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An ination model with inverse symmetry breaking of two scalar �elds is

proposed. Constraints on the parameters for a successful ination are obtained.

In general the inequality �1 � g < �2 should be satis�ed, where �1;2 and g are the

coupling constants for self interaction and mutual interaction of two scalar �elds

respectively. An example with SU(5) GUTs phase transition and numerical study

are presented. This model introduce a new mechanism for the onset of ination.
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I. INTRODUCTION

Various ination models[1] have been proposed to solve the horizon and the

atness problems of the standard Big Bang cosmology. However, in relation

to particle physics each model has its own problems to be solved. Therefore,

reconciling the ination models with particle physics is an important subject of

the modern cosmology.

Since the upper bound on the ination energy scale is about the GUTs(Grand

Uni�ed Theories) scale[2], it is natural to search for the ination during the

GUTs phase transition. However, the original ination model has graceful-exit

problem[1] and `new' ination model with the GUTs nonsinglet �elds leads to

too strong density uctuation[3]. As a solution to this problem the model with

the GUTs singlet inaton coupled with SU(5) Higgs was suggested[4].

Generally, the smallness of the coupling constants required for the small

density perturbation prevents inaton �elds from obtaining thermal-equilibrium,

while chaotic ination model[5] uses this non-equilibrium states to give the initial

conditions for the inaton �elds.

Though many aspects of the phase transition theory have already been used

for the various ination models, �eld theory has still other mechanisms of the

phase transition to be studied in the context of ination.

In this paper, an ination model with `inverse symmetry breaking' is in-

vestigated. Inverse symmetry breaking[6] is a phenomenon that the symmetry
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broken at a higher temperature is restored at a lower temperature, contrary to

the ordinary phase transitions. The phenomenon has been applied to solving

the monopole problem by allowing the temporary breaking of the U(1) gauge

symmetry[7]. Similar phenomenon called anti-restoration appears in some global

SUSY theories[8].

Our model is a kind of two �elds ination models[9] where generally an addi-

tional scalar �eld besides inaton is introduced to complete the ination and/or

give an appropriate density perturbations. For example, in the `hybrid' or `false

vacuum' ination model[10] the additional scalar �eld gives the inaton extra

masses which make the inaton roll down and end the ination.

The inaton potential in our model is similar to that in the hybrid model, but

the detailed features of the phase transition are very di�erent. In our model the

phase transition of a scalar �eld (say �2, for example GUTs Higgs) is responsible

for the beginning of the ination driven by a gauge singlet inaton(say �1) rather

than the ending of the ination. Moreover, the additional �eld(�2) is in the true

vacuum rather than the false vacuum during the ination.

In sec. II, we review inverse symmetry breaking and derive the conditions

for the phenomenon. In sec. III, the constraints for the successful ination is

derived. In sec. IV, an application with SU(5) GUTs model and numerical study

are presented. Sec. V contains discussions.
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II. INVERSE SYMMETRY BREAKING

In this section we review inverse symmetry breaking and conditions required

for it. Consider a following potential which is a simple example of inverse sym-

metry breaking. Such a potential can appear in the approximation of the 1-loop

�nite temperature e�ective potential of the two interacting massive scalar �elds.

V (�1; �2; T ) = (D1T
2 � �21)�

2
1 + �1�

4
1

+ (D2T
2 � �22)�

2
2 + �2�

4
2 + g�21�

2
2 + C; (1)

where ��2i�2i (i = 1; 2) is the bare mass term of �i, and Di is the coe�cient

of thermal mass correction term[11]. Here the constant C is introduced to make

the cosmological constants zero.

The mutual interaction term:

Vint = g�21�
2
2: (2)

is essential for inverse symmetry breaking. We will consider the case where this

term exists in the tree level potential. This term may also arise via fermion

exchange box diagrams, even if it is absent in the tree level potential [12].

When the �elds have v.e.v.(vacuum expectation value), they acquire addi-

tional masses through Vint. Their e�ective masses squared at a temperature T

without DiT
2 terms are

m2
1eff (T ) � 2(��21 + gh�2(T )i2); (3)
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m2
2eff (T ) � 2(��22 + gh�1(T )i2); (4)

where h�i(T )i is the v.e.v. of �i at T .

Then the phase transition temperature Tci at which the coe�cient of �2i van-

ishes can be de�ned, i:e:;

T 2
ci � �

m2
ieff (Tci)

2Di

: (5)

From now on we will consider the case

Tc1 > Tc2; (6)

which means that h�1(T )i becomes nonzero at Tc1, and after the expansion

of the universe h�2(T )i becomes nonzero at the lower temperature Tc2 in turn.

If h�2(T )i is su�ciently large at Tc2, the symmetry of �1 broken at Tc1 can be

restored due to the additional mass term from Vint(see eq.(4) and Fig.1.). This

is so-called `Inverse symmetry breaking'[6].

If at this temperature(Tc2) �1 rolls down slowly from h�1(Tc2)i to zero and its

energy dominates others, we can expect a chaotic type slow-rollover ination and

regard �1 as an inaton �eld. Note that here we use the terminology `chaotic' to

mean a kind of ination potential and not chaotic initial condition[13].

h�i(T )i can be found from the relation dV (�1; �2; T )=d�i = 0. From eq.(1)

one can obtain

h�1(T )i =
s
�21 � gh�2(T )i2 �D1T 2

2�1
'
s
�21
2�1

� �1; (7)

when Tc2 < T < Tc1.
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The above approximation is justi�ed by the facts that h�2(T )i = 0 in this

temperature range, and D1T
2 term decreases rapidly after the phase transition

at Tc1( see again Fig.1. ).

And similarly when T < Tc2,

h�2(T )i '
s
�22
2�2

� �2: (8)

From now on, to simplify the calculation, we will use �i as an approxima-

tion of h�i(T )i in the temperature region described above. It is a good enough

approximation for the order of magnitude estimates.

Note that �1 and �2 minimize V (�1; 0; 0) and V (0; �2; 0) respectively.

III. CONSTRAINTS FOR THE INFLATION

In this section the conditions for a successful ination will be obtained. There

are many constraints for the successful ination models. The most signi�cant one

comes from the density perturbation:

[
�T

T
]2Q =

32�V 3
inf

45V
02
infM

6
P

; (9)

where V 0

inf is
dVinf

d�1
at the horizon crossing of the observed scale. We consider

the quadratic term dominated inaton potential Vinf � m2
1�

2
1=2 which is the �1

dependent part of the approximation of V (�1; �2; T � Tc2). Som
2
1=2 ' ��21+g�22.

COBE[14] observation, [�T

T
]Q ' 6 � 10�6, demands m1 ' 1013GeV for our

model.
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Su�cient expansion condition requires[15]

�1 =

s
N

2�
MP

>� 3MP (10)

for eN expansion and N
>� 60.

Note that for the quadratic term dominated inaton potential slow-rolling condi-

tion m1 � H is automatically satis�ed for �1
>� MP . The above two constraints

are common to many mass term dominated chaotic type ination models.

Now we will investigate conditions speci�c for our model.

First, the condition for inverse symmetry breaking(eq.(6)) is equal to

�21
D1

>
�22 � g�21

D2

: (11)

Second, the phase transition at Tc2 must be energetically favorable to take

place. It means that the free energy released by symmetry breaking by �2 must

be larger than the free energy absorbed by symmetry restoration by �1. This

implies

V (h�1(T )i; 0; T � Tc2)� V (0; h�2(T )i; T � Tc2) > 0; (12)

or approximately V (�1; 0; 0)� V (0; �2; 0) > 0, which is equivalent to

�21�
2
1 < �22�

2
2: (13)

Third, restoring the symmetry of �1 implies m2
1eff (0) > 0, or

�21 < g�22: (14)
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Similarly, the broken symmetry of �2 implies m2
2eff (0) < 0,

�22 > g�21: (15)

From eq.(11) and eq.(13) we obtain

D1 <
�21

�22 � g�21
D2 '

�21
�22
D2 < (

�2

�1
)2D2; (16)

where we have used eq.(15) in the approximation.

And �nally, we want the potential Vinf to be dominated by �21 term rather

than by �41 term. So

�21 <
2

3
g�22: (17)

Using eq.(7) and eq.(8), one can rewrite the constraints(eq.(11) and eq.(13)) with

�i instead of �i.

�1(
�1

�2
)4 < �2 < �1(

�1

�2
)2
D2

D1

+
g

2
(
�1

�2
)2: (18)

Let us further consider miscellaneous constraints. One loop correction to �i

should not be larger than itself, i.e., �i
>� 0:1g2.

Whether �2 drives an ination or not at Tc2, �2 oscillates around the potential

minima(�2) with period � 1=m2 after the phase transition (see �g.1), and its en-

ergy density ��2 decreases as R
�3(t) like classical nonrelativistic matter �eld[16].

Here m2
2=2 � ��22 + g�21 is an approximation of m2

2eff (T ) at Tc2 � T < Tc1.

Since R / t2=3 in the matter dominated era, ��2 is proportional to t
�2 during

the oscillation. (Even if ��2 rapidly changes to radiation energy so that the
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universe is in radiation-dominated era, the energy density is proportional to t�2

and the above arguments still hold.)

We need to know the time (4tosc) when ��2 decreases to ��1 and the ination

by �1 begins. From the fact that ��2(t) ' ��2(t2)H(t2)
�2t�2 this time scale is

given by

4tosc '
1

H(t2)
[
��2(t2)

��1
]
1

2 � M

m1�1
; (19)

whereM �MP=8� is the reduced Planck mass, t2 is the time when the oscillation

of �2 starts and H(t2) � m2�2=M � �
1

2

�2
=M . We have also used the fact that

��i � m2
i�

2
i before �i start to oscillate.

During 4tosc, �1 should not fall down too much. Since the equation for �1 is

3H _�1 = �m2
1�1; (20)

whose solution is �1 = �1 � m1MP t=2
p
3[15], the rolling time scale is 4trol �

1=m1.( the dots denote time derivatives.) Therefore one can know that if �1 �M ,

4tosc �4trol and �1 does not decrease too much during �2 oscillation, and one

could expect the ination by �1.

IV. AN EXAMPLE WITH SU(5) GUTs AND

NUMERICAL STUDY

Let us apply our model to SU(5) GUTs. Consider the case where �2 is a

SU(5) Higgs �eld[3]. Then the phase transition temperature Tc2 ' 1015GeV '
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q
(�22 � g�21)=D2 '

q
�22 � g�21, because D2 =

75
8
g2SU(5) ' 3 with the uni�ed gauge

coupling gSU(5).

We also know that �2 'MX=gSU(5) ' 1015GeV .

From eq.(10) and eq.(16) it is easy to �nd that

D1 < (
�2

�1
)2D2

<� 10�8: (21)

From the density perturbation constraint m2
1=2 ' (1013GeV )2 ' ��21+g�22 � g�22

we get g
>� 10�4. However D1 ' 0:1g < 10�8, so g < 10�7. Hence g can not

satisfy the both conditions. This problem is easily solved by considering the

GUTs models whose energy scale is larger (Tc2 ' 1016GeV ). In this case, using

the same procedure we obtain g
>� 10�6 and D1

<� 10�6, so all the condition is

satis�ed within our approximation.

From eq.(14) and eq.(7) we obtain

�1 <
g

2
(
�2

�1
)2

<� 10�12; (22)

so �1 � g.

Such a small coupling constant is typical to many slow-rollover ination mod-

els, and gives rise to a thermal non-equilibrium problem. Like many other slow-

rollover ination models except for the chaotic ination model, it is very hard to

establish initial thermal equilibrium required for our model.

For the following, we will assume that somehow this equilibrium is estab-

lished and �i has the appropriate initial values. ( The parametric resonance
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mechanism[17] may help good reheating, but it is still unclear that produced

light particles can obtain the thermal equilibrium before Tc2.)

If we want any ination at Tc2, the vacuum energy of �1 or �2 must be larger

than the radiation energy. In this case, from eq.(13) the energy of �2 is larger

than that of �1, so it is possible that there is a new ination by `�2' before that

by �1. So our model could be a kind of `double ination'[18].

Whether the �rst ination(by �2) can exist depends on the rolling speed of �2

at this phase transition. Since the number of e-foldings of expansion in the new

ination is given by N ' (H=m2)
2, the �rst slow-rollover ination is available

only for m2 � H.

However, from the fact that m2
2=2 = ��22 + g�21, one can know that m2 �

H2 ' 1013GeV without �ne tuning and there is no slow-rollover ination driven

by �2 preceding �1 ination with GUTs.

Now we will discuss the numerical study of our model. The process of our

ination model seems to be rather complicated. To con�rm the scenario we

perform numerical study of following equations for the evolution of the �elds:

H = [
1

3M2
(
_�1
2

2
+

_�2
2

2
+ V )]

1

2 ;

��i + 3H _�i +
@V

@�i
= 0; (23)

where V is V (�1; �2; 0) in eq.(1). We have ignored thermal contributions which

may become small relatively when there is ination or oscillation of �1; �2.

Fig.2 shows the results with m1 = 1013GeV;m2 = 5�1016GeV; �1 = 5M;�2 =
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5� 10�2M and g = 10�7.

After the long oscillation of �2 for �
>� 11 (in realistic case, this oscillation

disappears rapidly by producing particles.), ��2 decreases and �1 rolls down and

begin the ination. The sign of the ination by �1 can be identi�ed by the at

region of H graph( �
>� 16). After the ination ends, �1 starts to oscillate when

� ' 19.

Now let us consider the case where no initial thermal equilibrium state is

established. It is well known that at the Planck scale the typical initial value of

�1 could be about �
�1=4
1 MP � MP . Hence, generally there could be an chaotic

ination by �1 before the ination by �1 and/or by �2 at the lower temperature.

Whether there has been a chaotic ination or not, �1 �eld rolls down to �1

and start to oscillate when �1 � �1 becomes about MP . Since m2 � m1, during

the chaotic ination �2 rolls down to �2 rapidly, then the e�ective mass of �1

becomes positive and �1 may roll down to zero again. In this case our scenario is

hardly distinguishable from the ordinary chaotic ination by �1. So it seems to

be essential to assume the initial thermal equilibrium, if we consider our model

with GUTs.

V. DISCUSSIONS

The most special feature of our model is that we can choose the initial value

of the inaton �eld(�1) by varying the parameters.
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From eq.(18) and eq.(22) we know that the relation �1 � g < �2 should be

satis�ed for the successful ination.

For some parameter ranges our model could be a two-�led double ination

whose properties depend on the rolling speed of �2.

Our model with the GUTs phase transition requires the GUTs energy scale

to be O(1016GeV ), while assumption of thermal equilibrium is needed like many

other slow-rollover ination models.

The numerical study indicates that in spite of complexity of out model ina-

tion could occur with parameters constrained by many conditions.

This model may also be used to give the appropriate density perturbation

to match COBE normalization with galaxy-galaxy correlation function[19]. Note

that for this purpose �1( eq.(10)) should be lowered so that we can observe the

e�ect of the ination by �2.

Many constraints on the masses and couplings of the �elds for the successful

ination and inverse symmetry breaking are studied. However, some of the re-

quirements can be abandoned. For example, �1 needs not have zero v.e.v. after

ination and may have some �nite v.e.v. In this case, �1 could be a scalar �eld

responsible for the broken symmetry in some particle physics theories.

It is also possible that inaton potential is dominated by quartic term not by

quadratic term.

Furthermore, for more general case the potential V (�1; �2; T ) may have small
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barrier term such as T�3i . In this case, it is possible that there is a �rst order

ination by �2 which is interesting, because it could be another mechanism for

the recently proposed open ination models[20].

In a word, there still remain various scenarios to be studied in di�erent param-

eter spaces in this model where the new way of onset of ination is introduced.

ACKNOWLEDGMENTS

The authors are grateful to H. Kim, H. Kwon and Y. Han for useful comments.

This work was supported in part by KOSEF.

15



Figure Caption

Fig.1. Schematic diagram for inverse symmetry breaking.

h�1(T )i(thick line) and h�2(T )i(dashed line) versus temperature T .

Fig.2. The results of numerical study showing the evolution of �1; �2 and H

versus time in log scale � = ln(m2t). �1 is in units of M , �2 in units of 10�2M

and H in units of 10�2m2.
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