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Abstract

Possible experimental searches of doubly charmed baryons and tetraquarks
at �xed target experiments with high energy hadron beams and a high in-
tensity spectrometer are considered here. The baryons considered are: �+

cc

(ccd), �++

cc (ccu), and 
+

cc (ccs); and the tetraquark is T (cc�u �d). Estimates
are given of masses, lifetimes, internal structure, production cross sections,
decay modes, branching ratios, and yields. Experimental requirements are
given for optimizing the signal and minimizing the backgrounds. This pa-
per is designed as an experimental and theoretical review. It may therefore
be of assistance in the planning for a future state-of-the-art very charming
experiment, in the spirit of the aims of the recent CHARM2000 workshop.
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Introduction

The Quantum Chromodynamics hadron spectrum includes doubly charmed
baryons: �+

cc (ccd), �
++

cc (ccu); and 
+

cc (ccs), as well as ccc and ccb. Properties
of ccq baryons were discussed by Bjorken [1], Richard [2], Fleck and Richard
and Martin [3], Savage and Wise and Springer [4, 5], Kiselev et al. [6, 7],
Falk et al. [8], Bander and Subbaraman [9], and Stong [10]. Singly charmed
baryons are an active area of current research [11, 12, 13, 14, 15, 16], but there
are no experimental data on the doubly charmed variety. A dedicated double
charm state of the art experiment is feasible and required to observe and to
investigate such baryons. The required detectors and data acquisition system
would need very high rate capabilities, and therefore would also serve as a
testing ground for LHC detectors. Double charm physics is in the mainstream
and part of the natural development of QCD research. This paper is an
experimental and theoretical review, as part of the planning for a state-of-
the-art very charming experiment, in the spirit of the aims of the recent
CHARM2000 workshop [17]. The present work is an expanded version of a
workshop contribution [18] dealing with a CHarm Experiment with Omni-
Purpose Setup (CHEOPS) at CERN [19].

The ccq baryons should be described in terms of a combination of per-
turbative and non-perturbative QCD. For these baryons, the light q orbits a
tightly bound cc pair. The study of such con�gurations and their weak decays
can help to set constraints on phenomenological models of quark-quark forces
[3, 20]. Hadron structures with size scales much less than 1/�qcd should be
well described by perturbative QCD. This is so, since the small size assures
that �s is small, and therefore the leading term in the perturbative expansion
is adequate. The tightly bound (cc)�3 diquark in ccq may satisfy this condi-
tion. For ccq, on the other hand, the radius is dominated by the low mass q,
and is therefore large. The relative (cc)-(q) structure may be described sim-
ilar to mesons �Qq, where the (cc) pair plays the role of the heavy antiquark.
Savage and Wise [4] discussed the ccq excitation spectrum for the q degree
of freedom (with the cc in its ground state) via the analogy to the spectrum
of �Qq mesons. Fleck and Richard [3] calculated excitation spectra and other
properties of ccq baryons for a variety of potential and bag models, which
describe successfully known hadrons. Stong [10] emphasized how the QQq
excitation spectra can be used to phenomenologically determine the QQ po-
tential, to complement the approach taken for Q �Q quarkonium interactions.
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The ccq calculations contrast with ccc or ccb or b-quark physics, which are
closer to the perturbative regime. As pointed out by Bjorken [1], one should
strive to study the ccc baryon. Its excitation spectrum, including several
narrow levels above the ground state, should be closer to the perturbative
regime. The ccq studies are a valuable prelude to such ccc e�orts.

A tetraquark (cc�u �d) structure (designated here by T) was described by
Richard, Bander and Subbaraman, Lipkin, Tornqvist, Ericson and Karl,
Nussinov, Chow, Maonohar and Wise, Weinstein and Isgur, Carlson and
Heller and Tjon, and Ja�e, [2, 9, 21, 22, 23, 24, 25, 26, 27, 28, 29]. Tetraquarks
with only u,d,s quarks have also been extensively studied [2, 30, 31]. The
doubly charmed tetraquark is of particular interest, as the calculations of
these authors indicate that it may be bound. Some authors [2, 9, 24, 25]
compare the tetraquark structure to that of the antibaryon �Q�u �d, which has
the coupling �Q�3(�u �d)3. In the T, the tightly bound (cc)�3 then plays the role
of the antiquark �Q. The tetraquark may also have a deuteron-like meson-
meson weakly bound D�+D0 component, coupled to 1+, and bound by a
long range one-pion exchange potential [22, 24], which corresponds to light
quark exchanges in the quark picture. Such a structure has been referred
to as a deuson by Tornqvist [22]. The deuson is analogous with the H2

molecule; where the heavy and light quarks play the roles of protons and
electrons, respectively. The discovery of such an exotic hadron would have
far reaching consequences for QCD, for the concept of con�nement, and for
speci�c models of hadron structure (lattice, string, and bag models). De-
tailed discussions of exotic hadron physics can be found in recent reviews
[36]. Some other exotics that can be investigated in CHEOPS are: Pen-
taquarks uud�cs; udd�cs; uds�cs; uud�cc; udd�cc; uds�cc [32], Hybrid q�qg [33], us �d �d
U+(3100) [34], uuddss H hexaquark [35], uuddcc Hcc hexaquark [25], q�qs�s or
q�qg C(1480) [36], and �c�cqqqqq heptaquark [9]. But we do not discuss these
various exotic hadrons in detail in this report.

Should only the cc�u �d (D�+D0) be bound; or should the c�cd�u (D��D0)
also be bound? The D�+D0 state, if above the DD� threshold, can only
decay strongly to doubly charmed systems. But it is easier to produce only
one c�c pair, as in D��D0. However, this state has numerous open strong
decay channels. These include charmonium plus one or two pions and all
the multipion states and resonances below 3.6 GeV, and it is therefore not
strong interaction stable. One may argue that a D��D0 state is unlikely to
be bound. In a deuson, bound by pion-exchange, the sign of the potential
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which binds the two D mesons depends on the product of the sign of the two
vertices associated with the pion exchange. The sign of the D� vertex depends
on Tz, the z-component of isospin, which changes from +1 to �1 in changing
from positive to negative D�. Therefore, if the potential is attractive in the
case of D�+D0, it will be repulsive in the case of D��D0. Consequently,
the calculations [22, 24] for a bound D�+D0 suggest that the D��D0 may be
unbound. Shmatikov [37] explicitly studied the widths and decaymechanisms
of D��D0, including some bound possibilities. Therefore, in the D�+D0

search, it would be of value to also look at D��D0 data. Even if no peak
is observed, the combinatoric backgrounds may help understand those for
D�+D0.

Mass of ccq Baryons and T

Bjorken [1] suggests mass ratios M(
++

ccc =	) = 1.60 and M(
�bbb=�=1.57),
which follows from the extrapolation of M(�++=�; !) and M(
�=�). He as-
sumes the validity of the "equal-spacing" rule for the masses of all the J=3/2
baryons, which gives the possibility to interpolate between ccc, bbb, and
ordinary baryons. The masses of ccq baryons with J=1/2 were estimated
relative to the central J=3/2 value. The cc diquark is a color antitriplet with
spin S=1. The spin of the third quark is either parallel (J=3/2) or anti-
parallel (J=1/2) to the diquark. The magnitude of the splitting is in inverse
proportion to the product of the masses of the light and heavy quarks. These
are taken as 0.30 GeV for u and d, 0.45 GeV for s, 1.55 GeV for c, and 4.85
GeV for b. The equal spacing rule for J=3/2, with ni the number of quarks
of a given avor, is then [1]:

M = 1=3[1:23(nu + nd) + 1:67ns + 4:96nc + 14:85nb]: (1)

For ccq, the J=1/2 states are lower than the J=3/2 states by about 0.1 GeV
[2]. This approach for ccq gives results close to those of Richard et al. [2, 3].
Fleck and Richard [3] also estimate the tetraquark mass. Fleck and Richard,
and Nussinov [24] have shown that ccq and cc�u �d masses near 3.7 GeV are
consistent with expectations from QCD mass inequalities.

The estimates lead to masses [1, 2, 3]:
(ccs), 1/2+, 3.8 GeV;
(ccu), 1/2+, 3.7 GeV;
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(ccd), 1/2+, 3.7 GeV;
(cc�u �d), 1/2+, 3.6 GeV;

Lifetime of ccq Baryons and T.

The �++

cc and 
+

cc decays should probably be dominated by spectator dia-
grams [1, 3, 11, 38, 39, 40] with lifetimes about 200fs, roughly half of the
D0 or �+

c . Fleck and Richard [3] suggest that positive interference will occur
between the s-quark resulting from c-decay, and the pre-existing s-quark in

+

cc. Its lifetime would then be less than that of �++

c . Bjorken [1] and also
Fleck and Richard [3] suggest that internal W exchange diagrams in the �+

cc

decay could reduce its lifetime to around 100fs, roughly half the lifetime of
the �+

c . The lifetime of the T should be much shorter, according to the pat-
tern set by the D�+ lifetime. These estimates are consistent with the present
understanding of charmed hadron lifetimes [11, 38, 39, 40]. One expects that
predominantly doubly charmed hadrons are produced with small momentum
in the center of mass of the colliding hadrons. They are therefore su�ciently
fast in the laboratory frame. The lifetime boost in the laboratory frame for

a ccq baryon is roughly [41]  �
q
pin=2MN , if it is produced at the center

of rapidity with a high energy hadron beam of momentum pin. For a CERN
experiment with pin � 400 GeV/c, this corresponds to  � 15, with ccq
energies near 55 GeV.

Production Cross Section of ccq Baryons

One can consider production of doubly charmed hadrons by proton and Sigma
and pion beams. Pion beams are more e�ective in producing high-XF D�

mesons, as compared to �� beams. Here, XF designates the Feynman XF -
value, XF = pD=Pbeam, evaluated with laboratory momenta. And baryon
beams are likely more e�ective than pion beams in producing ccq and cqq
baryons at high XF .

Consider a hadronic interaction in which two c�c pairs are produced. The
two c's combine and then form a ccq baryon. Calculations for ccq production
via such interactions have not yet been published. Even if they are done, they
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will have large uncertainties. Some ingredients to the needed calculations
can be stated. For ccq production, one must produce two c quarks (and
associated antiquarks), and they must join to a tightly bound, small size
anti-triplet pair. The pair then joins a light quark to produce the �nal ccq.
The two c-quarks may arise from two parton showers in the same hadron-
hadron collision, or even from a single parton shower, or they may be present
as an intrinsic charm component of the incident hadron, or otherwise. The
two c-quarks may be produced (initial state) with a range of separations and
relative momenta (up to say tens of GeV/c). In the �nal state, if they are
tightly bound in a small size cc pair, they should have relative momentum
lower than roughly 1. GeV/c. The overlap integral between initial and
�nal states determines the probability for the cc-q fusion process. For cqq
production, a produced c quark may more easily combine with a (projectile)
di-quark to produce a charmed baryon. A ccq production calculation in this
framework, based on two parton showers in the same hadron-hadron collision,
is in progress by Levin [42].

As an aid in comparing di�erent possible calculations, one may parame-
terize the yield as:

�(ccq)=�(cqq)� �(ccq)=�(cq)� k[�(c�c)=�(in:)] � kR: (2)

Here, �(c�c) is the charm production cross section, roughly 25 �b; �(in:) is
the inelastic scattering cross section, roughly 25 mb; and R is their ratio,
roughly 10�3 [43]. Here, k is the assumed "suppression" factor for join-
ing two c's together with a third light quark to produce ccq; compared to
cqq or cq production, where the c quark combines with a light diquark to
give cqq or a light quark to give cq. Eq. 2 does not represent a calcula-
tion, and has no compelling theoretical basis. It implicitly factorizes ccq
production into a factor (R) that accounts for the production of a second c-
quark, and a factor (k) describing a subsequent ccq baryon formation prob-
ability. Considering the overlap integral described in the preceding para-
graph, one may expect k values less than unity for simple mechanisms of
ccq formation. It is possible to have a factor k>1, if there is some enhance-
ment correlation in the production mechanism. Reliable theoretical cross
section calculations are needed, including the XF -dependence of ccq produc-
tion. In the absence of such a calculation, we will explore the experimen-
tal consequences of a ccq search for the range k=0.1-1.0, corresponding to
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�(ccq)=�(cqq) � �(ccq)=�(cq) � 10�4 � 10�3. Assuming �(c�c) charm pro-
duction cross sections of 25 microbarns, this range corresponds to ccq cross
sections of 2.5-25. nb/N.

Aoki et al. [44] reported a low statistics measurement at
p
s =26 GeV for

double to single open charm pair production, of 10�2. This D �DD �D to D �D
ratio was for all central and di�ractive events. This high ratio is encouraging
for ccq searches, compared to the value from NA3 [45] of �(		)=�(	) �
3�10�4. We assume that the 		 result is relevant, even though 	 production
is only a small part (� 0.4%) of the charm production cross section, with most
of the cross section leading to open charm. For double 	 or double charm
pair hadroproduction, the suppression factor k for two c-quarks to join into
the same ccq is missing. These two results for double charm production
therefore establish a range of values for R in Eq. 2, consistent with the value
10�3 estimated above in the discussion of Eq. 2. Robinett [46] discussed
		 production and Levin [42] discussed ccq production in terms of multiple
parton interactions. Halzen et al. [47] discussed evidence for multiple parton
interactions in a single hadron collision, from data on the production of two
lepton pairs in Drell-Yan experiments.

It will be of interest to compare ccq production in hadron versus electron-
positron collisions, even if CHEOPS deals with hadron interactions. Follow-
ing production of a single heavy quark from the decay of a Z or W boson
produced in an electron-positron collision, Savage and Wise [4] discussed
the expected suppression for the the production of a second heavy quark by
string breaking e�ects or via a hard gluon. Kiselev et al. [6] calculated low
cross sections for double charm production at an electron-positron collider B
factory, for

p
s= 10.6 GeV. They �nd �(ccq)=�(c�c) = 7: � 10�5. Although

this result is inapplicable to hadronic interactions as in CHEOPS; the work
describes some important calculational steps, and also demonstrates the con-
tinued wide interest in this subject.

A number of works [7, 48, 49, 50, 51, 52, 53, 54, 55] consider the production
and decay of doubly heavy hadrons (bcq, �bc, etc.) at future hadron collider
experiments at the FNAL Tevatron or CERN LHC. Kiselev et al. [7] give a
preliminary estimate of �(ccq) � 10: nb/N in hadronic production at

p
s=

100. GeV. This corresponds to k=0.4 in the parameterization of Eq. 2. In
hadronic production, the process gg ! b�b or q�q ! b�b may be followed by
gluon bremsstrahlung and splitting �b ! �bg ! �bc�c to yield Bc (�bc) mesons
[8, 5, 56, 57, 58, 59, 60, 61, 62, 63]. Doubly charmed baryon production may

6



then possibly proceed via the weak decay �b ! c�c�s. This quark process has
recently been claimed [64] to dominate charm baryon production in B decay.
A CHEOPS �xed target study for ccq (possibly including some Bc mesons)
can be a valuable prelude to collider studies of doubly heavy hadrons.

Brodsky and Vogt [65] suggested that there may be signi�cant intrinsic
charm (IC) c�c components in hadron wave functions, and therefore also cc�c�c
components. The IC probability was obtained from the measurements of
charm production in deep inelastic scattering. The Ho�mann and Moore
analysis [66] of EMC data yields 0.3% IC probability in the proton. Theo-
retical calculations of the IC component have also been reported [67]. The
double intrinsic charm component can lead to ccq production, as the cc pairs
pre-exist in the incident hadron.

Brodsky and Vogt [65] discussed double 		 production [45] in the frame-
work of IC. The data occur mainly at large XF , while processes induced by
gluon fusion tend to be more central. They claim that the data (transverse
momentum,XF distribution, etc.) suggest that 		 production is highly cor-
related, as expected in the intrinsic charm picture. A recent experiment of
Kodama et al. [68] searched for soft di�ractive production of open charm in
D �D pairs with a 800 GeV proton beam and a Silicon target. The experiment
set a 90% con�dence level upper limit of 26 microbarns per Silicon nucleus for
di�ractive charm production. Kodama et al. estimated that the total di�rac-
tive cross section per Silicon nucleus, above the charm threshold, is 12.2 mb.
The ratio of these values gives an upper limit of 0.2% for the probability
that above the charm threshold, a di�ractive event contains a charm pair.
Kodama et al. interpreted this as the upper limit on the IC component of
the proton. Brodsky et al [69] discuss the probability for the intrinsic charm
in an incident high energy hadron to be freed in a soft di�ractive interaction
in a high energy hadronic collision. In their formalism, the IC probability is
multiplied by a resolution factor �2=m2

c , where �
2 is an appropriate soft mass

scale [69]. If we take the soft scale to be of order �qcd=0.2 GeV or the � mass,
one obtains a signi�cant resolution factor suppression for charm production
in a soft process. Thus, the charm fraction that should be observed in a soft
hadronic or di�ractive cross section should be considerably smaller than the
intrinsic charm probability. If the suppression factor is for example 10, that
would change the upper limit of the Kodama et al. experiment from 0.2% to
2%. The data would not therefore place a useful limit on the IC component.
In the case of hard reactions such as the deep inelastic lepton scattering of
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the EMC experiment, the suppression factor is not present.
Despite the small IC probability and the suppression factor, Brodsky

and Vogt [65] found that the large XF charmed hadroproduction data is
consistent with the IC picture. This includes the A dependence and XF

dependence of J/ hadroproduction (NA3) and the leading particle e�ect
seen in the observed production asymmetry for D�=D+ mesons at large XF

for an incident �� beam [65]. Explanations of the leading D data requires that
the charm quark coalesce with a valence quark. This happens automatically
when one frees the IC Fock state, since the charm quark and valence quark
are already moving at approximately the same velocity.

When one frees a double charm IC state in a soft collision, both charm
quarks will be moving at approximately the same velocity as the valence
quark. Thus, coalescence into a ccq state is likely. With gauge interac-
tions, particles may coalesce into bound states primarily when they are at
low relative velocity. One may expect that aside from the IC mechanism,
ccq production will be predominantly central. Intrinsic charm ccq produc-
tion, with its expected high XF distribution, would therefore be especially
attactive. An IC ccq production cross section calculation would be of great
interest.

We can also refer to an empirical formula which reasonably describes
the production cross section of a mass M hadron in central collisions. The
transverse momentum distribution at not too large pt follows a form given
as [70]:

d�=dp2t � exp(�B
q
M2 + p2t ); (3)

where B is roughly a universal constant � 5 - 6 (GeV)�1. The exponential

(Boltzmann) dependence on the transverse energy Et =
q
M2 + p2t has in-

spired speculation that particle production is thermal, at a temperature B�1

� 160 MeV [70]. We assume that this equation is applicable to ccq produc-
tion. To illustrate the universality of B, we evaluate it for a few cases. For
�c and �0, empirical �ts to data give exp(-bp2t ), with b=1.1 GeV

�2and b=2.0
GeV�2, respectively [71, 72]. With B � 2Mb, this corresponds to B= 5.0
GeV�1 for �c, and B= 5.3 GeV�1 for �0. For inclusive pion production,
experiment gives exp(-bpt) with b = 6 GeV�1 [73]; and B � b, since the pion
mass is small. Therefore, B= 5-6 GeV�1 is valid for �c, �0 hyperon, and pion
production. After integrating over p2t , including a (2J+1) statistical factor
to account for the spin of the produced ccq, and taking the mass of ccq and
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D to be 3.7 and 2.0 GeV respectively; we estimate the ratio as:

�(ccq)=�(D) � (2J + 1)exp[�5[M(ccq)�M(D)]] � 4 � 10�4: (4)

This result corresponds to k=0.4 in the parameterization of Eq. 2. In apply-
ing Eq. 4 to ccq production, we assume that the suppression of cross section
for the heavy ccq production (for q = u,d,s) as compared to the light D (�cq)
production is due to the increased mass of ccq. However, this formula ig-
nores important dynamical input, including threshold e�ects and a possible
suppression factor for the extra charm production in ccq, and therefore can
be considered an upper limit. One may apply Eq. 4 with appropriate masses
to estimate yield ratios of other particles. For the T, we assume the same
production cross section as for the ccq, based on the mass dependence of Eq.
4.

Decay Modes and Branching Ratios of ccq

Baryons

The semileptonic and nonleptonic branching ratios of ccq baryons have been
estimated by Bjorken [1] in unpublished notes of 1986. He uses a statisti-
cal approach to assign probabilities to di�erent decay modes. He �rst con-
siders the most signi�cant particles in a decay, those that carry baryon or
strangeness number. Pions are then added according to a Poisson distribu-
tion. The Bjorken method and other approaches for charm baryon decay
modes are described by Klein [13]. Savage and Springer [5] examined the
avor SU(3) predictions for the semileptonic and nonleptonic ccq weak de-
cays. They give tables of expected decay modes, where the rates for di�erent
modes are given in terms of a few reduced matrix elements of the e�ective
hamiltonian. In this way, they also �nd many relationships between decay
rates of di�erent modes. Savage and Springer discuss the fact that the SU(3)
predictions for the decay of the D-mesons can be understood only by includ-
ing the e�ects of �nal state interactions [74]. They suggest that FSI e�ects
should be much less important for very charming baryons (ccq) compared to
charmed mesons.

The c decays weakly, for example by c! s+ u �d+ n(�+��), with n=0,1,
etc. In that case, for example, ccs! css + (�+�+�� or �+�+��). The event
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topology contains two secondary vertices. In the �rst, a css baryon and 3
mesons are produced. This vertex may be distinguished from the primary
vertex, if the ccs lifetime is su�ciently long. The css baryon now propagates
some distance, and decays at the next vertex, in the standard modes for a
css baryon. The experiment must identify the two secondary vertices.

We describe some decay chains considered by Bjorken [1]. For the �++

cc ,
one may have �++

cc ! �++

c K�0 followed by �++

c ! �+

c �
+ and K�0 ! K��+.

A �+

c �
+K��+ �nal state was estimated by Bjorken [1] to have as much

as 5% branching ratio. Bjorken also estimated a 1.5% branch for �++

cc !
�+

c �
+; and 1.5% for 
+

cc ! �+

c �
+K�. Bjorken �nds that roughly 60% of

the ccq decays are hadronic, with as many as one-third of these leading to
�nal states with all charged hadrons. The decay topologies should satisfy a
suitable CHEOPS charm trigger, with reasonable e�ciency. There are also
predicted 40% semi-leptonic decays. However, with a neutrino in the �nal
state, it is not feasible to obtain the mass resolution required for a double
charm search experiment.

Decay Modes and Branching Ratios of the T

One can search for the decay of T ! � D D, or T !  D D, as discussed
by Nussinov [24]. The pion or gamma are emitted at the primary inter-
action point, where the D* decays immediately. The two D mesons decay
downstream. The D* decay to �-D is useful for a search, since the charged
pion momentum can be measured very well. One can get very good reso-
lution for the reconstruction of the T mass. For the gamma decay channel,
the experimental resolution is worse. There will therefore be relatively more
background in this channel, since the gamma multiplicity from the target is
high, and one must reconstruct events having two D mesons, with all gam-
mas.

Signal and Background Considerations

High energies are needed for studies of high mass, and short lifetime baryons.
Thereby, one produces high energy doubly charmed baryons. The resulting
large lifetime boost improves separation of secondary and primary vertices,
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and improves track and event reconstruction. CHEOPS with 450 GeV pro-
tons or other 350-450 GeV hadrons [19] has this high energy advantage.

One can identify charm candidates by requiring that one or more decay
particles from a short lived parent have a su�ciently large impact parameter
or transverse miss distance relative to the primary interaction point. This
transverse miss distance (S) is obtained via extrapolation of tracks that are
measured with a high resolution detector close to the target. This quantity is
a quasi-Lorentz invariant. Consider a relativistic unpolarized parent baryon
or a spin zero meson that decays into a daughter that is relativistic in the
parent's center of mass frame. Cooper [75] has shown that the average trans-
verse miss distance is S � �c�=2. For example, �c with c� � 60 microns
should have S � 90 microns. The E781 on-line �lter cut is on the sum of
the charged decay products of the doubly charmed baryon and the singly
charmed baryon daughter's decay products. Any one of these with P>15
GeV/c and S>30 microns generates a trigger [76]. Events from the primary
vertex are typically rejected by the cut on S. With a vertex detector with
20 micron strips, the E781 resolution in S is about 4 microns for very high
momenta tracks. For events in E781 with a 15 GeV track, the transverse
miss-distance resolution deteriorates to about 9 microns, due to multiple
scattering [77]. And the resolution gets even worse for yet lower momenta
tracks. As this resolution becomes worse, backgrounds increase, since the
S-cut no longer adequately separates charm events from the primary interac-
tion events. The backgrounds are not only events from the primary vertex,
but also from the decays of the hadrons associated with the two associated �c
quarks produced together with the two c quarks. One may expect that the
requirement to see two related secondary vertices may provide a signi�cant
reduction in background levels.

Some bqq production and decay, with two secondary vertices, may be
observed in CHEOPS, and must be considered at least as background to ccq
production. The bqq and ccq events may be distinguished by the larger bqq
lifetime, and the higher transverse energy released in the b decay. It is not
the aim of CHEOPS to study bqq baryons. Experiments at CERN gave only
a small number of reconstructed bqq baryons, at a center of mass energy
around 30 GeV [78].

CHEOPS considers using a multiplicity jump trigger [79], which is in-
tended to be sensitive to an increase in the number of charged tracks fol-
lowing a charm decay. Such a trigger for high rate beams has not yet been
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used in a complete experiment, and still requires research and development.
Backgrounds are possible with such a trigger, due to secondary interactions in
targets and the interaction detector (Cerenkov, possibly [19]) following each
target. Also, gamma rays from a primary interaction may convert afterwards
to electron-positron pairs, and falsely �re the trigger. If the rejection ratio of
such non-charmed events is not su�ciently high, the trigger may not achieve
its needed purpose of reducing the accepted event rate to manageable values.
This trigger would be sensitive to events with XF > -.1, and therefore has
e�ectively an "open" trigger XF -acceptance. Most of the charm events ac-
cepted will then be mainly associated with charm mesons near XF=0, since
these dominate the cross section in hadronic processes. The decay of ccq to
a singly charmed hadron may trigger, or the charmed hadron's decay may
�re the trigger. The event also has two anticharmed quarks, associated with
charmed hadrons, and they may also �re the trigger. However, low-XF events
may have high backgrounds, since it is more di�cult to separate them from
non-charmed events, due to the poor miss distance resolution. For higher
XF events, one obtains a sample of doubly charmed baryons with improved
reconstruction probability because of kinematic focussing and lessened mul-
tiple scattering and improved particle identi�cation. The multiplicity-jump
trigger for CHEOPS could be supplemented by a momentum condition trig-
ger P > 15 GeV/c, similar to this requirement in E781. This could enhance
the high-XF acceptance, and give higher quality events.

For double charm, the target design is important. To achieve a high inter-
action rate and still have small multiple scattering e�ects, one may choose �ve
400 micron Copper targets, separated by 1 mm. The total target thickness
is limited to 2% interaction length in order to keep multiple scattering under
control. With di�erent target segments, one requires a longitudinal tracking
resolution of 200-300 microns, in order to identify the target segment asso-
ciated with a given interaction. The knowledge of the target segment allows
the on-line processor to reconstruct tracks, and identify a charm event. The
tracking detectors would then be placed as close as possible to the targets, to
achieve the best possible transverse miss-distance resolution. The optimum
target design and thickness for double charm requires study via Monte Carlo
simulation.

One may require separation distances of secondary from primary vertices
of � 1-4 �, depending on the backgrounds. The requirement for two charm
vertices in ccq decays may reduce backgrounds su�ciently, so that this sep-
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aration distance cut is less important than in the case of cqq studies. For a
lifetime of 100fs, with a laboratory lifetime boost of 15, the distance from
the production point to the decay point is around 450 microns. E781 can
attain roughly 300 micron beam-direction resolution for XF =0.2, with a
650 GeV beam, and 20 micron strip silicon detectors. For lower XF events,
the resolution deteriorates due to multiple scattering, and there is little gain
in using narrower strips. CHEOPS aims to achieve 150 micron resolution
for the high XF events. Signal and background and trigger simulations and
target design development work are in progress for CHEOPS [19].

Projected Yields for CERN CHEOPS

For CHEOPS with a Baryon beam, one may rely on previous measurements
done with similar beams. The open charm production cross section at SPS
energies is roughly 25 �b. Taking Eq. 2 with a reduction factor of kR=4. �
10�4, with k=0.4, we have �(ccq) � 10: nb/N. This kR value follows from
Kiselev et al. [7] and from Eq. 4. We assume a measured branching ratio B=
10% for the sum of all ccq decays; this being 50% of all the decays leading to
only charged particles. We also assume a measured B = 20% for the sum of
all cqq decays, this being roughly the value achieved in previous experiments.
With these branching ratios, we estimate � �BB = 10:�0:2�0:1 = 0:2nb=N .

For CHEOPS, we now evaluate the rate of reconstructed ccq events. The
expectations are based on a beam of 5. �107 per spill, assuming 240 spills
per hour of e�ective beam, or 1.2 �1010/hour. For a 4000 hour run (2 years),
and a 2% interaction target, one achieves 9.5 �1011 interactions per target
nucleon. We assume that �(charm) = 25 �b and �(in) = 25 mb for a proton
target, and take a charm production enhancement per nucleon of A1=3 (with
mass A � 64 for CHEOPS). One then obtains a high sensitivity of 1.5 �105
charm events for each nb per nucleon of e�ective cross section (for nucleons
in A � 64 nuclei), where �eff = �BB". Here " is the overall e�ciency
for the experiment. Fermilab E781 with 650 GeV pion and �� beams is
scheduled for 1996-97. This experiment may therefore observe ccq baryons
before CHEOPS, as described in recent reports [80, 81]. The CHEOPS Letter
of Intent [19] describes plans to achieve roughly ten times more reconstructed
charm events than Fermilab E781. However, the CHEOPS experiment is not
yet scheduled. The charm sensitivity of E781 is described in detail elsewhere
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[32, 76]
We consider also the expected CHEOPS e�ciency for the charm events,

by comparison to E781 estimated [76] e�ciencies. The E781 e�ciencies for
cqq decays include a tracking e�ciency of 96% per track, a trigger e�ciency
averaged over XF of roughly 18%, and a signal reconstruction e�ciency of
roughly 50%. The CHEOPS trigger e�ciency for cqq should be higher than
E781, if low XF events are included. However, the signal reconstruction
e�ciency is low for low XF events. The reconstruction e�ciency should
be lower for double charm events, since they are more complex than single
charm events. Yet, using the proposed type of vertex detector, multivertex
events can be reconstructed with good e�ciency [78]. In a spectator decay
mode, the �nal state from ccq decay will likely be a csq charm baryon plus
a W decay, either semileptonic (40% total B) or hadronic (25% �+, 75% �+

most likely). One may expect the vertex to be tagged more often (roughly
a factor of two) for double charm compared to single charm. There should
therefore be a higher trigger e�ciency and a lower reconstruction e�ciency
for double compared to single charm. We assume here however that the
product of these two e�ciencies remains roughly the same. Therefore, the
overall average ccq e�ciency is taken to be " ' 8%, comparable to the
expected E781 value for cqq detection. The expected yield given above is 1.5
�105 charm events/(nb/N) of e�ective cross section. For �BB = 0.2 nb/N,
one has �eff = 0:016nb=N , and therefore N(ccq)� 2400 events for CHEOPS.
This is the total expected yield for ccu,ccd,ccs production for ground and
excited states. For k > 0.4, the yields are yet higher.

Conclusions

The observation of doubly charmed baryons or T would make possible a de-
termination of their lifetimes and other properties. The expected low yields
and short lifetimesmake double charm hadron research an experimental chal-
lenge. The discovery and subsequent study of the ccq baryons or T should
lead to a deeper understanding of the heavy quark sector.
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