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Abstract

A supercurrent superfield whose components include a conserved energy-
momentum tensor and supersymmetry current as well as a (generally broken)
R-symmetry current is constructed for a generic effective N=1 supersymmet-
ric gauge theory. The general form of the R-symmetry breaking is isolated.
Included within the various special cases considered is the identification of
those models which exhibit an unbroken R-symmetry. One such example
corresponds to a non-linearly realized gauge symmetry where the chiral field
R-weight is required to vanish.
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1 Introduction

The most general graded Lie algebra of symmetries of the S-matrix of a

relativistic quantum field theory is the direct product of (extended) super-

symmetry (SUSY) with some internal symmetry [1]. That is, supersymmetry

is the only possible extension of the Poincaré space-time symmetries. More-

over, since models possessing supersymmetry tend to exhibit a less singular

ultraviolet behavior than what would naively be expected, one is naturally

led to explore the role of SUSY in possible extensions of general relativity

and quantum theories of gravity. Indeed, supersymmetry plays a pivotal role

in many of the string theories [2] which offer the promise of incorporating

gravity in a consistent quantum mechanical framework.

This softer ultraviolet behavior of supersymmetric theories can be en-

coded in various non-renormalization theorems [3], which, among other things,

guarantees that supersymmetric models are free of additive quadratic diver-

gences even when they contain fundamental scalar degrees of freedom. This

attribute allows mass hiearchies which are established at tree level in such

theories to remain stable against quantum fluctuations and has led to a

considerable amount of activity in SUSY model building [4]. Such a SUSY

effective theory often arises as the flat space-time limit of a some supergravity

model which in turn can be considered as the zero slope limit of an underlying

superstring theory. The resulting SUSY model will, in general, contain in-

teraction terms beyond those appearing in the perturbatively renormalizable

case.

It has also been demonstrated [5][6] that the restrictions imposed by

SUSY may dictate that certain exact results can be established even after the

inclusion of perturbative and nonperturbative radiative corrections. A cru-
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cial ingredient used in securing these results involves the (extended) SUSY

algebra [7] which, in turn, is related to the supersymmetry currents. In addi-

tion, explorations [8] continue into the possibility of having non-perturbative

violations of the non-renormalization theorems and dynamical supersymme-

try breaking which in turn could provide for the natural origin of the huge

hierarchy between the Planck scale and the electroweak scale. It has been

argued that the nature of the R-symmetry realization plays an important

role in determining the viability and calculability of this potentiality. Once

again, the resultant SUSY models are generally required to contain higher

dimensional operators in order to secure a stable ground state.

For perturbatively renormalizable models containing Yang-Mills vector

superfields and (anti-) chiral superfields, it has been shown that the super-

symmetry current is intimately related to the energy-momentum tensor and

the R-symmetry current. In fact, a supercurrent multiplet[9] can be con-

structed such that its components contain these currents. Futhermore, the

generalized (spinor) trace of the supercurrent not only describes the (non-)

conservation of these component currents, but also that of the associated

superconformal symmetry currents. Since, at the present time, many of the

supersymmetric models being investigated involve more general structures

than those appearing in this perturbatively renormalizable class, we con-

stuct, in this paper, the general form of the supercurrent in a larger class of

models characterized by arbitrary superpotential and prepotential functions

as well as an arbitrary Kähler potential.

In the next section, we define the model action which is the general super-

symmetric and gauge invariant form containing at most two derivatives. We

also introduce functional differential operator representations for both the in-
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ternal gauge symmetry, which can be either linearly or non-linearly realized,

and the space-time Poincaré, supersymmetry and R- transformations. Start-

ing with the supercurrent trace identity, section 3 details the construction of

the supercurrent which is secured by combining the various space-time sym-

metries into a particular superfield structure with the R-symmetry current

as the lowest component. So doing, we obtain the general form of possible

R-symmetry breaking. As a special case, we review the form of the supercur-

rent obtained in perturbatively renormalizable SUSY models. In addition,

we delineate the general criterion nessecary for an unbroken R-symmetry.
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2 The Supersymmetric and Gauge Invariant

Action

Through two derivatives, the most general supersymmetric and gauge invari-

ant action, Γ, composed of Yang-Mills vector superfields, V A , and matter

(anti-) chiral superfields, (φ̄ī) φi, which transform either linearly or non-

linearly under the gauge group G, is

Γ[φ, φ̄, V ] =
∫
dV K(φ, φ̄, V ) +

∫
dS

[
1

2
fAB(φ)WAαWB

α + P (φ)
]

+
∫
dS̄

[
1

2
f̄AB(φ̄)W̄A

α̇ W̄
Bα̇ + P̄ (φ̄)

]
. (2.1 )

This action contains a locally invariant Kähler potential [10], K = K(φ, φ̄, V ),

the SUSY Yang-Mills kinetic term multiplying (anti-) chiral field dependent

prepotential functions, (f̄AB(φ̄)) fAB(φ), and the (anti-) chiral superpotential

(P̄ (φ̄)) P (φ). The adjoint representation chiral spinor field strength Wα [11]

is

Wα ≡ WA
α t

A = −
1

4
D̄D̄

[
e−2VDαe

2V
]
, (2.2 )

where tA are the adjoint representation matrices, (tA)BC ≡ ifBAC and

V ≡ tAV A is the matrix valued gauge field. It proves convenient to introduce

the polynomial in V combination

`AB ≡

(
e2V − 1

V

)
AB

(2.3 )

in terms of which we can write

Wα = −
1

4
D̄D̄

[
DαV

B`BA
]
tA , (2.4 )

which explicitly identifies the WA
α spinors as

WA
α = −

1

4
D̄D̄

[
DαV

B`BA
]
. (2.5 )
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Similarly the anti-chiral field strength is

W̄α̇ = W̄A
α̇ t

A = −
1

4
DD

[
e2V D̄α̇e

−2V
]

= −
1

4
DD

[
D̄α̇V

B ¯̀
BA

]
tA , (2.6 )

where

¯̀
AB =

(
e−2V − 1

V

)
AB

= −`BA , (2.7 )

and

W̄A
α̇ = −

1

4
DD

[
D̄α̇V

B ¯̀
BA

]
. (2.8 )

2.1 Gauge Invariance

The generators of the symmetry groups can be realized using Ward identity

functional differential operators acting on the superfields. The infinitesimal

gauge transformations of the fields are defined by the functional differential

operator

δ(Λ, Λ̄) ≡
∫
dSΛAAiA(φ)

δ

δφi
+
∫
dS̄Λ̄AĀīA(φ̄)

δ

δφ̄ī

−i
∫
dV

(
ΛB`−1

BA + Λ̄B ¯̀−1
BA

) δ

δV A
, (2.9 )

where (Λ̄A) ΛA are the infinitesimal (anti-) chiral superfields parameterizing

the gauge variation. When applied directly to the fields themselves, this

yields their individual variations as

δ(Λ, Λ̄)φi = ΛAAiA(φ)

δ(Λ, Λ̄)φ̄ī = Λ̄AĀīA(φ̄)

δ(Λ, Λ̄)V A = −i
[
ΛB`−1

BA + Λ̄B ¯̀−1
BA

]
. (2.10 )
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The (chiral) Killing vectors AiA(φ) and their (anti-chiral) complex conjugates,

ĀīA(φ̄), define the global transformations of the matter fields, which are de-

noted by the variation δA, so that

δAφ
i = AiA(φ)

δAφ̄
ī = ĀīA(φ̄) . (2.11 )

These (anti-) chiral Killing vectors obey their defining Lie derivative or

Killing equations

AjAA
i
B,j −A

j
BA

i
A,j = ifABCA

i
C

Āj̄AĀ
ī
B,j̄ −Ā

j̄
BĀ

ī
A,j̄ = ifABCĀ

ī
C , (2.12 )

where we have introduced a notation where subscripts following commas

denote differentiation so that, for example, AiB,j =
∂AiB
∂φj

, ĀīB,j̄ =
∂ĀīB
∂φ̄j̄

. These

equations are a direct consequence of the gauge transformation algebra[
δ(Λ, Λ̄), δ(Λ′, Λ̄′)

]
= iδ(Λ× Λ′, Λ̄× Λ̄′) , (2.13 )

where the cross product is defined by the totally antisymmetric structure

constant of the group, fABC , so that (Λ× Λ′)A = fABCΛBΛ′ C .

For linear realizations of the gauge symmetry, Eq. (2.12 ) is solved by

AiA = i(TA)ijφ
j, where the TA form a matrix representation (perhaps re-

ducible) of the group so that [TA, TB] = ifABCT
C . On the other hand,

for non-linear realizations, such as in the case of supersymmetric non-linear

sigma models [10][12][13][14], the AiA solving Eq. (2.12 ) and thus forming a

realization of the algebra are non-linear functions of the φi. Using the local

φi transformation law, the superpotential, P (φ), is seen to be locally invari-

ant, δ(Λ, Λ̄)P (φ) = ΛAAiA(φ)P (φ),i = 0, provided it is globally invariant,

δAP (φ) = AiA(φ)P (φ),i = 0.
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The gauge group transformation of the Yang-Mills vector superfields is

defined via

e2V ′ = e2(V +δV ) ≡ e−iΛe2V e+iΛ̄ . (2.14 )

For infinitesimal Λ and Λ̄, this reduces, upon application of the Baker-

Campbell-Hausdorff formula, to

δ(Λ, Λ̄)V A =
1

2

(
Λ̄B + ΛB

)
fABCV

C +
i

2

(
Λ̄B − ΛB

)
[V cothV ]BA , (2.15 )

which can be shown to be identical to the last line of Eq. (2.10 ). Since this

result is also consistent with the group algebra (Eq. (2.13 )), this transfor-

mation also forms a realization of the gauge group. Using the vector field

gauge transformation, it is readily established that the field strength spinors

transform as the adjoint representation under gauge transformations:

δ(Λ, Λ̄)Wα = i [Λ,Wα]

δ(Λ, Λ̄)W̄α̇ = i
[
Λ̄, W̄α̇

]
, (2.16 )

or equivalently

δ(Λ, Λ̄)WA
α = i

(
ΛCtC

)
AB

WB
α

δ(Λ, Λ̄)W̄A
α̇ = i

(
Λ̄CtC

)
AB

W̄B
α̇ . (2.17 )

Since any non-trivial (anti-) chiral prepotential terms, (f̄AB(φ̄)) fAB(φ) are

constructed to transform as the product of the (anti-) chiral adjoint repre-

sentations of the gauge group so that,

δ(Λ, Λ̄)fAB = i
(
ΛDtD

)
AC

fCB + i
(
ΛDtD

)
BC

fAC

δ(Λ, Λ̄)f̄AB = i
(
Λ̄DtD

)
AC

f̄CB + i
(
Λ̄DtD

)
BC

f̄AC , (2.18 )

it follows that the contractions WAαfABW
B
α and W̄A

α̇ f̄ABW̄
Bα̇ are gauge in-

variant.
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Mutatis mutandis, the vector field transformations define a realization of

the complexified chiral gauge group G(+) ×G(−) with superfield parameters

λA± ≡
1

2

(
Λ̄A ± ΛA

)
(2.19 )

and corresponding gauge transformation functional differential operators

δ
(+)
A =

∫
dSδAφ

i δ

δφi
+
∫
dS̄δAφ̄

ī δ

δφ̄ī
+
∫
dV fABCV

C δ

δV B

δ
(−)
A = −

∫
dSδAφ

i δ

δφi
+
∫
dS̄δAφ̄

ī δ

δφ̄ī
+
∫
dV i (V cothV )AB

δ

δV B
.

(2.20 )

In terms of these variations, the gauge transformations take the form δ(Λ, Λ̄) =

λA+δ
(+)
A + λA−δ

(−)
A . Moreover, the δ

(±)
A variations obey the chiral algebra [14]

given by

[
δ

(+)
A , δ

(+)
B

]
= fABCδ

(+)
C[

δ
(+)
A , δ

(−)
B

]
= fABCδ

(−)
C[

δ
(−)
A , δ

(−)
B

]
= fABCδ

(+)
C . (2.21 )

As such, the Yang-Mills fields, V A, transform in the adjoint representation

of the G(+) subgroup and provide a non-linear realization of the G(−) sub-

group. Written in terms of the λ± superfield parameters, the exponential

transformation law of the Yang- Mills fields is

e2V ′ = e−iΛe2V e+iΛ̄

= e−i(λ+−λ−)e2V ei(λ++λ−) , (2.22 )

which in turn yields the infinitesimal transformation laws

δ
(+)
A V B = i(tA)BCV

C
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δ
(−)
A V B = i(V cothV )AB , (2.23 )

in agreement with Eq. (2.20 ).

Using the δ(−)
A variations for the matter fields, the gauge invariant Kähler

potential, K(φ, φ̄, V ), can be constructed [13][14] from the globally invariant

Kähler potential, K0(φ, φ̄). To achieve this, we define the pure chiral matter

field transformation operators δ
(φ±)
A as

δ
(φ+)
A =

∫
dSδAφ

i δ

δφi
+
∫
dS̄δAφ̄

ī δ

δφ̄ī

δ
(φ−)
A = −

∫
dSδAφ

i δ

δφi
+
∫
dS̄δAφ̄

ī δ

δφ̄ī
. (2.24 )

Then using the commutation relation [14][
δ(Λ, Λ̄), eiV

Aδ
(φ−)
A

]
= eiV

Aδ
(φ−)
A

[
λB−

(
tanh

1

2
V
)
BC

δ
(φ−)
C − λB−δ

(φ−)
B

]
, (2.25 )

it follows that

K(φ, φ̄, V ) ≡ eiV
Aδ

(φ−)
A K0(φ, φ̄) (2.26 )

is locally gauge invariant

δ(Λ, Λ̄)K(φ, φ̄, V ) = 0 , (2.27 )

provided K0(φ, φ̄) is globally invariant, δAK0(φ, φ̄) = 0. A globally invariant

Kähler potential can always be found [13] when the group does not contain

explicit U(1) factors. Moreover, in that globally noninvariant case, where

δAK0(φ, φ̄) = F̄A(φ̄) + FA(φ) 6= 0, a locally invariant form can also be con-

structed [13].

2.2 Supersymmetry

In addition to its gauge invariance, the action, Eq. (2.1 ), is also super-

symmetric and Poincaré invariant. These global superspace symmetries are
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represented by superspace differential operators on the superfields, which in

turn can be used to construct functional differential operators representing

the generators of the symmetries. The supersymmetry transformations are

given by

δQα Φ(x, θ, θ̄) =

[
∂

∂θ
+ iσµθ̄∂µ

]
α

Φ(x, θ, θ̄)

δQ̄α̇ Φ(x, θ, θ̄) =

[
−
∂

∂θ̄
− iθσµ∂µ

]
α̇

Φ(x, θ, θ̄) , (2.28 )

where Φ is any of the superfields φ, φ̄ or V , while the variation of the fields

under space-time translations is given by

δPµ Φ(x, θ, θ̄) = ∂µΦ(x, θ, θ̄) . (2.29 )

These variations can be combined to form the Ward identity functional differ-

ential operator representing the generators of the symmetries. The functional

differential operators corresponding to the supersymmetry charges Qα and

Q̄α̇ are

δQα =
∫
dSδQα φ

i δ

δφi
+
∫
dS̄δQα φ̄

ī δ

δφ̄ī
+
∫
dV δQα V

δ

δV

δQ̄α̇ =
∫
dSδQ̄α̇ φ

i δ

δφi
+
∫
dS̄δQ̄α̇ φ̄

ī δ

δφ̄ī
+
∫
dV δQ̄α̇ V

δ

δV
, (2.30 )

while those corresponding to the space-time translation generators P µ are

δPµ =
∫
dSδPµ φ

i δ

δφi
+
∫
dS̄δPµ φ̄

ī δ

δφ̄ī
+
∫
dV δPµ V

δ

δV
. (2.31 )

Similar expressions also hold for Lorentz transformations. These variations

satisfy an algebra analogous to the one satisfied by the global symmetry

generators. For example, while the supersymmetry charges anti-commute to

yield the momentum operator,{
Qα, Q̄α̇

}
= 2σµαα̇Pµ , (2.32 )
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it is readily seen that {
δQα , δ

Q̄
α̇

}
= −2iσµαα̇δ

P
µ . (2.33 )

By construction, the action Γ is invariant under supersymmetry and space-

time translation transformations so that

δQα Γ[φ, φ̄, V ] = 0

δQ̄α̇ Γ[φ, φ̄, V ] = 0

δPµ Γ[φ, φ̄, V ] = 0 . (2.34 )

The action may also be invariant under R-symmetry or some global inter-

nal symmetries. In particular, the generator of R-symmetry transformations

is given by

δR =
∫
dSδRφi

δ

δφi
+
∫
dS̄δRφ̄ī

δ

δφ̄ī
+
∫
dV δRV

δ

δV
, (2.35 )

where the explicit R-symmetry transformations of the fields are defined by

δRΦ(x, θ, θ̄) = i

[
nΦ + θα

∂

∂θα
+ θ̄α̇

∂

∂θ̄α̇

]
Φ(x, θ, θ̄) , (2.36 )

with nΦ the R-weight of the superfield Φ. Since the vector superfield is real,

its R-weight must be zero: nV = 0. In general, the R-weight of the chiral

superfields, nφ, is arbitrary. In some cases, however, it can be fixed so as to

make the superpotential R-invariant. Moreover, as shown in the Appendix,

if the chiral superfield transforms non-linearly under the gauge group, its

R-weight must be zero: nφ = 0. The Weyl spinor supersymmetry charges

Qα and Q̄α̇ form a representation of the chiral R- symmetry given by

[R,Qα] = Qα[
R, Q̄α̇

]
= −Q̄α̇ . (2.37 )
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Likewise, it follows that the Ward identity functional differential operators

obey the analogous algebra

[
δR, δQα

]
= −iδQα[

δR, δ̄Q̄α̇
]

= iδ̄Q̄α̇ . (2.38 )

Using Noether’s theorem, the (non-) conserved currents corresponding

to these transformations can be constructed from the action. Since Γ is

supersymmetric and translation invariant, the corresponding supersymmetry

currents, Qµ
α, Q̄µ

α̇, and the energy-momentum tensor, T µν , are conserved and

satisfy

∂µQ
µ
α(x) = δQα (x) Γ

∂µQ̄
µ
α̇(x) = δ̄Q̄α̇ (x) Γ

∂µT
µν(x) = δPν(x) Γ . (2.39 )

Here δQα (x), δ̄Q̄α̇ (x) and δPµ (x) are the local SUSY and translation functional

differential operators respectively. The corresponding global transformation

functional differential operators, δQα , δ̄
Q̄
α̇ , δ

P
µ , are constructed by integrating

the local operators over space-time. Thus, for example, δQα =
∫
d4xδQα (x), is

the global SUSY variation. It follows that the currents of Eq. (2.39 ) can

be modified (improved) by the addition of Belinfante terms or total space-

time divergences of Euler derivatives of the action (contact terms) without

alterring the form of the current conservation law or the time independent

charges.

Similarly, the R-current can be constructed via Noether’s theorem as

∂µR
µ(x) = δR(x) Γ− iSR(x) , (2.40 )
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where SR(x) describes the explicit R-symmetry breaking of the action. Inte-

grating this equation over space-time gives

δR Γ[φ, φ̄, V ] = i
∫
d4xSR(x) , (2.41 )

which constitutes the global R Ward identity.

The R-current so defined can be extended so as to form an entire super-

field with Rµ(x) as its lowest component. It is this multiplet with appro-

priately defined improved supersymmetry currents and energy-momentum

tensor which constitutes the supercurrent. By construction the supercurrent

contains a (non-) conserved R-symmetry current Rµ(x) as the lowest compo-

nent with conserved supersymmetry currents, Qµ
α(x), Q̄µ

α̇(x), and symmetric

energy-momentum tensor, T µν(x) , in higher components [9][15][16][17].
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3 The Supercurrent

In general, the generators of global symmetry transformations can be ob-

tained from the symmetry currents using Noether’s theorem. For the su-

perconformal symmetries, all superconformal currents can be gleaned from

the supercurrent [15][16]. The supercurrent is just the superfield of cur-

rents whose first component is given by the R-symmetry current and which,

moreover, contains the supersymmetry currents and the improved energy-

momentum tensor as higher dimension components. It has been shown on

very general grounds [15][16] that the real supercurrent, Vαα̇ = 1
2
σµαα̇Vµ, must

satisfy a general set of spinor derivative (trace) equations of the form

D̄α̇Vαα̇ = −2δ̂αΓ +Bα − 2DαS

DαVαα̇ = −2ˆ̄δα̇Γ + B̄α̇ − 2D̄α̇S̄ . (3.1 )

The Bα and B̄α̇ are restricted to obey DαBα = D̄α̇B̄
α̇ while (S̄) S is a

(anti-) chiral superfield, (DαS̄ = 0) D̄α̇S = 0. In order for Vαα̇ to contain

a conserved energy-momentum tensor T µν , and supersymmetry currents Qµ
α

and Q̄µ
α̇, it must be that the symmetry breaking terms (B̄α̇) Bα and (S̄) S

cannot both be non-zero simultaneously. The local superspace Ward identity

functional differential operators, δ̂α, ˆ̄δα̇, are defined as

ˆ̄δα̇ ≡ nφD̄α̇

(
φ̄ī

δ

δφ̄ī

)
+ 2

(
D̄α̇φ̄

ī
) δ

δφ̄ī

−2
(
DDD̄α̇V

A
) δ

δV A
+ 2

(
D̄α̇V

A
)
DD

δ

δV A

+2Dα

[
D̄α̇V

DDαV
A
(
`AB,D `

−1
BC + ¯̀

DB,A ¯̀−1
BC

) δ

δV C

]

δ̂α ≡ nφDα

(
φi

δ

δφi

)
+ 2

(
Dαφ

i
) δ

δφi

−2
(
D̄D̄DαV

A
) δ

δV A
+ 2

(
DαV

A
)
D̄D̄

δ

δV A
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+2D̄α̇

[
DαV

DD̄α̇V A
(
`AB,D `

−1
BC + ¯̀

DB,A ¯̀−1
BC

) δ

δV C

]
. (3.2 )

Note that when restricted to Abelian gauge fields, the last lines on the right

hand side of each equation vanishes. The form of these variations is such

that all the superconformal transformations can be secured by acting on

them with appropriate spinor derivatives and then constructing their various

space-time moments. In particular, defining the local variation

δ̂ ≡ i(Dαδ̂α − D̄α̇
ˆ̄δ
α̇

) , (3.3 )

then its space-time integral

δ =
∫
d4xδ̂ , (3.4 )

forms the superfield containing the (previously defined) R symmetry, super-

symmetry and space-time translation functional differential operators, δR,

δQα , δ̄Q̄α̇ and δPµ , as

δ = δR − iθαδQα + iθ̄α̇δ̄
Q̄α̇ − 2θσµθ̄δPµ . (3.5 )

Note that alternate forms for δ̂α and ˆ̄δα̇ can also be defined by adding vari-

ous terms which take the form of additional total derivatives of contact terms

(improvements) or have the effect of changing the relation of these variations

to the conformal transformations [16]. The conservation of the supersym-

metry currents, Qµ
α, Q̄

µ
α̇, and the energy-momentum tensor, T µν , Eq. (2.39 ),

follows from Eq. (3.1 ) provided either (or both) S or B to vanish, which

alternative being a model dependent question [15][16].

Applying the spinor derivative construction of Eq. (3.3 ) to Eq. (3.1 )

yields the space-time divergence equation for the supercurrent

∂µVµ =
1

2i

{
Dα, D̄α̇

}
Vαα̇
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= δΓ− i
(
D̄D̄S̄ −DDS

)
. (3.6 )

The θ, θ̄ independent component of this equation gives the R-current Ward

identity

∂µRµ = δR(x)Γ− i
(
D̄D̄S̄ −DDS

)
|θ=θ̄=0 . (3.7 )

If S 6= 0, the R-symmetry is explicitly broken. Note that in such a case, in

order for the supercurrent to contain a conserved supersymmetry current and

energy-momentum tensor, it is required that B = 0. The construction of all

the superconformal currents along with their associated Ward identities and

anomalies is detailed in references [15][16]. Besides the R-symmetry current

constructed above as the θ, θ̄ independent component of the supercurrent

itself,

Rµ = Vµ|θ=θ̄=0 , (3.8 )

the supersymmetry currents and the energy-momentum tensor can similarly

be constructed as the θ, θ̄ independent components of certain combinations

of spinor derivatives acting on the supercurrent as:

Qµα = i
(
DαVµ − (σµσ̄

νD)α Vν
)
|θ=θ̄=0

Q̄µα̇ = −i
(
D̄α̇Vµ −

(
σ̄µσ

νD̄
)
α̇
Vν
)
|θ=θ̄=0

Tµν = −
1

16

(
Vµν + Vνµ − 2gµνV

ρ
ρ

)
|θ=θ̄=0 , (3.9 )

where the superfield Vµν is defined as

Vµν =
(
DσµD̄ − D̄σ̄µD

)
Vν . (3.10 )

The remaining superconformal currents and angular momentum tensor can

be constructed as space-time moments of Eq. (3.9 ). For example the dilata-

tion current is given by Dµ = xνTµν .
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Given an action Γ and the variations δ̂α and ˆ̄δα̇, the Vαα̇, Bα, B̄α̇, S and

S̄ are constructed so as to satisfy the trace equations (3.1 ). Towards this

end, it is necessary to use the field equations for the matter and Yang-Mills

superfields. Functionally differentiating the action of Eq. (2.1 ) with respect

to the chiral and anti-chiral matter fields yields

δΓ

δφi
= −

1

4
D̄D̄K,i +P,i−2fAB,iW

AWB

δΓ

δφ̄ī
= −

1

4
DDK,̄i +P̄ ,̄i−2f̄AB ,̄i W̄

AW̄B. (3.11 )

A useful form of the Yang-Mills field equations [18] is obtained by introducing

the gauge covariant spinor derivatives Dα and D̄α̇ for the chiral field strength

spinors as,

DαWβ ≡ e−2VDα
[
e2VWβe

−2V
]
e2V

= DαWβ + ΩαWβ +WβΩα

D̄α̇W̄
β̇ ≡ e2V D̄α̇

[
e−2V W̄ β̇e2V

]
e−2V

= D̄α̇Ẇ
β̇ + Ω̄α̇W̄

β̇ + W̄ β̇Ω̄α̇ , (3.12 )

with

Ωα ≡ e−2VDαe
2V =

(
DαV

A`AB
)
tB ≡ ΩB

α t
B

Ω̄α̇ ≡ e2VDα̇e
−2V =

(
D̄α̇V

A ¯̀
AB

)
tB ≡ Ω̄B

α̇ t
B . (3.13 )

Alternatively, these covariant derivatives can be written as

(DαWβ)C =
(
e−2V

)
CB

Dα
[(
e2V

)
BA

WA
β

]

= DαWC
β + ifCBAΩα

BW
A
β
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(
D̄α̇W̄

β̇
)C

=
(
e2V

)
CB

D̄α̇

[(
e−2V

)
BA

W̄Aβ̇
]

= D̄α̇W̄
Cβ̇ + ifCBAΩ̄B

α̇ W̄
Aβ̇ . (3.14 )

The field equations for the gauge fields can then be cast as

δΓ

δV A
= −`AB (DαFα)B − ¯̀

AB

(
D̄α̇F̄

α̇
)B

= −`AB (DαFα)B +
(
D̄α̇F̄

α̇
)B
`BA , (3.15 )

where we have introduced the auxiliary field strength spinors Fα and F̄α̇ de-

fined as F α ≡ tAfABW
B
α and F̄α̇ ≡ tAf̄ABW̄

B
α̇ . In addition to these dynamical

relations, the field strength spinors also satisfy the Bianchi identities

DαWα = −e−2V
(
D̄α̇W̄

α̇
)
e2V , (3.16 )

which can alternatively be written as

(
D̄α̇W̄

α̇
)A

= −
(
e2V

)
AB

(DαWα)B , (3.17 )

or in further detail

D̄α̇

[(
e−2V

)
AB

W̄Bα̇
]

= −
(
e−2V

)
AC

Dα
[(
e2V

)
CB

WB
α

]
. (3.18 )

Application of the Ward identity operator ˆ̄δα̇ to the general action of

Eq. (2.1 ) and exploiting the field equations (3.11 ), (3.15 ) along with the

Bianchi identity (3.18 ), the supercurrent trace equation (3.1 ) is seen to be

satisfied with the supercurrent identified as

Vαα̇ = 16
[
W̄A
α̇ (e2V )ABfBCW

C
α −W

A
α (e−2V )AB f̄BCW̄

C
α̇

]
−

2

3

[
Dα, D̄α̇

]
K + 2K,īiDαφ

iD̄α̇φ̄
ī . (3.19 )
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Here we have introduced the gauge covariant spinor derivatives for the matter

fields defined as

Dαφ
i ≡ Dαφ

i − iΩB
αA

i
B(φ) (3.20 )

= Dαφ
i − iDαV

A`ABA
i
B(φ)

D̄α̇φ̄
ī ≡ D̄α̇φ̄

ī − iΩ̄B
α̇ Ā

ī
B(φ̄) (3.21 )

= D̄α̇φ̄
ī − iD̄α̇V

A ¯̀
ABĀ

ī
B(φ̄) , (3.22 )

which have the gauge variations

δ
(
Λ, Λ̄

)
Dαφ

i = ΛAAiA,j (φ)Dαφ
j

δ
(
Λ, Λ̄

)
D̄α̇φ̄

ī = Λ̄AĀīA,j̄ (φ̄)D̄α̇φ̄
j̄ . (3.23 )

Note that Vαα̇ is manifestly real and gauge invariant. In addition, one finds

explicitly that B̄α̇ = 0, while the anti-chiral breaking terms have the form

S̄ = −
1

4
DD

(
−

2

3
K − nφ

(
φ̄īK,̄i

))
+ 8nφφ̄

īW̄A
β̇
f̄AB ,̄i W̄

Bβ̇

−
(
2P̄ + nφφ̄

īP̄ ,̄i
)
. (3.24 )

Since S̄ 6= 0, the R symmetry is, in general, explicitly broken.

Using this general form of the supercurrent and its associated Ward iden-

tity, various special cases can be considered. First of all, the form for Vαα̇

and S̄ reduce to their previously established values [16],

Vαα̇ = 32W̄α̇e
2V AtAWα −

2

3

[
Dα, D̄α̇

]
(φ e2V ATAφ̄) + 2Dαφ e

2V ATAD̄α̇φ̄

S̄ =
(2 + 3nφ)

12
DD(φ e2V ATAφ̄)− (2P̄ + nφφ̄

īP̄ ,̄i ) , (3.25 )

when the model is restricted to be renormalizable so that K = φ e2V ·T φ̄ and

P is at most trilinear in φ while fAB = δAB. For conformal R-weight nφ = −2
3
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and no mass or linear terms in P , the breaking terms vanish, S = 0, and the

R-current is conserved.

For the particular case when the gauge symmetry is non- linearly realized

on the chiral matter fields with a vanishing superpotential, it follows (see

Appendix) that the φ field R-weight must be zero: nφ = 0. The supercurrent

can then be cast as

Vαα̇ = 16
[
W̄A
α̇ (e2V )ABfBCW

C
α −W

A
α (e−2V )ABf̄BCW̄

C
α̇

]
+ 2Dαφ

iK,īi D̄α̇φ̄
ī ,

(3.26 )

with S̄ = 0 and B̄α̇ = DDD̄α̇K. Since S̄ = 0, this form of the supercurrent

not only leads to a conserved supersymmetry current and energy-momentum

tensor, but also to a conserved R- symmetry current.

When the chiral matter fields form a linear representation of the gauge

group, the axial R-weight nφ is arbitrary. If, however, the superpotential and

prepotential are R-invariant so that

2P̄ + nφφ̄
īP̄ ,̄i = 0, (3.27 )

f̄AB = fAB = δAB , (3.28 )

while the gauged Kähler potential possesses an additional global, axial UA(1)

symmetry, so that

φiK,i−φ̄
īK,̄i = 0 , (3.29 )

then the S̄ breaking term can again be traded for a B breaking with a suitable

modification of the supercurrent. So doing, we find

Vαα̇ = 32W̄α̇e
2VWα

+2Dαφ
iK,īi D̄α̇φ̄

φ̄ +
nφ

2

[
Dα, D̄α̇

] (
φiK,i +φ̄

īK,̄i
)
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S̄ = 0

B̄α̇ = −
1

4
DDD̄α̇

[
−4K − 3nφ

(
φiK,i +φ̄

īK,̄i
)]
. (3.30 )

The quantization of the gauge models requires the introduction of gauge

fixing and Fadeev-Popov terms to the Lagrangian [16][18]. With their inclu-

sion, the action ceases to be gauge invariant but becomes BRS invariant. A

detailed account of the supercurrent construction in renormalizable models

with BRS invariance can be found in the literature [16]. When the quan-

tum corrections are taken into account, the divergence of the R-current, the

γ-trace of the supersymmetry current and the Lorentz trace of the energy-

momentum tensor are anomalous with the renormalization group β function

as the anomaly coefficient [9][15][19]. The nature of these radiative correc-

tions for the renormalizable N=1 SUSY models has been investigated and

reviewed [16][20][21][22]. For certain gauge models, the β function has been

shown [5][6] or argued [23] to vanish identically at a superconformal fixed

point. This, in turn, fixes the R-weights.

In all of the above, discussion has been restricted to the case of linearly

realized supersymmetry, while the gauge symmetry was allowed to be realized

either lineraly or non-linearly. For completeness, let us recall the case of

a non-linearly realized supersymmetry. Indeed in the absence of explicit

breakings, if supersymmetry is to be realized in nature, it must be as a

spontaneously broken symmetry. At high energy, the short distance behavior

of the theory will be unaffected by the soft spontaneous SUSY breaking of

the ground state. The structure of the supercurrent will be identical to

the unbroken case. At low energy, the spontaneously broken SUSY can be

described by the Akulov-Volkov effective Lagrangian [24]. For this model, a

supercurrent has also been constructed [25]. It again contains the conserved
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R-current as the lowest component and conserved supersymmetry current

and the energy-monentum tensor as higher components. In this case, the

R-current is simply given by Rµ = −2κ2λσν λ̄T
νµ, where λ is the Goldstino

field and κ is its decay constant and T µν is the improved energy-momentum

tensor.

This work was supported in part by the U.S. Department of Energy under

grant DE-AC02-76ER01428 (Task B).
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Appendix A

In this appendix, we show that the R-weight, nφ, of any chiral superfield

transforming non-linearly under an internal symmetry transformation must

vanish: nφ = 0. This demonstration employs the algebra

[TA, TB] = ifABCTC

[R, TA] = 0 , (A.1 )

along with the chiral field transformation laws

δAφ
i =

1

i

[
TA, φ

i
]

= AiA(φ)

δRφi =
1

i

[
R, φi

]
= i

(
nφ + θα

∂

∂θα
+ θ̄α̇

∂

∂θ̄α̇

)
φi . (A.2 )

Using these relations, the Jacobi identity

0 =
[
[R, TA] , φi

]
+
[[
φi, R

]
, TA

]
+
[[
TA, φ

i
]
, R
]
, (A.3 )

reduces to

0 = nφ
(
AiA − A

i
A,j φ

j
)
. (A.4 )

For non-linear realizations

AiA,j φ
j 6= AiA , (A.5 )

and hence we conclude that nφ = 0.
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