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Abstract

Through a detailed investigation of the SU(3) gauge theory at �nite temperature

on lattices of various size we can control �nite lattice cut-o� e�ects in bulk ther-

modynamic quantities. We calculate the pressure and energy density of the SU(3)

gauge theory on lattices with temporal extent N� = 4, 6 and 8 and spatial extent

N� = 16 and 32. The results are extrapolated to the continuum limit. We �nd a

deviation from ideal gas behaviour of (15-20)%, depending on the quantity, even

at temperatures as high as T � 3Tc. A calculation of the critical temperature on

lattices with temporal extent N� = 8 and 12 and the string tension on 324 lattices at

the corresponding critical couplings is performed to �x the temperature scale. An

extrapolation to the continuum limit yields Tc=
p
� = 0:629(3).



Reaching a quantitative understanding of the equation of state (EOS) of QCD

is one of the central goals in �nite temperature �eld theory. The intuitive picture

of the high temperature phase of QCD behaving like a gas of weakly interacting

quarks and gluons is based on leading order perturbation theory. However, the well-

known infrared problems of QCD [1] lead to a poor convergence of the perturbative

expansion of the thermodynamic potential even at temperatures very much higher

than Tc [2]. Non-perturbative studies of the EOS on the lattice have been pursued

ever since the �rst �nite temperature Monte Carlo calculations [3].

Lattice calculations of energy density (�), pressure (p) and other thermodynamic

variables led to some understanding of the temperature dependence of these quan-

tities in the QCD plasma phase. The energy density, for instance, has been found

to rise rapidly at Tc and approach the high temperature ideal gas limit from below.

However, except for a very recent calculation for the SU(2) gauge theory [4], all

studies of the QCD EOS have been restricted to lattices with only four sites in the

Euclidean time direction (N� = 4). This limitation is quite severe as it is well known

that the small extent of the lattice in the time direction causes large cut-o� e�ects

in thermodynamic quantities. Asymptotically these corrections are O(N�2
� ). For an

ideal gluon gas they are given by [4],

� = 3p = (N2 � 1)
�
�2

15
+
2�4

63
� 1

N2
�

+O

�
1

N4
�

��
: (1)

These cut-o� e�ects result from the discretization of the �eld strength tensor which

introduces O(a2) deviations from its continuum counterpart, i.e. O((aT )2 � N�2
� )

corrections at �nite temperature T . In the case of a free gas it is found that the

corrections are as large as 50% for N� = 4. The leading O(N�2
� ) term yields the

dominant contribution to the N� -dependence only for N� � 6. In order to compare

lattice calculations of the EOS with continuum perturbation theory or phenomeno-

logical models like the bag EOS, it is thus mandatory that the �nite cut-o� e�ects

on lattices with varying time extent N� are under control. This is the aim of this

paper.

Controlling the continuum limit requires a systematic analysis of thermodynamic

quantities on lattices with varying N� , which then allows an extrapolation of the

numerical results to the continuum limit (N� ! 1). There are two basic ingredi-
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ents for such an analysis. First, one needs high precision results for the Euclidean

action density, calculated on symmetric, zero temperature lattices of size N4
� and on

asymmetric �nite temperature lattices of size N3
� � N� . All basic thermodynamic

quantities can then be calculated from the di�erence of action densities at zero (S0)

and �nite (ST ) temperature [5],

�S = N4
� (S0 � ST ) : (2)

The action densities are proportional to plaquette expectation values, S0(T ) = 6h1�
1
3
TrU1U2U3U4i. Second, one needs control over the variation of the physical tem-

perature with the bare gauge coupling, T�1 = N�a(g
2), also in a region where the

asymptotic scaling relation, given by the two universal terms of the QCD �-function,

is not yet applicable.

We have addressed both problems in a systematic study of the thermodynamics of

the SU(3) gauge theory. We calculate thermodynamic quantities from high precision

data for the action densities obtained on lattices of size 163 � 4 and 323 � N� with

N� = 6 and 8. The temperature scale is determined through calculations of the

critical couplings of the decon�nement transition on lattices with N� = 4, 6, 8 and

12 and a calculation of the string tension on 324 lattices at these critical couplings.

The results from di�erent size lattices are then used to extrapolate to the continuum

limit.

For our simulations we use an overrelaxed heatbath algorithm. Depending on

the bare coupling strength we perform 4-9 overrelaxation updates followed by one

heatbath update (� one iteration). At each value of the coupling we have performed

between 20.000 and 30.000 iterations on the �nite temperature lattices and about

5.000 to 10.000 iterations on the 324 and 164 lattices. In the following we will

�rst discuss the determination of the temperature scale and then continue with a

discussion of the equation of state.

The temperature scale: Asymptotically, for large values of � = 6=g2, the

temperature T = 1=N�a(�) is given by the unique scaling relation a�L = R(�),

with

R(�) =

�
8�2�

33

�51=121

exp[�4�2�=33] : (3)
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Quite general, the relation between the cut-o�, a, and g2 is obtained through the

calculation of a physical quantity in units of the lattice cut-o�, e.g. the string tension,

�a2, or the critical temperature, Tca. Di�erent observables will then generally lead to

relations a(g2), which di�er from each other by O(a2) terms. However, nonetheless it

seems that such corrections are small for intermediate values of the gauge coupling.

In any case, if one chooses a particular relation a(g2), obtained from one physical

observable, all O(a2) corrections will drop out in the extrapolation to the continuum

limit.

Here we will �x the relation between a and g2 through a calculation of the

critical temperature on lattices of size N� = 4, 6, 8 and 12. The critical couplings

have been extracted from the locations of peaks in the Polyakov loop susceptibility

using a Ferrenberg-Swendsen interpolation between four couplings selected close to

the estimated critical point [6, 7]. For the N� = 4 and 6 lattices our analysis of the

critical couplings is in complete agreement with earlier high statistics calculations

[8]. For N� = 8 and 12 we �nd, however, signi�cantly larger values than those

obtained in previous calculations [9]. Our analysis on 323 � 8 and 12 lattices yields

[7]

�c(N�) =

�
6:0609 � 0:0009 , N� = 8
6:3331 � 0:0013 , N� = 12

(4)

A comparison with the results of Ref. [9], which have been obtained on smaller

spatial lattices, shows, however, that our result is consistent with the expected shift

towards larger values due to the larger spatial volume used in our simulation.

The absolute scale will be �xed through a determination of the string tension on

164 and 324 lattices at the critical couplings �c(N�). We have obtained the string

tension from an analysis of heavy quark potentials calculated from smeared Wilson

loops [7]. For N� = 4 and 6 the ratio Tc=
p
� has been evaluated at the critical

couplings extrapolated to the in�nite volume limit. For N� = 8 and 12 we evaluate

this ratio at the critical couplings obtained on lattices with �nite N�=N� . From

the volume dependence of the critical couplings studied in Ref. [8] we expect that

the in�nite volume critical couplings will be larger by about 0:0017 for N� = 8 and

0:0057 for N� = 12. We therefore systematically underestimate the ratio Tc=
p
� in

these cases. The expected systematic error due to this e�ect has been estimated by
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N� �c
p
�a Tc=

p
�

4 5:6925 (2) 0:4179 (24) 0:5983 (30)

6 5:8941 (5) 0:2734 (37) 0:6096 (71)

8 6:0609 (9) 0:1958 (17) 0:6383 (55) (+13)

12 6:3331 (13) 0:1347 (6) 0:6187 (28) (+42)

Table 1: String tensions calculated at the critical couplings for the decon�nement

transition, �c(N� ). For N� = 4 and 6 we evaluate �a2 at the in�nite volume critical

coupling using an interpolation of values from Ref. 11. For N� = 8 and 12 we have

calculated the string tension at the �nite volume critical couplings. The systematic

errors is also given in these cases. Details are discussed in the text.

assuming an exponential scaling of
p
�a according to the asymptotic renormalization

group equation.

The results for Tc=
p
� are summarized in Table 1. Although the ratios hardly

show any systematic cut-o� dependence, we have extrapolated the results for the

di�erent N� -values to the continuum limit using a �t of the form a0 + a2=N
2
� . This

yields

Tcp
�
= 0:625 � 0:003 (+0:004) : (5)

The number in brackets indicates the systematic shift we expect from the in�nite

volume extrapolation of the critical couplings. We note that this estimate of Tc=
p
�

is about 10% larger than earlier estimates [12], which is due to our newly determined

critical couplings for the larger lattices. It is only 10% below the corresponding

result for the SU(2) gauge theory [12] and string model predictions [13]. Using
p
� = 420MeV we �nd a critical temperature of about 260 MeV.

The lattice cut-o�, extracted from the location of the critical couplings, shows

the well known deviations from the asymptotic scaling relation, Eq. 3. The major

part of these deviations can be taken care of through a replacement of the bare

coupling by a renormalized coupling [11]. We will adopt here the de�nition �e� =

6(N2�1)=S0. This relation can be used to determine the cut-o� as a�L = R(�e�)�e�,

with �e� = 0:4818. For the parameterization of the remaining discrepancy between
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this relation and the numerical data we use the ansatz

a�L = R(�e�) � �(�) : (6)

The function �(�) was choosen such that the calculated critical temperatures T�1
c =

N�a(g
2
c ) are reproduced. The quality of this interpolating function is best seen in

the ��-function, which describes the change in � needed to change the cut-o� by

a factor of two. This is shown in Figure 1 together with a determination of ��

from a recent MCRG analysis of ratios of Wilson loops [14]. It is obvious, that the

determination of �(�) may depend on the observable used to calculate �� only for

�<�6:0. In particular for our N� = 8 calculation such an ambiguity therefore does

not arise. In order to judge the relevance of the choice of parameterization of this

function we also use in the following the simple ansatz (�(�) � �e�), which also is

shown in Figure 1.

Figure 1: Shown is the ��-function, ��(�(a)) = �(a)� �(2a), which is obtained

from MCRG studies [14] (squares) and from our �nite temperature calculation (cir-
cles). The dashed-dotted and dashed curves show the ��-function obtained from

the asymptotic form of the renormalization group equation using the coupling � and
the e�ective coupling �e�, respectively. The solid curve is our interpolation, which

�xes �(�).
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Equation of state: Our calculation of thermodynamic quantities is based on a

direct evaluation of the free energy density in large spatial volumes, i.e. close to the

thermodynamic limit. From this other thermodynamic observables can be obtained

by taking derivatives with respect to the temperature [5]. The calculation of the free

energy density requires a numerical integration of the di�erence of action densities,

Eq. 2,

p

T 4

����
�0
� � f

T 4

����
�0
= N4

�

Z �

�0

d�0(S0 � ST ) : (7)

The above relation gives the pressure (free energy density) di�erence between two

temperatures corresponding to the two couplings �0 and �. In practice we will

choose the lower temperature corresponding to �0 small enough so that the pressure

can be approximated by zero at this point.

Making use of basic thermodynamic relations we can then evaluate the energy

density in the thermodynamic limit from

�� 3p

T 4
= T

@

@T
(p=T 4) = �6N4

� a
@g�2

@a

�
S0 � ST

�
; (8)

where the derivative a@g�2=@a is obtained from our explicit parameterization of the

relation between the cut-o�, a, and the bare coupling, g2, given in Eq. 6.

The main di�culty for a systematic analysis of p and � on large lattices (large

values of N� ) arises from the fact that the relevant observable, the di�erence of

action densities (S0 � ST ) drops like N�4
� . A rapidly increasing accuracy in the

numerical calculation thus is required. We have calculated the action densities on

lattices of size 164, 324 as well as 163�4, 323�6 and 8 for a large number of di�erent

couplings. Note that we use large spatial lattices, N�=N� = (4-5.33). Except very

close to Tc this is su�cient for an approximation of the thermodynamic limit [4].

On the basis of results for N� = 6 and 8 we will perform an extrapolation to the

continuum (N� !1) limit.

In Figure 2 we show the results for N� = 8, which is statistically the most di�cult

case. For a calculation of the pressure we have to integrate the action densities with

respect to �, Eq. 7. For this purpose we use interpolations as shown in Fig. 2. As
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Figure 2: Di�erence of action densities de�ned in Eq. (1) for N� = 8. and spatial
lattice size N� = 32. The vertical line shows the location of the critical coupling.

can be seen from the Figure, �S rapidly becomes small below the critical coupling.

We thus can use a value �0 close to the critical coupling to normalize the free energy

density. We then use the relation between the gauge coupling and the lattice cut-

o�, Eq. 6, to determine the temperature scale. Results obtained for the pressure on

lattices with temporal extent N� = 4, 6 and 8 are shown in Figure 3a. We clearly

see the expected cut-o� dependence of the pressure. It qualitatively reects the

N� -dependence of the free gluon gas, which is shown by dashed-dotted lines in this

�gure. Quantitatively, however, we �nd that the cut-o� dependence of the pressure

is considerably weaker than suggested by the free gas calculation.

Errors on the numerical results for the pressure arise from ambiguities in de-

termining the temperature scale as well as from errors on our interpolating curves

for the action densities. In order to control the latter sources of errors, we have

therefore integrated �S also by using straight line interpolations in addition to the

smooth interpolation shown in Figure 2. The resulting di�erences are on the level of

a few percent. They are shown as typical error bars in Figure 3a. The ambiguities

arising at �nite cut-o� from the choice of parameterizations of the temperature scale

only amount to a shift in the temperature scale. This e�ect is largest for N� = 4

and is shown as dashed curve in Figure 3a. We stress that this ambiguity will not

7



Figure 3: The pressure (a) versus T=Tc for N� = 4, 6 and 8 integrating the interpo-
lations for the action density. For N� = 4 we show two curves, which correspond to
the parameterization of the temperature scale using the e�ective coupling scheme

(dashed curve) and the parameterization of the scaling violations of the critical
temperature (solid curve), respectively. For N� = 6; and 8 we only show the latter.
Error bars indicate the uncertainties arising from the integration of the raw data
for the action di�erences (See text for further discussion). The horizontal dashed
line shows the continuum limit ideal gas value and the dashed-dotted lines give

the corresponding values for N� = 4, 6 and 8. In Fig.3b we show the di�erence
(�� 3p)=T 4.

inuence the extrapolation to the continuum limit.

A similar analysis was carried out for (��3p)=T 4. Results are shown in Figure 3b.

Also here we have examined the systematic errors arising from the parameterizations

of a(g2). For N� = 4 these errors are about 6% on the peak of (�� 3p)=T 4 and less

than 2% everywhere else. Also for N� = 6, 8 the errors are on the 2% level.

We note that we did not attempt to separate our data sample in the vicinity

of �c in sets belonging two di�erent phases, although we have clear evidence for

metastabilities as signal for a �rst order phase transition at all three values of N� .

We rather prefer to average over these metastabilities and show continuous curves

for (�� 3p)=T 4 as it should be for calculations performed in �nite physical volumes.

Based on the analysis of the pressure and energy density on various size lattices
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we can attempt to extrapolate these quantities to the continuum limit. As discussed

above, in the case of a free theory the leading N�2
� corrections to the continuum limit

result provide a good description of the actual N� -dependence only for N� � 6. This

is seen qualitatively also in our numerical data. Following Eq.1, in a quadratic �t we

thus only use the N� = 6 and 8 data respectively to extrapolate to the continuum

limit,

�
p

T 4

�
a

=

�
p

T 4

�
0
+

c2

N2
�

: (9)

In order to control systematic errors resulting from the speci�c parameterization of

the temperature scale used we have performed extrapolations with the two di�erent

parameterizations discussed above. The resulting di�erences have been taken as

estimate for a systematic error in (p=T 4)0.

The extrapolations of the pressure, energy density and entropy density are shown

in Fig. 4. We generally �nd that the di�erence between the extrapolated values

and the results for N� = 8 is less than 4%, which should be compared with the

corresponding result for the free gas, where the di�erence is still about 8%. This

suggests that relative to the ideal gas case more low momentum modes, which are

less sensitive to �nite cut-o� e�ects, contribute to thermodynamic quantities.

The earlier results for the equation of state derived from lattice calculations on

lattices with N� = 4 have been parameterized in terms of various models incorporat-

ing non-perturbative e�ects either through a bag constant, temperature dependent

gluon masses or a combination of those [15]. We do not intend to go through such

analyses of our results at this point. However, we would like to point out a few basic

features of our current results for the equation of state of a gluon gas. We �nd that

the energy density rapidly rises to about 85% of the ideal gas value at 2Tc and then

shows a rather slow increase, which is consistent with a logarithmic increase as one

would expect from a leading order perturbative correction. The pressure rises much

more slowly and still shows sizeable deviations from the ideal gas relation � = 3p for

T ' 3Tc. The trace anomaly, (� � 3p)=T 4, is related to the di�erence between the

gluon condensate at zero and �nite temperature [16], �� 3p = G(0)�G(T ). It has

9



Figure 4: Extrapolation to the continuum limit for the energy density, entropy
density and pressure versus T=Tc. The dashed horizontal line shows the ideal gas
limit. The hatched vertical band indicates the size of the discontinuity in �=T 4

(latent heat) at Tc [9]. Typical error bars are shown for all curves.

a pronounced peak at T ' 1:1Tc. Expressed in units of the string tension we �nd

(�� 3p)peak = (0:57� 0:02)�2 ' 2:3 GeV=fm
3
; (10)

which should be compared with the value of the zero temperature gluon condensate,

G(0) ' 2 GeV/fm3. This ful�ls the above relation if G(T ) ' 0 at T ' 1:1Tc.

To conclude, we stress that the systematic analysis of thermodynamic quantitites

on di�erent size lattices allowed us to control their distortion due to �nite cut-o�

e�ects. For the �rst time, from lattice calculations of the SU(3) gauge theory at

�nite temperature, we could extract results for bulk thermodynamic quantitites in

the continuum limit.
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