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Abstract

We report briey on a broad and systematic study of possible man-

ifestations of QCD-instantons at HERA. We concentrate on the high

multiplicity �nal state structure, reminiscent of an isotropically decay-

ing \�reball". First results of a Monte Carlo simulation are presented,

with emphasis on the typical event-structure and the transverse energy,

muon and K0 ows.
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1 Introduction

The Standard Model of electro-weak (QFD) and strong (QCD) interactions

is remarkably successfull. Its perturbative formulation (\Feynman diagram-

matics") appears to be theoretically consistent and agrees with present ex-

periments. Nevertheless, even for small couplings, there exist processes that

cannot be described by conventional perturbation theory and, notably, vio-

late the classical conservation laws of certain fermionic quantum numbers [1]

(see �g. 1).
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Figure 1: The basic anomalous processes induced by instantons in QFD and

QCD, respectively

Such anomalous processes are induced by instantons [2] which represent

tunnelling processes in Yang-Mills gauge theories, associated with the highly

degenerate vacuum structure.

For many years, such tunnelling transitions have been considered largely

of academic interest, due to their exponential suppression / exp (�4�=�)
at low energies. A few years ago, however, much activity in this �eld was

generated by the observation [3] that instanton-induced processes may well

become unsuppressed, i. e. observable, at high energies.

The basic signi�cance and possible importance of QCD-instanton e�ects

in deep inelastic scattering (DIS) for decreasing Bjorken variable xBj and

high photon virtuality Q2 has recently been emphasized [4]:

2



� First of all, QCD-instanton e�ects for decreasing xBj are largely anal-

ogous [5] to the manifestation of electro-weak instantons at increas-

ing energies. The anomalous B + L violation due to electro-weak

instantons is paralleled by a chirality violation induced by QCD-

instantons [1] (c. f. �g. 1).

� Secondly, discovery of QCD-instanton induced DIS-events would it-

self be of basic signi�cance, since they correspond to a novel, non-

perturbative manifestation of QCD.

Whereas a promising search for anomalous electro-weak events is only

possible in the far future, presumably at a post-LHC collider [6] or at cosmic

ray facilities [7], the search for anomalous events induced by QCD-instantons

can start right now, in deep inelastic e�p scattering at HERA.
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Figure 2: The logarithm of the instanton-induced contribution to the struc-

ture function F2 of the proton. The curves denoted by \data" roughly

represent the trend of the experimental data for F2.

Naturally, the �rst observables where manifestations of QCD-instantons

may be looked for are the nucleon structure functions.

Within the theoretical framework of Ref. [4], we have performed [8]

a state of the art evaluation of the instanton-induced contribution to

F2(xBj; Q
2) (see �g. 2). It rises strongly with decreasing xBj and tends to
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reach the size of the experimental data around xBj � 0:1 � 0:25. Unfor-

tunately, due to inherent uncertainties, the calculation cannot be trusted

anymore for xBj<� 0:35, say. Nevertheless, the trend is very suggestive!

There are a number of reasons [8] that favour experimental searches for

instanton-induced \footprints" in the multi-particle �nal state over searches

via the structure functions, the latter being the most inclusive observables in

deep inelastic scattering. It is the purpose of this contribution to present a

brief status report on our phenomenological analysis of the instanton induced

�nal state.

2 The Instanton Induced Final State

2.1 Characteristic Features

The instanton-induced contribution to the multi-particle �nal state in DIS

arises in form of an instanton-induced subprocess (denoted by \I" in �g. 3)

along with a current-quark jet. The relevant kinematical variables are sum-

marized in table 1.
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Figure 3: Structure and kinematics of the instanton-induced contribution to

the �g cross section

Our phenomenological analysis is based on the following set of charac-

teristic features which have emerged from various theoretical investigations:

� Isotropic emission of many semi-hard partons in the I-rest system,
~q0 + ~p = 0, reminiscent of a \decaying �reball".

� High multiplicity: hn
(I)
q+ginf=4 ' 10 (!) at HERA [8].

� Characteristic avour ow (strangeness, charm) [1].
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Figure 4: \Holy grail" function F (x0). The lower curve corresponds to the

prediction from the I �I valley method, with SII
valley

denoting the valley action.
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�g I-subprocess

Q2 = �q2 Q02 = �q02
Bj.-Variables

x = Q2

2pq
x0 = Q02

2pq0

Table 1: Relevant kinematical variables, with the primed quantities referring

to the I-subprocess in �g. 3. Note that xBj < x < x0 < 1.

� Strong peaking of the I-subprocess total cross section [4, 5] for de-

creasing Bjorken variables x0; Q02:

s0�
(I)
tot
(x0; Q02) � exp

(
�

4�

�e�s (Q02)
F (x0)

)

The importance of instanton-induced events at small x0 crucially relies

on the precise functional dependence of the \holy grail" function F (x0)

(c. f. �g. 4). Unfortunately, it is reliably known only at large x0 �
1 within instanton-perturbation theory. By means of the I �I valley

method [5] F (x0) is obtained beyond perturbation theory for all x0,

however with intrinsic ambiguities as typically depicted in �g. 4.

From the above properties, the qualitative event structure is expected

to consist of a current-quark jet along with a densely populated hadronic

\band" in the (�lab; �lab)-plane [8]. The hadronic band directly reects the

isotropy in the I-rest system along with a large multiplicity of semi-hard

quarks and gluons.

2.2 Monte Carlo Simulation

A Monte Carlo simulation for instanton-induced events at HERA (QCD

INSTANTON MC 1.0), based on HERWIG 5.8, has been essentially com-

pleted [9]. It includes full hadronization. While it should already account

for the composition of the �nal state quite well, we do not yet quote absolute

production rates, since a reliable theoretical estimate of the cross sections,

in particular at smaller values of x0 and Q02, is quite di�cult and still in

progress [10, 11].

The main questions addressed so far, concern the typical event-structure,

and transverse energy as well as muon and K0 ows and some characteristic

event distributions.
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Let us present the results for a sample of instanton-induced events, corre-

sponding to an intermediate small x0 behaviour of the \holy grail" function

F (x0) (c. f. �g. 4):

F (x0) =

(
SII
valley

(x0); for x0 � 0:12;

const:; for x0 < 0:12

Throughout, we take xBj � 10�3; yBj � 0:1. Furthermore, we impose a cut

on the total invariant mass in the I-subprocess,
p
s0 � 10 GeV, in order to

guarantee a minimum virtuality Q02 � 1 GeV2.

In �g. 5 a typical instanton-induced event is displayed. The current-

quark jet (around �lab ' �0:5) along with the expected, densely populated

hadronic \band", centered around �lab ' 2:5, are apparent. The electron is

shown here as well.

In �g. 6, the transverse energy ow versus �lab is displayed. It exhibits

a strong enhancement across the hadronic \band", since each of the many

hadrons from the I-subprocess contributes a comparable energy into a single

�lab bin of width � 1:8.

A related important quantity is the distribution of the transverse energy

for hadrons within the \band" (�g. 7). It peaks around Et '
p
s0min = 10

GeV, i. e. at a value much larger than the one from present experimental

data.

The K0 and muon ows, displayed in �gs. 8 and 9, again peak at the

center of the band of hadrons emerging from the I-subprocess. This is

presumably a distinctive signature for instanton induced events. It directly

reects the basic fact that in each such event a pair of strange and of charmed

quarks is produced (c. f. �g. 1). We �nd hNK0

S
i ' 1:8 and hN�i ' 0:2.

3 Conclusion

A systematic phenomeological and theoretical investigation of the discovery

potential for QCD-instanton induced events is under way. Clearly, HERA

o�ers a unique window in DIS! A discovery of such events would be of basic

importance: �rst of all, as a novel, non-perturbative manifestation of QCD

and secondly, because of the close analogy to anomalous B +L violation in

electro-weak processes in the multi-TeV regime.
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Figure 5: A typical instanton-induced event in the lab. system
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Figure 6: Hadronic transverse energy ows versus �lab and �lab, respectively

Figure 7: Transverse energy and pseudo-sphericity distributions
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Figure 8: Flow of K0

S versus �lab, peaking around the center of the hadronic
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Figure 9: Flow of muons versus �lab, peaking around the center of the

hadronic \band" from the I-subprocess
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