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Abstract

This paper studies the electroweak production of all possible four-

fermion states in e+e� collisions with non-standard triple gauge boson

couplings. All CP conserving couplings are considered. It is an ex-

tension of the methods and strategy, which were recently used for the

Standard Model electroweak production of four-fermion �nal states.

Since the fermions are taken to be massless the matrix elements can be

evaluated e�ciently, but certain phase space cuts have to be imposed

to avoid singularities. Experimental cuts are of a similar nature. With

the help of the constructed event generator a number of illustrative

results is obtained for W -pair production. These show on one hand

the distortions of the Standard Model angular distributions caused by

either o�-shell e�ects or initial state radiation. On the other hand,

also the modi�cations of distributions due to anomalous couplings are

presented, considering either signal diagrams or all diagrams.
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1 Introduction

Recently, the electroweak four-fermion production processes relevant for LEP2

and beyond have been studied in a number of ways. One of the objectives is

to obtain a description of W -pair production better than an on-shell treat-

ment with W -decay products attached to it. Thus all recent papers contain

�nite width e�ects. Some papers only include the three diagrams leading to

W -pair production, others include all diagrams giving a speci�c four-fermion

�nal state. Most of them include some form of initial state QED radiative

corrections. There are semi-analytical methods [1, 2] and Monte Carlo ap-

proaches [3]{[10]. The former can only give distributions in the virtualities

of the W 's, but no fermion distributions. The latter can produce any wanted

distribution.

Among the various Monte Carlo treatments we mention in particular

the program EXCALIBUR, since it aims both at completeness and speed.

All diagrams for any four-fermion �nal state are included and a relatively

fast calculation is achieved by assuming massless fermions and by using a

multichannel approach to generate the phase space. The details are given

in [9], whereas the treatment of initial state radiation (ISR) can be found

in [10].

One of the objectives of LEP2 and future electron-positron colliders is a

test of non-abelian triple gauge boson couplings. A way to quantify devia-

tions from the Standard Model (SM) Yang-Mills couplings is to set experi-

mental limits on anomalous couplings. Many discussions of the latter can be

found in the literature, see e.g. [11, 12, 13]. Theoretical arguments, which

reduce the a-priori large number of non-standard couplings are discussed

in [13]. In order to investigate the experimental possibilities to measure lim-

its on anomalous couplings one ideally needs samples of anomalous events,

made by an event generator and one requires a �tting program containing the

anomalous matrix element. The �tting program can then establish whether

the input anomalous couplings can really be extracted from the generated

anomalous data.

Up to now such studies were made with tools, which have certain limi-

tations. Usually data are generated for W -pair production containing three

diagrams with W -decay attached to it in zero width approximation. The

�tting programs use the same approximation. Examples of such investiga-

tions can be found in [13, 14]. Very recently a Monte Carlo program with

anomalous couplings with a �nite W -width became available [15]. It covers

the semi-leptonic �nal states.

In view of the advantages of the EXCALIBUR program it is natural to use

its structure and strategy as a basis for an anomalous four-fermion generator.
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Thus it is the aim of the present paper to describe the necessary additions

and changes to the approach of [9, 10] to obtain a four-fermion generator

with anomalous couplings.

This generator has the following characteristics. Any massless four-fermion

�nal state can be produced with CP conserving anomalous couplings. All

abelian and non-abelian diagrams contributing to the �nal state are taken

into account. It is also possible to restrict oneself to the "signal" diagrams of

a process, e.g. for four-fermion production through W -pairs one takes only

three diagrams. Finally, ISR can be switched on or o�.

The new anomalous matrix elements will be discussed in some detail,

since they are the key ingredient of the anomalous EXCALIBUR program

and since they would also be required for a �tting program.

A number of numerical results for four-fermion production will be pre-

sented. On one hand they serve as illustration how the W �nite width or

ISR can modify SM angular distributions. On the other hand they show how

non-standard distributions behave. The very relevant physics application is

the one mentioned above: generating anomalous data and studying the ex-

traction of anomalous couplings with a �tting program. It is expected that

in the future this question will be addressed.

The actual outline of the paper is as follows. In section 2 the anoma-

lous couplings are described. The next section discusses those four-fermion

�nal states, which are sensitive to anomalous couplings and gives the re-

quired matrix elements. Some illustrative examples of anomalous e�ects in

distributions are shown in section 4, whereas section 5 contains conclusions.

2 Anomalous couplings

In this section those non-standard couplings are de�ned, which will be con-

sidered for the generation of anomalous four-fermion �nal states. When one

uses only Lorentz invariance as condition there exist 14 couplings, which lead

to deviations from the SM triple gauge boson couplings. Some of them can

be immediately discarded since they would either modify the strength of the

electromagnetic interaction or introduce C or CP violation in it. At this

point there still are 9 parameters left, three of which lead to CP violation

through the ZWW interaction. Also these will be omitted. We are then left

with a Lagrangian of the form:

L = L1(C- and P-conserving) +
L2(CP-conserving, C- and P-violating):

(1)
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Here L1 takes the form
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whereas the second part reads
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where Ẑ�� is the dual �eld tensor

Ẑ�� =
1

2
�����Z

�� (4)

with �0123 = �1. Taking the anomalous couplings vanishing leaves us with

the �rst and second lines in L1, i.e. the SM Lagrangian. Although this

general form will be considered, there are theoretical symmetry arguments

to reduce the number of independent couplings [13]. In practical �ts this

reduction will be necessary. For completeness we list the Feynman rule for

the ZWW vertex when all particles are considered to be outgoing:

�p0Z�

W
�
�

W
+

�

p
+

p
�
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For the WW vertex one has to replace cot �w+ �Z by �1, xz and yz by �x
and �y . The coupling z is zero.

With these vertices the matrix elements for four-fermion production will

be evaluated. It should be noted that the form chosen in the interaction cor-

responds to that of [13]. In the Z couplings the signs look di�erent from [13].

This is however compensated by the vectorboson-fermion couplings, which

di�er between the two papers. For the SM we use here for the photon-electron

vertex ie� and for the Z-vertex ie�(v� a5) with a = �(4 sin �w cos �w)
�1

and v = a(1� 4 sin2 �w). In [13] the latter is the same but the photon vertex

has opposite sign.

3 The matrix elements

In the literature [16] studies have been made of the e�ect of non-standard

triple gauge boson couplings on the following gauge boson production pro-

cesses

(1) e
+
e
� ! W

+
W

� ,

(2) e
+
e
� ! W e �e ,

(3) e
+
e
� ! Z �e ��e .

They are described by 3, 9 and 7 diagrams respectively of which 2, 2 and 1

diagrams containing a triple gauge boson vertex. In practice these processes

lead to four-fermion �nal states. For a speci�c four-fermion �nal state not

only the "signal" diagrams of the above reactions contribute but also "back-

ground" diagrams, of which some contain also triple gauge boson vertices.

Thus the anomalous couplings can contribute to the background diagrams
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as well. Tables 1{3 list the leptonic, semileptonic and hadronic �nal states

which can originate from one of the above signals. Moreover, the number

of abelian diagrams (Na) and of non-abelian diagrams (Nn) is given. For

the actual calculation of the matrix element we proceed as in [9]. We �rst

repeat the SM calculation and then extend it to non-standard couplings.

Although many diagrams can contribute to a speci�c �nal state there are

only two topological structures (generic diagrams), given in �g. 1. In these

diagrams all particles are considered to be outgoing. The actual Feynman

diagrams will be obtained by crossing those electron and positron lines which

were assigned to become the colliding e
+
e
� pair. In the Abelian diagrams

the charges of the fermions determine the character of the two exchanged

bosons, which may be W+, W�, Z or . In the non-abelian diagrams, two

of the vector bosons are �xed to be W+ and W
�, and the third one can be

Z or . In this way we avoid double-counting of diagrams. In principle the

particles and antiparticles can each be assigned in six ways to the external

lines. For the non-abelian diagrams we get at most 8 diagrams and due to

the speci�c �nal states considered we get at most 48 abelian diagrams. Fix-

ing a speci�c four-fermion �nal state all possible assignments are tried. Only

those which are allowed for by the couplings survive in �rst instance. Since

also successively all helicity combinations are tried certain diagrams do not

contribute as can be seen from the numerator of the generic abelian diagram:

A(�; �; �; p1; p2; p3; p4; p5; p6) =

= �u�(p1)
�
u�(p2)

� �u�(p3)�(/p1 + /p2 + /p3)�u�(p4)

� �u�(p5)
�
u�(p6) : (5)

Here we have disregarded the particle/antiparticle distinction since it is al-

ready implied by the assignment of the external momenta. The helicity labels

�; �; � = �1 determine the helicity of both external legs on a given fermion

line. Using the Weyl-van der Waerden formalism for helicity amplitudes [17]

(or, equivalently, the Dirac formalism of [18]), the expression A can easily be

calculated. For instance, for � = � = � = 1 one �nds

A(+;+;+; 1; 2; 3; 4; 5; 6) = 4h31i�h46i [h51i�h21i+ h53i�h23i] (6)

where the spinorial product is given, in terms of the momenta components,

by

hkji =
�
p
1

j + ip
2

j

� "p0k � p
3

k

p0j � p3j

#1=2
� (k $ j) : (7)
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W
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Figure 1: generic diagrams for four-fermion production. The fermion mo-

menta and helicities, and the bosons are indicated. The bosons V1;2 can be

either Z, W�, or ; V can be either Z or .

We denote the expression of equation 6 by A0(1; 2; 3; 4; 5; 6). All helicity

combinations can be expressed in terms of A0, as follows:

A(+ + +) = A0(1; 2; 3; 4; 5; 6) A(���) = A0(1; 2; 3; 4; 5; 6)
�

A(� ++) = A0(2; 1; 3; 4; 5; 6) A(+��) = A0(2; 1; 3; 4; 5; 6)
�

A(+ +�) = A0(1; 2; 3; 4; 6; 5) A(��+) = A0(1; 2; 3; 4; 6; 5)
�

A(� +�) = A0(2; 1; 3; 4; 6; 5) A(+� +) = A0(2; 1; 3; 4; 6; 5)
�
:

(8)

The numerator in the non-abelian diagrams can also be written in terms of

the function A:

�u�(p1)�u�(p2) �u�(p3)�u�(p4) �u�(p5)�u�(p6)

� fg��(p1 + p2)
� + g

��(p5 + p6)
� + g

��(p3 + p4)
�g

= A(�; �; �; 1; 2; 3; 4; 5; 6)� A(�; �; �; 5; 6; 3; 4; 1; 2) : (9)

Thus, for massless fermions, every helicity amplitude consists of a sum of

very systematic, and relatively compact, expressions.

Extending now the WW coupling with non-standard terms from the

previous section we get as new numerator
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[A(�; �; �; 1; 2; 3; 4; 5; 6)� A(�; �; �; 5; 6; 3; 4; 1; 2)]

+xB(�; �; �; 1; 2; 3; 4; 5; 6)

+
y

M
2

W

[(p3 + p4) � (p1 + p2)B(�; �; �; 1; 2; 5; 6; 3; 4)

�(p5 + p6) � (p1 + p2)B(�; �; �; 1; 2; 3; 4; 5; 6)

+(p3 + p4) � (p5 + p6)B(�; �; �; 3; 4; 1; 2; 5; 6)]

+
y

M
2

W

C(�; �; �; 1; 2; 3; 4; 5; 6)

(10)

and for the new ZWW -vertex

�(cot �w + �Z) [A(�; �; �; 1; 2; 3; 4; 5; 6)� A(�; �; �; 5; 6; 3; 4; 1; 2)]

�xZB(�; �; �; 1; 2; 3; 4; 5; 6)

� yZ

M
2

W

[(p3 + p4) � (p1 + p2)B(�; �; �; 1; 2; 5; 6; 3; 4)

�(p5 + p6) � (p1 + p2)B(�; �; �; 1; 2; 3; 4; 5; 6)

+(p3 + p4) � (p5 + p6)B(�; �; �; 3; 4; 1; 2; 5; 6)]

� yZ

M
2

W

C(�; �; �; 1; 2; 3; 4; 5; 6)

+ izZ

M
2

W

D(�; �; �; 1; 2; 3; 4; 5; 6)

(11)

where the new functions B, C and D are de�ned as

B(+;+;+; 1; 2; 3; 4; 5; 6) = 2h31i�h35i�h26ih34i
+2h43i�h15i�h42ih46i;

(12)

C(+;+;+; 1; 2; 3; 4; 5; 6) = 2 [h13i�h23i+ h14i�h24i]�
[h35i�h45i+ h36i�h46i] [h51i�h61i+ h52i�h62i] ;

(13)

8



D(+;+;+; 1; 2; 3; 4; 5; 6) =

2ih35i�h35i�h34ih56i [h13i�h23i+ h14i�h24i]
�2ih46ih46ih34i�h56i� [h13i�h23i+ h14i�h24i]
+2ih31i�h31i�h34ih12i [h53i�h63i+ h54i�h64i]
�2ih42ih42ih34i�h12i� [h53i�h63i+ h54i�h64i] :

(14)

The expressions for B, C and D satisfy the same relations (8) as A. When

equations (12)-(14) are denoted by B0, C0 and D0 then

B(+ + +) = B0(1; 2; 3; 4; 5; 6) B(���) = B0(1; 2; 3; 4; 5; 6)
�

B(�++) = B0(2; 1; 3; 4; 5; 6) B(+��) = B0(2; 1; 3; 4; 5; 6)
�

B(+ +�) = B0(1; 2; 3; 4; 6; 5) B(�� +) = B0(1; 2; 3; 4; 6; 5)
�

B(�+�) = B0(2; 1; 3; 4; 6; 5) B(+�+) = B0(2; 1; 3; 4; 6; 5)
�

(15)

and the same holds for C and D.

Finally it should be noted that the vector boson propagators are imple-

mented in the form (q2�M
2

V + iMV �V )
�1, irrespective whether q is timelike

or not. This recipe guarantees the validity of electromagnetic gauge invari-

ance. When this is violated even by a small amount forward electron cross

sections can be o� by orders of magnitude. This is due to photon exchange in

the t-channel and was already noticed a long time ago as a problem in single

W -production [19]. A less ad hoc solution to this problem is underway [20].

4 Results

Whereas at high energies total cross section measurements will give crucial in-

formation on the size of possible non-standard couplings, one has to consider

at LEP2 angular distributions for this purpose. The natural �ve-dimensional

di�erential cross section is

d�(e�e+ �!W
�
W

+ �! f1
�f2f3 �f4)

d cos �d cos �1d�1d cos �2d�2
(16)

where � is the angle between the incoming electron and W
�. The angles �1,

�1 are the polar and azimuthal angles of the particle f1 in the rest system

of the parent particle W�, whereas the angles �2, �2 ful�ll a similar role for

the antiparticle �f4 originating fromW
+. The angles are de�ned with respect

to coordinate frames related to the W� and W
+. The z-directions are the
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directions of the momenta of the vectorbosons. The y-axes are de�ned by

respectively ~p� � ~q� and ~q+ � ~p+, where ~p�, ~p+ denote the momenta of the

incoming electron and positron and ~q�, ~q+ the momenta of the W� and W+.

In the zero width limit the above cross section is directly related to the

helicity amplitudes for on-shell W -pair production and functions describing

the decay of the vectorbosons [12, 13]. In principle direct �ts to the above

cross section could be performed. In practice one- or two-dimensional dis-

tributions will often be used. In the following we shall study d�=d cos �,

d�=d cos �1, d�=d�1.

The main purpose of this section is to illustrate e�ects of certain phenom-

ena which have sofar not been incorporated in anomalous coupling studies.

These are the e�ects of the �nite W -width, of ISR and of background dia-

grams. It is useful to de�ne a number of (di�erential) cross sections � eval-

uated under di�erent assumptions. In the �rst place we introduce SM cross

sections �SM;on, �SM , �SM;ISR and �SM;all which are respectively on-shell,

o�-shell signal cross sections (i.e. with three diagrams), the o�-shell signal

case with ISR and the cross section containing all diagrams. Furthermore,

we de�ne �AN , �AN;ISR, and �AN;all which are (di�erential) anomalous cross

sections calculated with the three signal diagrams, without or with ISR, and

with all diagrams without ISR.

The following ratios give an illustration of the e�ects of the �nite width,

the ISR, background diagrams and of non-standard couplings:

R1 =
�SM

�SM;on

; (17)

R2 =
�SM;ISR

�SM
; (18)

R3 =
�SM;all

�SM
; (19)

R4 =
�AN

�SM
; (20)

R5 =
�AN;all

�SM;all

: (21)

The reaction which we take as example is

e
�
e
+ �! e

���eu �d: (22)

The following input parameters are used

�
�1 = 128:07

sin2 �w = 0:23103
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MZ = 91:1888 GeV

MW = 80:23 GeV

�Z = 2:4974 GeV

�W = 2:08 GeV:

where sin2 �w is chosen in such a way that combined with the above running

� value the correct G� is obtained:

G� =
��p

2 sin2 �wM
2
W

: (23)

For the ISR the usual value of � is used. It should be noted that the

above experimental values for the total widths are incorporated in the prop-

agators. In EXCALIBUR the decay widths of the W into a lepton pair or

quark pair are independent from the input total width. They follow from the

other input parameters. Since one would like to have s-dependent widths in

the s-channel and because this would violate gauge invariance the following

practical procedure is used. The s-dependent widths can be transformed into

a constant width [21]. When this constant width is used in both s- and t-

channel gauge invariance is ensured in a simple way, which numerically agrees

well with theoretically more sound methods [20]. Thus the calculations are

performed with propagators (q2 � ~M2

V + i ~MV
~�V )

�1, where

~MV = MV =

q
1 + 2V ; (24)

~�V = �V =
q
1 + 2V ; (25)

V = �V =MV : (26)

With these input values various di�erential cross sections have been eval-

uated. The SM and anomalous cross sections with all diagrams have to

be calculated with cuts avoiding thus the singularities due to the massless

fermions. In order to make meaningful comparisons the cross section �SM in

R3 has the same cuts. The imposed cuts are

Ee�;u; �d > 20 GeV (27)

j cos �e�;u; �dj < 0:9 (28)

j cos 6 (u �d)j < 0:9 (29)

mu �d > 10 GeV (30)

where � is the angle between the outgoing particles and the incoming beams.
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In tables 4{7 total cross sections �AN , �AN;ISR, �AN (cuts), �AN;all are

listed for an energy of 190 GeV. The SM di�erential cross sections are given

in �gure 2. Di�erential cross section ratios are given in the form of histograms

in �gs 3{10. From R1 it is seen that the inclusion of the �nite width already

changes the cos � distribution by a few percent. Comparing the on- and o�-

shell �AN a similar angular modi�cation arises [22]. Similarly the inclusion

of ISR or background diagrams introduce even larger modi�cations of this

angular distribution. In order to show the e�ects of the various anomalous

couplings histograms of R4 and R5 are presented with values �0:5 for every

coupling successively, the others being zero at the same time. When doing

the analysis with the three signal diagrams both for SM and non-standard

couplings (R4) the overall picture is roughly the same as for the case where

both cross sections contain all diagrams (R5). The e�ects of the anomalous

couplings show up most clearly in the cos � distribution as can been seen

when comparing to the pictures of the cos �1 and �1 distributions.

5 Conclusions

With the extended EXCALIBUR program it becomes possible to study ef-

fects of anomalous couplings in all four-fermion �nal states which receive

contributions from non-abelian diagrams. In this way �nite width e�ects of

the vectorbosons are incorporated and studies of ISR and background dia-

grams can be made. Up to 2 TeV the program works e�ciently. For studies

at higher energies the present phase space treatment of the multiperipheral

massive vectorboson diagrams should be adjusted, which in principle does

not pose any problem. For LEP2 this is not yet required.

From the presented results it is clear that in particular the distribution

in the W production angle � is a�ected by the �nite W width, ISR and

background. Also here anomalous couplings show up most clearly. The

results of this paper give a quantative assesment of the above e�ects, which

have hitherto not been considered in the literature.
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label �nal state Na Nn total signals

1 e
+
e
�
�e��e 48 8 56 1 2 3

2 e
���e���

+ 14 4 18 1 2

3 e
���e�� �

+

4 �ee
+
�
����

5 �ee
+
�
����

6 �
+
�
�
����� 17 2 19 1

7 �
+
�
�
�� ���

8 �
������ �

+ 7 2 9 1

9 �
�������

+

10 �e��e�
+
�
� 17 2 19 3

11 �e��e�
+
�
�

12 �e��e�e��e 32 4 36 3

13 �e��e����� 11 1 12 3

14 �e��e�� ���

Table 1: leptonic four-fermion �nal states in e
+
e
� collisions.
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label �nal state Na Nn total signals

1 e
���eu �d 16 4 20 1 2

2 e
���ec�s

3 �ee
+
d�u

4 �ee
+
s�c

5 �
����u �d 8 2 10 1

6 �
����c�s

7 �
+
��d�u

8 �
+
��s�c

9 �
����u �d

10 �
���� c�s

11 �
+
��d�u

12 �
+
��s�c

13 �e��eu�u 17 2 19 3

14 �e��ec�c

15 �e��ed �d 17 2 19 3

16 �e��es�s

17 �e��eb�b

Table 2: semileptonic four-fermion �nal states in e
+
e
� collisions

label �nal state Na Nn total signals

1 u�ud �d 33 2 35 1

2 c�cd �d

3 u �ds�c 9 2 11 1

4 d�uc�s

Table 3: hadronic four-fermion �nal states in e
+
e
� collisions.
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p
s = 190 GeV : �SM = 0:6490� 0:0010 pb

only WW -diagrams, no ISR

�Z x y xZ yZ zZ

�0:5 0.6729 0.6866 0.6823 0.6582 0.6592 0.6863

0.0011 0.0015 0.0011 0.0011 0.0011 0.0011

�0:2 0.6537 0.6611 0.6578 0.6512 0.6501 0.6573

0.0011 0.0010 0.0010 0.0010 0.0010 0.0011

0:2 0.6504 0.6402 0.6456 0.6486 0.6509 0.6493

0.0010 0.0010 0.0011 0.0010 0.0010 0.0010

0:5 0.6666 0.6358 0.6524 0.6534 0.6617 0.6679

0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

Table 4: �AN succesively calculated for all anomalous couplings vanishing

but one. Each second row gives the error to �AN .

p
s = 190 GeV : �SM = 0:5790� 0:0011 pb

only WW -diagrams, ISR

�Z x y xZ yZ zZ

�0:5 0.6001 0.6084 0.6053 0.5882 0.5878 0.6077

0.0011 0.0011 0.0011 0.0011 0.0011 0.0011

�0:2 0.5825 0.5889 0.5861 0.5806 0.5797 0.5853

0.0011 0.0011 0.0011 0.0011 0.0011 0.0011

0:2 0.5809 0.5721 0.5766 0.5792 0.5811 0.5794

0.0010 0.0011 0.0011 0.0011 0.0011 0.0010

0:5 0.5945 0.5683 0.5827 0.5834 0.5900 0.5928

0.0011 0.0011 0.0011 0.0011 0.0011 0.0011

Table 5: �AN;ISR for similar case as in table 4
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p
s = 190 GeV : �SM = 0:45970� 0:00097 pb

only WW -diagrams, no ISR, cuts

�Z x y xZ yZ zZ

�0:5 0.4783 0.48705 0.48484 0.46781 0.46721 0.4909

0.0010 0.00099 0.00099 0.00098 0.00098 0.0010

�0:2 0.46372 0.46863 0.46623 0.46191 0.46067 0.46787

0.00098 0.00098 0.00097 0.00097 0.00097 0.00099

0:2 0.46050 0.45361 0.45774 0.45930 0.46134 0.45898

0.00097 0.00097 0.00097 0.00097 0.00097 0.00097

0:5 0.47080 0.44998 0.46330 0.46256 0.46921 0.47068

0.00097 0.00097 0.00097 0.00097 0.00097 0.00098

Table 6: �AN with the imposed cuts. Cases as in table 4

p
s = 190 GeV : �SM = 0:4705� 0:0010 pb

all diagrams, no ISR, cuts

�Z x y xZ yZ zZ

�0:5 0.4881 0.4961 0.4942 0.4791 0.4778 0.5018

0.0011 0.0010 0.0010 0.0010 0.0010 0.0011

�0:2 0.4743 0.4786 0.4767 0.4724 0.4708 0.4782

0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

0:2 0.4724 0.4665 0.4690 0.4701 0.4725 0.4699

0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

0:5 0.4824 0.4651 0.4758 0.4737 0.4808 0.4816

0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

Table 7: �AN;all with the imposed cuts. Cases as in table 4
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Figure 2: Distributions for the Standard Model

19



-1 -0.5 0 0.5 1
0.94

0.95

0.96

0.97

-1 -0.5 0 0.5 1

0.88

0.9

0.92

0.94

-1 -0.5 0 0.5 1

1

1.05

1.1

Figure 3: The ratios R1,R2,R3
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Figure 4: The ratios R2,R3
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Figure 5: The ratio R4
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Figure 6: The ratio R5
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Figure 7: The ratio R4
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Figure 8: The ratio R5

25



0 1 2 3 4 5 6

0.8

1

1.2

1.4

0 1 2 3 4 5 6

0.8

1

1.2

1.4

0 1 2 3 4 5 6

0.8

1

1.2

1.4

0 1 2 3 4 5 6

1

1.2

0 1 2 3 4 5 6

1

1.2

0 1 2 3 4 5 6

0.8

1

1.2

1.4

1.6

Figure 9: The ratio R4
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Figure 10: The ratio R5
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