m2
0;m

2
1) =

�2�

(2�)n

Z
dnk

(k2 �m2
0 + i")((k + q)2 �m2

1 + i")
(A.12)

=
i

16�2

"
1

�
+ 2 + ln

��2

m0m1

� 1

q2

�
(m2

1 �m2
0) ln

m1

m0

� 2m1m0f(x)
�#

;

where

x =
m2

0 +m2
1 � q2

2m0m1

(A.13)

and the function f is de�ned by

f(x) =

8>>>>>><
>>>>>>:

p
x2 � 1 (�arccosh(�x) + i�) : x < �1

� p
1� x2 arccos x : �1 < x < 1

p
x2 � 1 arccosh x : 1 < x :

(A.14)
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Appendix B

Explicit formulae for the e�ective

potential

B.1 Abelian Higgs model

The leading order resummed masses of Goldstone boson, Higgs particle and longitudinal

vector boson read

m2
� = �'2 � � + (4� + (3 � 2�)e2)I�� = �'2 � � + 4� + 3e2

12�2 +O(�) ;

m2
' = m2

� + 2�'2 ;

m2
L = e2'2 + 4e2(1� �)I�� = e2'2 + e2

3�2 +O(�) :

(B.1)

The transverse vector mass mT = m = e' remains uncorrected. For the calculation of VR

the self-energy parts of the type �b2 (see eq. (1.20)) are needed. They appear only for the

longitudinal and transverse vector boson:

�b2;L = (2� 4�)e2I�� ; �b2;T = �2e2I�� : (B.2)

The counterterms rendering the potential �nite are generated from the leading order contri-

bution (see the �rst two terms of eq. (B.7) below):

�V =
'2

2

"
� �(�Z� + �Z'2) + I��

n
4�(�Z� + �Z'2) + (3 � 2�)e2(�Ze2 + �Z'2)

o #

+
�

4
'4(�Z� + 2�Z'2) ; (B.3)

where

�Z� =

 
3e4

�
� 6e2 + 10�

!
p ; �Ze2 =

e2

3
p ; �Z� = (4� � 3e2)p ; �Z'2 = 3e2p ; (B.4)
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with the pole in � denoted by

p =
1

16�2�
: (B.5)

The di�erent contributions to the potential, listed below, have to be summed according to

eq. (1.30), where

V	 = Va + Vb + Vp (B.6)

is given by the diagrams in �g. 2.1. Linear mass terms, poles in � and terms proportional

to �� (see eq. (A.4)), which cancel systematically in the �nal result, are not shown and the

limit � ! 0 has already been performed. A �nite contribution from �V has been added to

V4. The following terms form the complete analytic MS-potential:

V3 =
'2

2

"
�� + 1

�2

�
1

3
�+

1

4
e2
�#

+
�

4
'4 � 1

12��

h
m3

' +m3
� + 2m3 +m3

L

i
(B.7)
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V4 =
e2'2

64�2�2

�
4

3
�� e2

�
35

18
+ ln ��2�2 � c1

��
(B.11)
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B.2 Standard model

The leading order resummed masses of Goldstone boson and Higgs particle read

m2
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While the transverse vector boson masses and the fermion mass remain uncorrected to

leading order

mW =
1

2
g2' ; mZ = mW= cos �W ; mf =

1p
2
gY ' ; (B.14)

the longitudinal SU(2)�U(1) mass matrix receives temperature corrections in the diagonal

elements [15]
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h
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They result in longitudinal masses de�ned by

0
B@
m2

W + �m2
WL �1

4
g1g2'

2

�1
4
g1g2'

2 m2
B + �m2

BL

1
CA=

0
B@

cos ~� sin ~�

� sin ~� cos ~�

1
CA
0
B@
m2

ZL 0

0 m2

L

1
CA
0
B@
cos ~� � sin ~�

sin ~� cos ~�

1
CA: (B.16)

In the following the short hand notations

s = sin �W ; c = cos �W ; ~s = sin ~� ; ~c = cos ~� (B.17)
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are used. From eq. (B.16) several helpful identities can be derived:
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:

For the calculation of VR self-energy parts of the type �a2(k) and �b2 are needed:
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In complete analogy with the Abelian case (see eq. (B.3)) the counterterms are generated

from the leading order potential given by the �rst line of eq. (B.21). The multiplicative

renormalization realizing the MS-scheme is described by
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As in the appendix B.1 the �nal result is presented without linear mass terms, poles and

��-terms, which would cancel in the sum. The following contributions form the complete

standard model e�ective potential to the order g4; �2:
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B.3 SU(2)-Higgs model

In this section, for completeness, the potential of the SU(2)-Higgs model to order g4; �2 is

presented. It is readily obtained from the standard model results of section B.2 by performing

the limit g1; gY ! 0 and setting the number of families nf to zero. With the masses
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the �nal result is given by the sum of the following contributions:
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Appendix C

Formulae for renormalization at T = 0

C.1 Abelian Higgs model

The self-energy of the vector �eld (in Minkowski space) has the structure

i���(q2) = i
�
�(q2)g�� +�Lq

�q�
�
: (C.1)

Here the momentum independent part of �(q2) is just the correction to the mass, and �L(q2)

is irrelevant in Landau gauge because the propagator is transverse. The complete one-loop

result without one-particle reducible tadpoles reads
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Similarly, the one-loop self-energy of the Higgs particle is given by
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HereA(q2) and B(q2;m2
0;m

2
1) are the usual one- and two-point functions, de�ned in appendix

A.2.
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C.2 Standard model

The Landau gauge self-energy of the Higgs particle is given by
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Here MW ;MZ and mt are the zero temperature masses of the vector bosons and the top

quark and c is the cosine of the Weinberg angle.

The fermion self energy can be written in the form
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Here the following short forms for typical self-energy contributions have been used:
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