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Abstract

We reconsider the cosmic string perturbative solution to the classical fourth-

order gravity �eld equations, obtained in Ref. [1], and we obtain that static,

cylindricaly symmetric gauge cosmic strings, with constant energy density, can

contain only �-terms in the �rst order corrections to the interior gravitational

�eld, while the exact exterior solution is a conical spacetime with de�cit angle

D = 8��.
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In Ref. [1] we considered the higher order derivative theory of gravity derived from the

action

I = IG + Im =
1

16�

Z
d4x
p�g

�
� 2� +R + �R2 + �R��R

�� + 16�Lm

�
; (1)

(in units where G = c = �h = 1) where the coupling constants � and � were supposed to be

of the order of the Planck length squared l2pl. Moreover, as it is well known, the coupling

constants � and � must ful�ll the no-tachyon constraints

3� + � � 0 ; � � 0 ; (2)

which can be deduced linearizing and asking for a real mass for, both the scalar �eld �

related to R and the spin-two �eld  �� related to R�� (see Ref. [2] for further details).

In Ref. [1], we have developed a method to solve the �eld equations of the quadratic

gravitational theory in four dimensions coupled to matter. The quadratic terms are written

as a function of the matter stress tensor and its derivatives in such a way to have, order by

order, Einsteinian �eld equations with an e�ective T�� as source. By successive perturbations

around a solution to Einstein's gravity, which for us represent the zeroth order, one can build

up approximated solutions.

For the perturbative approach to properly work we consider relatively small curvatures,

such that

�jRj � 1 ; j�R��j � 1 ; (3)

According to our supposition for � and � to be of the order of the Planck length squared,

this means that we deal with underplanckian curvatures.

The �eld equations derived by extremizing the action (1) are

R�� � 1

2
Rg�� + �g�� + �H�� + �I�� = 8�T�� ; (4)

where

H�� = �2R;�� + 2g��R� 1

2
g��R

2 + 2RR�� ; (5a)

I�� = �2R�
� ;�� +R�� +

1

2
g��R + 2R �

� R�� � 1

2
g��R��R

�� : (5b)

These equations can be rewritten to the n-th order approximation as

R(n)
�� �

1

2
R(n)g(n)�� + �g(n)�� = 8�T e� (n)

�� ; (6)

where the zeroth-order corresponds to the ordinary Einstein equations and where

T e� (n)
�� = T (n)

�� �
�

8�
H(n�1)

�� � �

8�
I(n�1)�� ; (7)

acts as an e�ective energy-momentum tensor satisfying order by order the conservation law.
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In paper [1], we applied this perturbative procedure to �nd gauge cosmic string solutions

up to �rst order in the coupling constant � and �. For simplicity, we considered the case

of an in�nite straigth static gauge cosmic string of zero r0 radius lying on the z-axis and

charaterized by an energy momentum tensor (given in formula (17) [1]) proportional to

a delta function. However, from the considerations below it appears clear that the only

gravitational �eld outside the cosmic string allowed in this model is not that of Eqs. (22)

and (23) of Ref. [1], but it is given by the metric expression [3{5],

ds2 = �dt2 + dz2 + dr2 + (1� 4�)2r2d�2 ; (8)

with coordinate ranges: �1 < t < +1, �1 < z < +1, 0 � � < 2�, r0(1�4�)�1 sin �M =

rb < r < +1 (if �M < �=2), and the mass per unit length in the string is � = 1
4
(1� cos �M),

when 0 < � < 1=4. In the weak �eld limit this geometry corresponds to that of a troncated

cone with de�cit angle D = 2�(1 � cos �M) = 8��. As for this metric R�
�
� = 0 so

that R �
� = 0 and R = 0, we have that T �

� = 0. Thus, this is an exact solution of the

�eld equations (4). In fact, in general, vacuum solutions to Einstein equations (even with

cosmological constant) are solutions to the quadratic theory (the converse, in general, is not

true).

Indeed, the corrections due to the quadratic terms in the gravitational action will only

come in a cosmic string where T�� 6= 0. Thus, the appropriate model of gauge cosmic strings

to be considered, in this case, is that of straight tubes, localized along the direction of the

z-axis, having a �nite size radius r0 � 1=
p
�� (� is a coupling constant of the tipical boson

squared mass) and the only non zero pressure component Pz = ��. The most general

expression of a static metric with cylindrical symmetry and Lorentz invariance in the (t; z)

plane, in cylindrical coordinates (0 � � < 2�), reads

ds2 = A(r)(�dt2 + dz2) + dr2 + r2B(r)d�2 : (9)

The exact metric solution of Einstein equations, in the case of constant energy density

�(r) = �, is given by [4]

ds2 = �dt2 + dz2 + dr2 + r20 sin
2 (r=r0)d�

2 ; (10)

For this metric the only non-zero Christo�el's symbols are �
(0)r
�� = �r0 sin (r=r0) cos (r=r0)

and �
(0)�
r� = �

(0)�
�r = r�10 cot (r=r0); the only non-zero components of the Ricci tensor are

R(0)r
r = R

(0)�
� = r�20 ; the Ricci scalar is R(0) = 2r�20 , and the only non zero components of the

energy-momentum tensor are T
(0)t
t = T (0)z

z = �� = �(1=8�r20). Note that, since T (0)t
t = ��

and T (0)z
z = Pz, the only pressure component is exaclty Pz = �� = �(1=8�r20), and thus,

in this static model the string excerts no Newtonian attraction on a particle that is at rest

with respect to it.

To compute the �rst-order solutions (in the coupling constants � and �) to the fourth

order �eld equations (4), �rst we have to evaluate the �rst-order e�ective energy-momentum

tensor, given by Eq. (7); this calculation is straighforward since Eqs (5) greatly simplify

when T�� is diagonal and its components depend essentially on only one coordinate, (not

sum over �)

1

8�
H(0)

�� = 2

�
T;rr�

r
� � �r

��T;r � g��

�
grrT;rr � g���r

��T;r � 2�T 2 + 8�TT �
�

��
; (11a)
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and

1

8�
I(0)�� = T;rr�

r
� � �r

��T;r

�2
�
(T r

r ;rr + ��
r� (T

r
r ;r � T �

� ;r))�
r
� � �r

��T
r
r ;r + (�r

��;r � ��
r��

r
��)(T

�
� � T �

� )

�

�g��
�
grrT;rr � grrT �

� ;rr + g���r
��(T

�
� ;r � T;r) + 4grr��

r��
�
�;r

�(4g��(��
�� )

2 + 2g����
���

�
�� � 2grr��

r�;r)T
�

� + 16�TT �
� � 16�(T �

� )2
�
: (11b)

Note that this last expression corrects Eq. (16) of Ref. [1]. Metric and energy-momentum

dependence is with respect to the zeroth order, i.e. solution of usual Einstein's equations,

Eq. (10). Thus, the components of the �rst order e�ective energy momentum are

T (1)effr
r = T

(1)eff�
� = �32���2

T
(1)efft

t = T (1)effz
z = ��+ 16���2 : (12)

The fundamental requirement that T (1)eff
�� must be conserved in the whole spacetime, and,

thus, also on the boundary of the interior static solution rbi , with �(r) = ��(rbi � r), where

� is a step function, give us the condition that the coupling constant � must vanish. The

question of �nding solutions, when the energy density is not constant but a generic function

�(r), is not such a straighforward problem to solve, thus, the possibility of a non vanishing

coupling constant, � > 0, remains open.

Now, we plug metric (9), into Eqs. (6) and (7). The interior solution in order to

satisfy the boundary conditions, at r = rb must match the exterior metric given by Eq. (8).

Using the criterion of Israel [6], we impose the following jump conditions: g�� jextrbe
= g�� jintrbi

and @rg�� jextrbe
= @rg�� jintrbi

, i. e. the metrics and its derivatives should match as the boundary

is approached from each side. From the exterior side the boundary is at the coordinate

rbe = r0(1�4�)�1 sin �M = r0 tan �M and from the interior side at the coordinate rbi = r0�M .

Finally, for the �rst order metric given we get

A(1)(r) = 1

B(1)(r) =
r20
r2

sin2
�
r

r0

�
+ 2

�

r2
sin2

�
r

r0

� �
�M � r

r0
cot �M

�
(13a)

where parameters are rbi = r0�M and � = 1
4
(1� cos �M ). Moreover, following Linet [5] it is

straighforward to verify that this metric is perfectly �nite and regular at r = 0.

In agreement with some previous results (Ref. [2]), it appears clear that the �-terms

corrections to the string interior metric could only modify the dynamics of eventual collisions

of cosmic strings which involve very short range interactions. As we considered 1 < � < 1=4

(0 < �M < �=2), the corrections here appear to give a negative contribution to B(r) of

(9), when r0�M < r < r0�M tan �M , and positive contribution, when r > r0�M tan �M , since

� � 0 from the no-tachyons constraints (2).

4



The outcome of future numerical simulations for collisions of cosmic strings confronted

with observations may allow to put some constraints on the coupling constants � and �.

Long-range corrections to the dynamics of structure formation scenarios are absent since it

is the exterior gravitational �eld who play the important role in this case, and it is exaclty

the same in both, General relativity and higher order gravity.
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