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Abstract

We discuss the 2 + 1 dimensional Abelian Higgs model coupled to

N = 2 supergravity. We construct the supercharge algebra and, from

it, we show that the mass of classical static solutions is bounded from

below by the topological charge. As it happens in the global case,

half of the supersymmetry is broken when the bound is attained and

Bogomol'nyi equations, resulting from the unbroken supersymmetry,

hold. These equations, which correspond to gravitating vortices, in-

clude a �rst order self-duality equation whose integrability condition

reproduces the Einstein equation.
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1 Introduction

The relevance of the solutions to classical equations of motion of non-linear

�eld theories (solitons, instantons) is nowadays recognized both in Mathe-

matics and in Physics [1].

Since the pioneering work by Belavin, Polyakov, Schwartz and Tyup-

kin [2] an important feature of many of these (second order) equations of

motion was discovered: through the obtention of a bound of topological ori-

gin (for the energy or the action, depending on the case), solutions can be

found studying much simpler �rst order di�erential equations (self-duality

equations or Bogomol'nyi equations [3]) An increasing number of works have
been addressed to this issue in the last 20 years.

Already in ref.[4], where the Bogomol'nyi equations were �rst written
for the Abelian Higgs model, it was recognized that the existence of these
�rst-order equations was connected with the necessary conditions for super-
symmetry in models with gauge symmetry breaking [5].

Other works then stressed this fact [6] but the main advance in the under-
standing of this question was achieved by Olive and Witten [7] in their work
on the connection between topological quantum numbers and the central
charge of extended supersymmetry. An important result of this investigation
was to show that the classical aproximation to the mass spectrum is exact

at the quantum level since supersymmetry ensures that there are no quan-
tum corrections. In other words, the Bogomol'nyi's bound is valid quantum
mechanically and is saturated.

Many models were studied afterwards following this line [8]-[11]. Con-
cerning gauge theories with symmetry breaking (the case of interest in the

present work) the interplay between Bogomol'nyi equations and supersym-
metry can be understood as follows [11]:

For gauge theories with symmetry breaking having a topological charge and

an N = 1 supersymmetric version, the N = 2 supersymmetric extension,
which requires certain conditions on coupling constants, has a central charge
coinciding with the topological charge. This relation ensures the existence,

of a Bogomol'nyi bound and, consequently, of Bogomol'nyi equations.

It is important to note that in the soliton sector, half of the supersym-

metries of the theory are broken [12].
Once the connection between global supersymmetry and Bogomol'nyi
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bounds was understood, the natural question to pose is whether similar phe-

nomena take place for local supersymmetry including gravity. That is, to

investigate the possibility of establishing a connection between supergravity

and Bogomol'nyi bounds for gravitating solitons and from this, to obtain �rst-

order di�erential equations whose solutions also solve Einstein and Maxwell

(or Yang-Mills) equations together.

The works on this issue are based on those of Teitelboim [13], Deser and

Teitelboim [14], Grisaru [15] and Witten-Nester-Israel [16]-[17] on positivity

of the energy using supergravity. On this line, the Einstein-Maxwell theory

was investigated by Gibbons and Hull [18] and the analog of Bogomol'nyi
bounds were found for the (ADM) mass [19]. In the same vein, Kallosh et al

[20], Gibbons et al [21] and Cveti�c et al [22] studied di�erent gravity models.
Extending our previous work on the globally supersymmetric case [11], we

study in the present paper the Abelian Higgs model coupled to supergravity
in 2 + 1 dimensions. We have chosen such a model in view of the experience
accumulated in the study of Bogomol'nyi equations for vortex con�gurations,

the connection we have already established for global supersymmetry and the
simplicity one should expect from a 2 + 1 abelian model. To our knowledge,
there is not much work on this model except for a recent paper by Becker,
Becker and Strominger [23], reported while the present investigation was
in progress. Although some of our results overlap those in [23], we think
it is worthwhile to present a detailed discussion of our approach which is

based, as in the global case [11], in the study of the supersymmetry algebra
and provides a systematic way of exploiting supersymmetry in the search of
Bogomol'nyi equations. Not surprisingly, being the supersymmetry local, we
�nd that a 1 form, analogous to the Witten-Nester-Israel form used in the
proof of positivity of the energy in gravitation [16]-[17], plays a central role

in our derivation.
Indeed, we will show explicitely that the supercharge algebra can be re-

alized in terms of the circulation, over a space-like surface contour, of a
generalized Witten-Nester-Israel form adapted to the present d = 2+1 case.

This fact will be shown to be at the root of the existence of a Bogomol'nyi

bound. Our procedure will be systematic in the sense that its formulation is
adapted to any supergravity model where conserved supercharges could be
de�ned and with a bosonic sector admiting topological charges.

The plan of the paper is as follows: in Section 2 we carefully discuss the

N = 1, d = 3 + 1 supergravity action establishing our notation and conven-
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tions so that the dimensionally reduced 2 + 1 Abelian Higgs model coupled

to supergravity can be easily obtained (Section 3). Section 4 addresses to

the supersymmetry algebra and its connection with the Bogomol'nyi bound

(from which Bogomol'nyi equations can be obtained). We give a discussion

of our results in Section 5.

2 The N = 1 Action in d = 4

We shall construct the N = 2 locally supersymmetric Abelian Higgs model in
3-dimensional space by dimensional reduction [24] of an appropriate N = 1,

d = 4 supergravity model. To our knowledge, it was not until very recently
that the (Bosonic sector of the) corresponding Lagrangian has been written
[23]. This section is addressed to the description of the Abelian Higgs model
coupled to N = 1 four-dimensional supergravity leaving for Section 3 the
dimensional reduction.

Let us consider the following locally supersymmetric and gauge invariant

superspace action for matter interacting with gravity and electromagnetism

S =
Z
d4xd4�E

�
1

2
�(�;�e2~qV) exp (���2V) +Re

�
2

R
WW

��
(1)

Here, � is a chiral (matter) multiplet whose component �elds are the Higgs
�eld �, a Higgsino � and an auxilliary �eld F . V is a vector (gauge) multi-
plet which in the Wess-Zumino gauge contains the photon AM , the photino
� and a real auxilliary �eld D. W is the supercovariant strength multiplet

containing the vector �eld strength. The superspace determinant is denoted

by E and R is a chiral scalar curvature super�eld [25]. We will distinguish
curved (M;N;R; : : :) and 
at (A;B;C; : : :) indices. The N = 1 supergrav-
ity multiplet contains the vierbein V A

M , the gravitino 	M , a complex scalar

auxilliary �eld U and a pseudovector auxilliary �eld bM . �(�;�e
2~qV) is an

arbitrary gauge invariant functional while ~q is the U(1) charge. � is a real

parameter and � is the gravitational constant. We have not included a su-
perpotential term. The interaction between chiral and vector multiplets is

the local version of the Fayet-Iliopoulos term [26]. We shall adopt hereafter
the Wess-Zumino gauge.

After some calculations, the N = 1 supergravity Lagrangian (1) can be
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written in terms of component �elds as

L = LBos + LFer (2)

where

V �1LBos =
1

6
�R� 1

4
gMRgNSFMNFRS � @2�

@��@�
(DM�)(D

M�)�

+
�

3
bM

 
i
@�

@�
DM�� i

@�

@��
(DM�)

� � ��2�AM

!

+
��2

2
AM

 
i
@�

@�
DM�� i

@�

@��
(DM�)

� � ��2

2
�AM

!

+
�

3

 
U�
@�

@�
F + U

@�

@��
F �

!
+

@2�

@��@�
jF j2

+
�2

9
�(jU j2 � bMb

M) + ~qD�
@�

@�
� ��2

2
�D +

1

2
D2 (3)

and

V �1LFer =
�2

12
�
�MNRS

V
	M�5�N

 
DR + i

3��2

4
AR�5

!
	S

� @2�

@��@�
��

 
6D + i

�

6
6b� i

��2

2
6A
!
�+ � 1

4
�

�
^6D + i

�

2
6b�5

�
�

+
@3�

@��@�2
�� 6D��+ +

1

2

@4�

@��2@�2
�����+�+ � @3�

@��@�2
����F

�

� i�2

3
bM

@�

@�
	M��� +

i

8
��3�	 � ��5�� �

3
U�
@2�

@�2
����

+ �
@2�

@��@�
	M�(6D�)��M�� � 4�

3

@�

@�
���

MNDM	N�

� �2

8

�MNRS

V
	M�N	R

 
@�

@�
DS�+

1

2

@2�

@��@�
�+�S��

!

+
�3

6

@�

@�
��

�
	M�	 � �	M + �MN

�
1

2
	R

�	N�R	M

+ 	N�	M� �	
��

+
i

2
~q�
@�

@�
�	� � ��+ � 2i~q

@2�

@��@�
��+�+
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� �2

2

@2�

@��@�
	M���	

M
+�+ � ��2

2

@�

@��
�+�+

+
�

8
	T�

MN�T�FMN + h:c: (4)

Here V is the determinant of the vierbein,

V (x) � E(x; �; �)j�=�=0;

and R is the Ricci scalar (depending on the vierbein V A
M and the spinorial

connection 
MAB). � is a functional of the Higgs �eld de�ned as:

�(�; ��) � �(�;�e2~qV)j�=�=0;

subindices \�" and \+" indicate left or right-handed fermions and the \hat-
ted" derivative acting on the photino � is de�ned as

D̂M� = DM� +
�

4

�
@RAS � �

2
	R�S�� (R$ S)

�
�RS	M (5)

where DM is the covariant derivative over fermionic �elds:

DM = @M +
1

4

MAB�

AB (6)

Finally,
6D�� =6D�� � i~q 6A��

is the Maxwell and general coordinate covariant derivative acting on �. Let

us mention that a Weyl scaling of vierbein and fermion �elds and a particular

choice of the (up to now arbitrary) functional � is necessary in order to bring
(2) to its canonical form.

Lagrangian (2) is invariant under the following set of local supersymmetry

transformations (with anticommuting parameter �(x)):

�AM = �1

2
���M�+ � 1

2
�+�M�� ; �V A

M =
�

2
���

A	M+ +
�

2
�+�

A	M�

�D =
1

2
��

�
^6D � i�

2
6b
�
�+ � i

2
�+

�
^6D +

i�

2
6b
�
�� ; �U =

1

2
�+� � R̂�

�F = �+( ^6D � i�

2
6b)�� � �

3
��(U�� + i 6b�+) + i~q�+�� ; �� = ����
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�bM =
3i

4
��

�
R̂M� � 1

3
�M� � R̂�

�
+ h:c: (7)

��+ =
1

2

�
@MAN � �

2
	M�N�� (M $ N)

�
�MN�+ � i

2
D�+

��� =
1

2

�
6D� � ��M	M�

��
�
�+ +

1

2
F��

�	M� =
2

�

�
DM +

i�

2
bM

�
�� +

1

6
�M (U��+ � i 6b��)

where R̂M� is given by:

R̂M� = i
�MNRT

V
�5�N

�
DR +

i�

2
�5bR +

�

6
�R(U � i 6b�5)

�
	T

and

D̂M�� = DM�� � i~qAM�� � i�

2
bM�� � �

2

�
( ^6D�)	M� + F	M+

�
(8)

We eliminate auxiliary �elds and compute on-shell quantities, the fermion
Lagrangian (4) becomes:

V �1LFer =
�2

6
�
�MNRS

V
	M�5�N

 
DR + i

3��2

4
AR�5

!
	S

� 1

2
�

 
^6D � i

3��2

4
6A�5

!
�� 4�

3

 
@�

@�
���

MNDM	N� + h:c:

!

� @2�

@��@�
�

 
6D � i

 
~q +

3��2

4

!
6A
!
�+ V �1Lint

Fer (9)

where Lint
Fer contains complicated interactions involving fermion �elds whose

explicit form is not of interest for us. It is interesting to stress the occurrence

of a charge 3��2=4 for all fermion �elds (originated in the Fayet-Iliopoulos
term).

We shall often have to put all fermion �elds to zero. Given a functional

Q depending both on bosonic and fermionic �elds, it will then be convenient
to de�ne Qj for

Qj � Qj	A;�;�=0: (10)
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Under condition (10) the only surviving supersymmetric transformations are

those corresponding to fermionic �elds:

��+j = 1

2
FMN�

MN�+ � i

2

 
��2

2
�� ~q�

@�

@�

!
�+ ; ���j = 1

2
(6D�)�+

�	M�
j = 2

�

 
DM +

3i

4�

"
i
@�

@�
(DM�)� i

@�

@��
(DM�)

� � ��2�AM

#!
��

� i

4��
�M

"
i
@�

@�
(6D�) � i

@�

@��
(6D�)� � ��2� 6A

#
�� (11)

Concerning the Lagrangian, it becomes

V �1Lj =
1

6
�R� @2�

@��@�
(DM�)(D

M�)� � 1

4
gMRgNSFMNFRS

+
1

4�

 
i
@�

@�
DM�� i

@�

@��
(DM�)

� � ��2�AM

!2

� 1

2

 
~q�
@�

@�
� 1

2
��2�

!2

(12)

In order to bring (12) to its canonical way one can perform a Weyl rescal-
ing on the Vierbein

V A
M ! V A

M

�
� 3

�2�

�1=2
� V A

Me
�
1

6
J (�;��) (13)

gMN ! gMN

 
��

2�

3

!
; V ! 9

�4�2
V (14)

where

J (�; ��) � 3 log

 
��

2�

3

!
(15)

If we now choose 2J (�; ��) = ��2��� and rede�ne � = �~qv2=3, the La-
grangian takes the form

V �1Lj = � 1

2�2
R� 1

4
gMRgNSFMNFRS � 1

2
(DM�)(D

M�)�

� ~q2

8
(j�j2 � v2)2 (16)
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which is the expected Abelian Higgs model Lagrangian minimally coupled to

gravity. Note that the coupling constant of the Higgs potential is related to

the electric charge by the well-known condition

� =
~q2

8
(17)

This condition was originally found for the globally supersymmetric model

[5]. As explained in [11] it gives a necessary condition for extending N = 1

to N = 2 supersymmetry and, at the same time, for �nding a Bogomol'nyi

bound [3, 4] for the energy of the Abelian Higgs model.
It is interesting to note that Weyl transformations for fermion �elds, in

correspondance with (13) bring, on the one hand the gravitino Lagrangian
to its usual Rarita-Schwinger form. On the other hand, as we shall see, the
Higgs potential and the Higgs current take after the scaling its usual form as

can be seen in the resulting Bogomol'nyi equations. Under this Weyl scaling

	M !
�
� 3

�2�

�1=4
	M ; �!

�
� 3

�2�

��3=4
� ; �!

�
� 3

�2�

��1=4
�

(18)

�!
�
� 3

�2�

�1=4
�

one has

��+j = 1

2
FMN�

MN�+ +
i~q

4
(j�j2 � v2)�+ ; ���j = 1

2
(6D�)�+

�	M�j =
2

�

 
DM +

i�2

4
(JM + ~qv2AM )

!
�� (19)

where

JM =
i

2
(�(DM�)

� � ��(DM�)) (20)

is the Higgs �eld current.
Although we will �nally put all fermion �elds to zero, we will need for

further calculations the explicit form of the kinetic Lagrangian for fermions.

After the Weyl rescaling (18) is performed in Lagrangian (9), one can note
that the kinetic fermionic part can be diagonalized by the following shift:

	M� ! 	M� �
1

��

@�

@��
�M�+ (21)
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such that the Fermion Lagrangian can be �nally written as:

V �1LFer = �1

2
�MNRSV	M�5�N

 
DR + i

~qv2�2

4
AR�5

!
	S

� 1

2
�

 
6D � i

 
~q +

~qv2�2

4

!
6A
!
�

� 1

2
�

 
6D � i

~qv2�2

4
6A�5

!
� + V �1 ~Lint

Fer (22)

once the above mentioned conditions for J (�; ��) and � are adopted.

3 Dimensional Reduction and Extended su-

persymmetry

We shall now derive the d = 3, N = 2 Lagrangian by dimensional reduction
of (16). To this end, we write the vierbein as:

V A
M =

 
ea� a�
0 '

!
(23)

(we use � = 0; 1; 2 for curved coordinates and a = 0; 1; 2 for 
at indices)
and suppose that whole set of �elds are x3-independent. We will accord-
ingly choose x3 as the variable which is eliminated within the dimensional

reduction procedure. We introduce in (23) ea� as the dreibein of the reduced
3-dimensional manifold, a� as a vector �eld and ' as a real scalar. We have
chosen the gauge V a

3 = 0, which can always be attained by a suitable local
Lorentz transformation [24]. Indeed, an in�nitesimal �eld variation of V A

M

under local supersymmetry, local Lorentz and general coordinate transfor-

mations reads

�V A
M = �i���A	M + !ABV

B
M + @M�

RV A
R + �R@RV

A
M (24)

where �, !AB and �R are the corresponding local parameters. Freedom associ-

ated with general coordinate invariance in four dimensions can be exploited
to put

a� = 0 ; ' = 1 (25)

9



without spoiling the local Einstein group of the reduced 3-dimensional space-

time.

With these conditions, the metric tensor reads

gMN = V M
A V N

B �AB =

 
g�� 0

0 �1
!

(26)

where �AB = diag(+ � ��). Concerning the spinorial connection, it takes

the form


cabj = !cabj = �1

2
(emc e

n
a � ema e

n
c )@nemb +

1

2
ema e

n
b @nemc � (a$ b) (27)

while all other components vanish. Then, the Ricci scalar in four dimensions

R reduces to the corresponding one in d = 3, which will be denote as R.
After dimensional reduction, Lagrangian (16) becomes

e�1Lj = � 1

2�2
R� 1

4
g��g��F��F�� � 1

2
(D��)(D

��)�

+
1

2
@�S@

�S +
~q2

2
S2j�j2 � ~q2

8
(j�j2 � v2)2 (28)

where we have identi�ed
AM � (A�; S) :

Lagrangian (28) describes the dynamics of the Bosonic sector for the d = 3
Abelian Higgs model coupled to N = 2 supergravity. We will now focus on
the dimensional reduction of supersymmetric transformation rules written in

eq.(19). To this end, let us specify our representation for the Cli�ord algebra

�a = 
a 
 �3 ; �3 = 1
 i�2 ; �5 = 1 
 �1

�ab = �ab 
 1 ; �a3 = ��3a = 
a 
 �1 (29)

where 
a are 2 � 2 Dirac matrices for d = 3 and �ab = 1=2[
a; 
b]. In this

basis the original 4-dimensional Majorana spinors take the form

	 =

 
	1

i	2

!
(30)
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where 	1 and 	2 are 2-component real spinors which can be taken as 3-

dimensional Majorana �elds. Finally, with these Majorana �elds one can

construct a Dirac spinor  in 3 dimensions

 = 	1 + i	2:

The dimensionally reduced supersymmetric transformations for fermions

read

��j = 1

2
F���

���+
i~q

4
(j�j2 � v2)�+ 
�@�S�

��j = 1

2
(6D� + i~qS�) � ; � 3j = �i ~q�

2
S(j�j2 � v2)� (31)

� �j = 2

�

 
D� + i

�2

4
(J� + ~qv2A�)

!
� � 2

�
r̂��:

Note that we have included the transformation for  3, a remnant of the 4
dimensional starting model. However, as we shall see, S will be put to zero
to recover the Abelian Higgs model in the bosonic sector, this giving a trivial
 3 transformation rule. Being � a Dirac fermion, transformations (31) are
N = 2 supersymmetric ones. Supersymmetric covariant derivative r̂� is

de�ned as

r̂�� =

 
@� +

1

4
!�ab�

ab + i
�2

4
(J� + ~qv2A�)

!
� (32)

We shall end this Section by performing the dimensional reduction of the
fermionic Lagrangian (22) which is the fermionic counterpart of the N = 2
bosonic Lagrangian (28). In order to achieve a diagonalized kinetic fermionic

sector, we perform the following shift

 � !  � + i
� 3

after which, the resulting fermionic Lagrangian reads:

e�1LFer = �1

2

����

e
 �@� � �

1

2
� 6@�� 1

2
� 6@�

� i 3 6@ 3 + e�1L̂int
Fer (33)

where the last term L̂int
Fer includes also gauge interactions.
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4 Self-duality equations and the Bogomol'nyi

bound

In this Section we shall obtain a Bogomol'nyi bound for �eld con�gurations

in the d = 3 Abelian Higgs model coupled to gravity. In doing this, we shall

make explicit the relation between this bound and the supercharge algebra

of the N = 2 theory.

The equations of motion for bosonic matter �elds are:

1p�g@�(
p�gF ��) = �~qJ� (34)

1p�gD�(
p�gD��) =

~q2

2
(j�j2 � v2)�� ~q2S2� (35)

1p�g@�(
p�g@�S) = ~q2j�j2S: (36)

Concerning Einstein equations

R�� � 1

2
g��R = Tmat

�� ; (37)

Tmat
�� = �g��F��F�� � 1

2
(D��)(D��)

� � 1

2
(D��)

�(D��)� @�S@�S

+ g��

"
1

4
F��F

�� +
1

2
(D��)(D

��)� � 1

2
@�S@

�S � ~q2

2
S2j�j2

+
~q2

8
(j�j2 � v2)2

#
(38)

Since we shall focus on the Abelian Higgs model coupled to gravity, we
make at this point S = 0. Moreover, since Bogomol'nyi equations correspond

to static con�gurations with A0 = 0, we also impose these conditions (note
that in this case Tmat

0i = 0).

Concerning the metric, let us notice that a static spacetime admits a

surface � orthogonal everywhere to the time-like killing vector �eld @
@t
. In a

local chart adapted to @
@t
, the line element can be written as:

ds2 = dt2 + gijdx
idxj (39)
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where gij is a function depending only on spatial variables that span �. Now,

it is well-known that any 2-dimensional metric is K�ahler and then we write

the interval in the form

ds2 = dt2 �
2dzdz (40)

where 
 is a function of the conformal coordinates 
(z; z). Note that for any

�nite energy con�guration, Einstein equations (37) constrain the asymptotic

behaviour of 
 to be


(z; z)! (zz)�
�
2
M

2 (41)

so that the metric is asymptotic to a 
at cone with de�cit angle � = �2M

[27], M being related to the source mass

M =
1

4�

Z
dzdz
2Tmat

tt =
1

4�

Z
dzdz
2

�
1

2
FzzF

zz

+
1

2
(Dz�)(D

z�)� +
1

2
(Dz�)(D

z�)� +
~q2

8
(j�j2 � v2)2

#
: (42)

The spacetime metric (40) can be generated by the following dreibein

e0t = e�z = 1 ; e+z = 
2 (43)

(all the other components vanishing) with the 
at metric written in conformal
coordinates as

�00 = �2�+� = �2��+ = 1:

The non-vanishing component of the spinorial connection is:

!z+� = �@ log 
 (44)

(here @ � @z and @ � @z).

We shall now analyse theN = 2 algebra of supercharges for our model. To

construct these charges we shall follow the Noether method. The conserved
current associated with local supersymmetry is given by:

J �[�] =
X
�

�L

�r��
��� +

X
	

�L

�r�	
��	� ��[�] (45)

where � and 	 represent the whole set of bosonic and fermionic �elds re-
spectively. Concerning ��[�], it is de�ned through

��S =
Z
d3xr��

�
� : (46)
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In the present case we have:

��[�] = � 3

2�

����

e
 �r̂��� 1

2
�(D��)�+

1

2
�
�F

���� 1

8
�
�(6D�)

� 1

4
�
�

�
1

2
F���

�� +
i~q

4
(j�j2 � v2)

�
�+ h:c:+ : : : (47)

where the dots indicate terms containing products of three fermion �elds,

which are not relevant for our construction since, after computing the su-

percharge algebra, we will put all fermions to zero. Inserting �� in (45) we

obtain the following expression for the supersymmetry current:

J �[�] = ��
�
�
1

2
F���

�� +
i~q

4
(j�j2 � v2)

�
�� 1

2
�
�(6D�)�

� 2

�

����

e
 �r̂��+ h:c:+ : : : (48)

The conserved charges associated with (48),

Q[�] =
Z
�
J �[�]d�� � Q1[�] + iQ2[�]; (49)

are de�ned over a space-like surface � whose area element is d��. Here QI,
I=1,2, are the Majorana charge generators.

Now, imposing the gravitino �eld equation,

2

�

����

e
r̂� � = �
�

�
1

2
F���

�� +
i~q

4
(j�j2 � v2)

�
+
1

2
�
�(6D�) (50)

one can see from eqs.(48)-(49), after integration by parts, that the super-

charge is nothing but the circulation of the gravitino arround the oriented
boundary @�

Q[�] = �2

�

I
@�
� �dx

� (51)

Let us stress that the expression above coincides with the results presented

by Teitelboim [13] for pure supergravity in 4-dimensional spacetime, after

dimensional reduction. Although there are well-known problems for con-

structing supergravity charges in 2+1 dimensions [28]-[29], we shall see that

they can be overcome in the present model.
As explained in [13], it is not possible to compute the supercharge algebra

by (naively) evaluating Posson brackets from (51) because surface terms do

14



not have well de�ned functional derivatives and hence their Poisson brackets

with the various �elds of the theory are not well de�ned. One can compute

instead the algebra by acting on the integrand of (51) with a supersymmetry

transformation:

f �Q[�];Q[�]gj � ��Q[�]j = 2

�

I
@�
��� �dx

� =
4

�2

I
@�
�r̂��dx

� (52)

where �Q is given by:

�Q =
2

�

I
@�
 ��dx

� (53)

Now, Teitelboim [13] has proven, using Dirac formalism for constrained
systems, that supergravity charges, which can be written as surface integrals

in the form (51), obey a 
at-space supersymmetry algebra

f �QI ;QJg = �IJ

�P� + �IJZ (54)

where Z is the central charge. In 
at space, it is a well-known result that
this algebra leads in several models to Bogomol'nyi bounds for the energy
[7]-[11]. Indeed, squaring eq.(54) and tracing over the indices, one obtains a
bound

P 2 � Z2 � 0

from which, after using the identity of Z with the topological charge of the

�eld con�guration T [7]-[11], one obtains the well-known Bogomol'nyi bound
for the mass M of the con�guration

M � jT j (55)

Coming back to supergravity, let us see explicitely how (52) ensures that
static �nite-energy con�gurations satisfy a bound of topological nature of the
type (55). To this end, let us write, using the expression for the covariant

derivative given in (32)

f �Q[�];Q[�]gj =
4

�2

I
@�
�r̂��dx

�

=
4

�2

I
@�
�D��dx

� + i

I
@�
��(J� + ~qv2A�)dx

� (56)
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We can now use the asymptotic behaviour of di�erent �elds appearing in

(56). The spinorial connection which enters in the covariant derivative in the

�rst term of the r.h.s. behaves as

!z+� ! �2M

2z
(57)

Concerning the electromagnetic �eld as well as the Higgs current, �niteness

of the energy implies

Az ! � in
~qz

; Az !
in

~qz
; Jz ! O

�
1

zz

�
; Jz ! O

�
1

zz

�
: (58)

(Here, the integer n is the topological number that characterizes the quanta
of magnetic 
ux). Finally, the asymptotic behaviour of � will be written in
the form:

�! �(zz)�1 (59)

where �(zz) will be determined using the so-called Witten condition[16] (see
below).

We can now evaluate the line-integral (56). To avoid infrared divergences,
it is necessary to take the contour of integration at large but �nite radius R.
Using the asymptotic behaviours listed above, (56) becomes:

f �Q[�];Q[�]gj= (M�1

0�1 � v2n�1�1)�(R)

2: (60)

The relation of this result with the Poisson brackets (54) which are valid, in
particular, in 
at space, is, of course, no accident: as we discussed above,
supersymmetry transformations at spatial in�nity generate global N = 2

supersymmetry algebra.

We can now prove that f �Q[�];Q[�]gj is semi-positive de�nite and then

derive a Bogomol'nyi bound of topological origin from (60).

First, let us observe that the supercharge algebra evaluated in the purely
bosonic sector is the integral over the boundary of a 1-form !, constructed

from a fermionic parameter:

f �Q[�];Q[�]gj = 4

�2

I
@�
! (61)

! = �r̂��dx
� (62)
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Now, ! can be identi�ed with the generalized Nester-like form [16, 17] in 3

dimensional spacetime. The use of Nester form is at the root of several proofs

of the positivity of gravitational energy [13]-[17] and it was also used in 4

and 5-dimensional models to �nd Bogomol'nyi bounds [19]-[22]. In the same

vein, we shall see below that the integral of ! on the contour is semi-positive

de�nite and that, as a consequence, the theory posses a Bogomol'nyi bound.

Let us mention at this point that the integral in the r.h.s. of (61) coincides

with the quantity �(r) introduced in Ref.[23]. Our construction shows that

its occurence is a consequence of the N = 2 supercharge algebra.

First, using Stokes' theorem, we haveI
@�
! =

Z
�
����r̂�(�r̂��)d��: (63)

where the integrand in (63) can be written as

����r̂�(�r̂��) = ����r̂��r̂��+
1

2
�����[r̂�; r̂�]� : (64)

Then, using

[r̂�; r̂�] =
1

2
R��

ab�ab +
i~qv2�2

2
F�� +

i�2

2
(@�J� � @�J�); (65)

Einstein equations (37) and supersymmetric transformations for the fermio-

nic �elds � and �, we arrive to the following expression

����r̂�(�r̂��) = ����r̂��r̂��+
�2

2

h
���


����+ ���

����

i
: (66)

We now specialize our spacelike integration surface � so that d�� = (d�t;~0).
Then, we only need to compute the time component of eq.(66) which, after

some Dirac algebra, reads

�t��r̂�(�r̂��) =
�

ir̂i�

�
y
�

jr̂j�

�
� gij

�
r̂i�

�
y
�
r̂j�

�

+
�2

2

h
���

y��� + ���
y���

i
(67)

We see at this point, that if we impose the generalized Witten condition [16]


ir̂i� = 0 (68)
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the r.h.s. of eq.(67) is semi-positive de�nite

�t��r̂�(�r̂��) � 0 (69)

and then, using (63),

f �Q[�];Q[�]gj � 0 (70)

The bound is saturated if and only if

��� = 0 (71)

��� = 0 (72)

r̂i� = 0 (73)

Condition (73) re
ects our choice of surface � . One can easily see that
a more general choice would imply, instead of (73),

r̂�� = 0 : (74)

In explicit form, eqs.(71), (72) and (74) read:

��� =
1

2

�
F���

�� +
i~q

2
(j�j2 � v2)

�
� = 0 (75)

��� =
1

2
(6D�)� = 0 (76)

�� � =

 
D� + i

�2

4
(J� + ~qv2A�)

!
� = 0 (77)

We can see at this point that solutions of (75) and (76) break half of the
supersymmetry. Indeed, writting

� �
 
�+
��

!
(78)

One can easily see that the conditions

��+� = 0 (79)

��+� = 0 (80)
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imply ��
�

� 6= 0, ��
�

� 6= 0 for nontrivial solutions. Hence if one is to search

Bogomol'nyi equations for non-trivial con�gurations, it makes sense to con-

sider that � has just one independent complex component,

� �
 
�+
0

!
(81)

satisfying equation (68), which then reads

r̂z�+ = 0 (82)

Let us stress on the fact that �eld con�guration solving Bogomol'nyi
equations (which as we shall see coincide with (79) and (80)) break half
of the supersymmetries, a common feature in all models presenting Bogo-

mol'nyi bounds with supersymmetric extension (See for example [12, 20]).
It can be understood as follows: The number of Killing spinors (those that
solve eq.(77)) admitted by a certain spacetime coincides with the number
of remnant unbroken supersymmetries [12]. If we attempt to keep all the
supersymmetries of our model, we will �nd that the resulting �eld con�gu-

ration has zero energy (the trivial vacuum) as it was remarked above. Then,
it is evident that we must restrict the space of solutions of (77) if we want
to obtain non-trivial topological con�gurations (which, in this sense, require
breaking of one of the supersymmetries).

We can now study the asymptotic behaviour of the Killing spinor �+ !
�(R)�+1. One can see that eq.(82) implies that �(R) is a power of the
radius R:

�(R) = R��
2 nv

2

2 (83)

It is important, at this point, to comment on the existence of non-trivial solu-
tions to eq.(82) in asymptotically conical spaces. In fact, the supercovariant

derivative in (82) gets an electromagnetic contribution related to the mag-
netic 
ux, and then, as explained in [23], leads to the existence of non-trivial

solutions, otherwise absent [16].
Now, for a parameter � of the form (81), formula (60) can be written as

f �Q[�];Q[�]gj= (M � v2n)�y+1�+1�(R)
2 (84)

We can now �nally write a Bogomol'nyi bound using (70) and (84):

M � nv2 � 0 (85)
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The mass of our �eld con�guration, de�ned in eq.(42), is then bounded

from below by the magnetic 
ux quanta. Analogous results also hold in

the 4 and 5 dimensional models studied by Kallosh et al [20] and Gibbons

et al [21] where the bound reads: M � p
Q2 + P 2, Q and P being the

electric and magnetic charges respectively, related to the two central charges

existing in the extended supersymmetry algebra of those models [12]. In the

present abelian 3-dimensional model there is just one central charge and,

moreover, it is not possible to have electrically charged �nite energy solitonic

con�gurations in the Abelian Higgs model so that Q = 0.

The bound (85) for the d = 3 Abelian Higgs model coupled to gravity coin-
cides with that presented in [23]. The novelty here is that we have obtained
it from the supercharge algebra (plus the generalized Witten condition) thus
showing that the connection between global supersymmetry and Bogomol'nyi
bounds discussed in [7]-[11], also works for local supersymmetry.

The bound (85) is saturated whenever eqs.(75)-(77) hold and hence, we
identify them as the Bogomol'nyi equations of our model. Concerning equa-
tions (75) and (76), they can be written in the usual form [3]:

�zzFzz +
~q

2
(j�j2 � v2) = 0 (86)

Dz� = 0: (87)

They have been found previously in the study of the Einstein-Abelian Higgs
model by Comtet and Gibbons in ref.[30] where it is shown that this set of
equations admits vortex solutions in 3+1 dimensions which can be interpreted

as cosmic strings. Concerning eq.(77), 
D� + i

�2

4
(J� + ~qv2A�)

!
�+ = 0; (88)

it can be thought as the Bogomol'nyi equation for the gravitational �eld.
Indeed, it can be seen that the integrability conditions of this equation,"

D� + i
�2

4
(J� + ~qv2A�);D� + i

�2

4
(J� + ~qv2A�)

#
�+ = 0; (89)

become the Einstein equations once eqs.(86)-(87) are imposed. Even though
conical spaces usually does not admit covariantly constant spinors, solutions
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to eq.(88) exist as a consequence of the electromagnetic contribution to the

supercovariant derivative, as explained above. In view of the bound (85), the

solutions of the whole set of Bogomol'nyi equations satisfy the more involved

second order Euler-Lagrange ones.

5 Summary and discussion

We have studied Bogomol'nyi bounds for the Abelian Higgs model coupled

to gravity in 2 + 1 dimensions by embedding it in an extended N = 2 super-
gravity model.

Bogomol'nyi equations for the scalar and the gauge �eld, compatible with
the Einstein equation, were originally derived by Comtet and Gibbons [30],
following the usual Bogomol'nyi approach [3]. In their work, the existence
of gravitating multi-vortex solutions saturating the Bogomol'nyi bound was
proven. These solutions can be understood as cosmic strings and the bound
can be seen to be a restriction in possible values for the de�cit angle of conical

spacetime [30].
More recently, Becker, Becker and Strominger [23] considered the model

we discussed and obtained the Bogomol'nyi bound from supersymmetry argu-
ments. They followed an approach which is a variant of the methods leading
to energy positivity in gravity models [16]-[18]. This approach is close to the

one we have followed in the present paper. The novelty in our work is that
we have obtained the Bogomol'nyi bound and the self-duality equations (in-
cluding the one associated with the Einstein equation) by constructing the
supercharge algebra and making explicit its relation with the (generalized)
Witten-Nester-Israel form.

As it is well-known, in 2+1 dimensions, states with non-zero energy pro-
duce asymptotically conical spaces and this put stringent limitations on the

existence of covariantly constant spinors which are basic in the construction

of supercharges. However, in our model, the supercovariant derivative gets
a contribution related to the topological charge of the vortex and this allows

for non-trivial solutions for Killing spinors. This is the reason why we were
able to �nd supercharges and determine their algebra.

A possible interest of our investigation is related to the recent discus-
sion about how can supersymmetry ensure the vanishing of the cosmological

constant [28],[23],[29]. On the other side, since our approach provides a sys-
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tematic way of investigating Bogomol'nyi bounds in supergravity models in

arbitrary dimensions (as it is the case for global supersymmetry [7]-[11]), one

can think in �nding Bogomol'nyi bounds for other gauge models coupled to

gravity like, for example, the Chern-Simons-Higgs model recently considered

in [31]. We hope to come back to these problems in a forthcoming work.
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