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Abstract

In this review article we study the Minimal Supersymmetric Electro-Weak theory. The
Lagrangian is constructed step by step in great detail, both in the superfield and component
field formalism — both on and off shell. Furthermore the Lagrangian is written in the more
familiar four component formalism. Electro weak symmetry breaking is discussed, and the
physical chargino- and neutralino states are introduced and discussed.
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Preface

When 1 first started to work on supersymmetry, my interest fell upon the minimal super-
symmetric electro-weak theory, or if you like, on supersymmetric quantum flavour dynamics
(S-QFD). To my disappointment, as a person at that time with no background in super-
symmetry, | was not able to find any good detailed review article on this subject.

In this report I try to present such a review article with the hope that it may be useful to
others. The material is presented in great detail, and somebody may rightly say that the
presentation is too comprehensive. For that reason most of the detailed calculations are
reserved for the appendices. However, my personal motivation for including so much details
was to easy the chance of following the calculations step by step for a person not familiar
with the Minimal Supersymmetric Standard Model.

In this report I have mostly followed the notation used by the authors of ref. [31, 32,
33] and I give some useful formulae and comments about notation in appendix A. These
references together with ref. [34] are also good introductions to the necessary background
of supersymmetry needed for this report.

__*__

I would like to take the opportunity to express my deep appreciation to Prof. Dr.tech.
Haakon A. Olsen at the University of Trondheim, Norway. He has been very helpful, and I
in particular thank him for great many stimulating and clarifying discussions and for fruitful
suggestions during the course of this work.

Trondheim, April 1995

Ingve Simonsen



Chapter 1

Supersymmetric Extension of QFD.

We will now start the construction of a supersymmetric extension of QFD of leptons. In
this chapter the Lagrangian, in the superfield formalism, will be derived.

However, before we do so, we will say a few words about possible extensions of the Standard

Model (SM).

1.1 Possible Extensions of the Standard Model.

In a supersymmetric theory, any fermionic state has to be accompanied by a bosonic one,
and vice versa. In the early days of SUSY, one had hoped that some of the states required
by SUSY, could be identified with some of the known particle states. For instance one
tried to identify the spin-0 fields associated with the neutrino- and the electron-fields, as
the photon and Higgs-field respectively [1]. Unfortunately, this idea runs into difficulties.
Firstly, if one of the spin-0 neutrino states is associated with the photon, what happens
to the lepton-quark symmetry? Secondly, and more convincing, is the observation that
the spin-0 states, associated with the leptons and quarks, carry lepton number and colour
respectively. By demanding a theory with unbroken colour and electromagnetism, only
the scalar neutrino can acquire a vacuum expectation value. This results in a theory with
the unwanted possibility of lepton number violation. However, this scenario can not be
completely ruled out [3], but no realistic model, with such properties, exists. Thus, in
consequence, one is forced to introduce a complete Higgs (SUSY) multiplet in addition to
the multiplets of leptons and quarks.

In the SM, it is sufficient with only one Higgs doublet (and its charge conjugated) in order
to generate masses for the leptons and Charge—% and —% quarks. In SUSY, however, one has
to have at least two Higgs doublets if suitable mass terms shall be generated [2, 4, 5, 13].
The reason is rather technical and relies on the fact that SUSY do not allow for charge



conjugation®.

1.1.1 The Minimal Supersymmetric Standard Model.

The different supersymmetric extensions of the SM are naturally divided into two main
classes. The first one, is the Minimal Supersymmetric Standard Model (MSSM) [4—22]
containing the minimal number of fields and parameters required to construct a realistic
model of leptons and quarks. The second class, goes under the name of Non-Minimal Su-
persymmetric Standard Models (NMSSM) [23]. Several such models can also be constructed,
but they typically increase the number of parameters (and fields) without any corresponding
increase in predictive power and physical motivation.

The MSSM has a high degree of predictivity, and within this model all masses and coupling
constants of the Higgs boson sector, can be calculated at tree level.

Since the MSSM is the most attractive one from a practical point of view, and since no
theoretical aspects (at present) seem to discredit it, we will be considering this model in
the present work. It is also interesting to note that the MSSM has survived all the strin-
gent phenomenological tests coming from resent LEP-experiments, and that in most of its
parameter space the (relevant) MSSM predictions are impressively close to the SM values

(calculated for a relative light SM Higgs) [24].

Model Ingredients.

In a more complete way, the central ingredients of the MSSM can be defined by the following
points:

e The minimal gauge group: SU(3) x SU(2) x U(1).

e The minimal particle content, holding three generations of leptons and quarks, twelve
gauge bosons (defined in the usual way), two Higgs doublets and, of course, all these
particles superpartners.

SUSY breaking parametrized by soft breaking terms.

An exact discrete R-parity.

The three first points need no further comments at this early stage. However, the same can
not be said about the fourth point. If we construct a theory based on the three first points
only, a theory possessing baryon- and lepton-number violation will emerge [25]. The terms
responsible for this, give unacceptable physics (fast rates of nucleon decay). Thus, these

!Two Higgs doublets are also needed in order to avoid gauge anomalies originating from the spin—%
higgsinos.



terms must somehow be avoided, and it is believed that this can only be done in a satisfactory
manner by introducing additional symmetries, e.g. gauge- or discrete-symmetries. The
last possibility is used in the MSSM. Here an unbroken R-symmetry [1, 26, 27] with a
corresponding R-parity, or equivalently matter-parity, is introduced in order to eliminate
the offending terms. The R-parity of a state is related to its spin (S), baryon-number (B),
and lepton-number (L) according to

R, = (=1)"/tP+ (1.1)

Note that the assumption of baryon- and lepton-number conservation implies the conserva-
tion of R-parity.

Furthermore, an immediate consequence of the above expression is that all SM particles
(including the Higgs bosons) are R-even, while their superpartners are R-odd. As a result
the “new” supersymmetric particles can only be pair-produced, and any of their decay
products have to contain an odd number of supersymmetric particles. This implies that
the lightest supersymmetric particle (LSP) has to be stable, since it has no allowed decay
channels.

1.2 The Lagrangian for Supersymmetric QFD.

In this section, we shall construct a (minimal) supersymmetric extension of QFD. We have
chosen to work within the framework of the MSSM, and consider supersymmetric QFD to
be a part of this more fundamental theory?. Thus the content of the Higgs-sector is defined
to contain two Higgs-doublets, as we discussed in the previous section.

In order to construct the Lagrangian of supersymmetric QFD (S-QFD), we will assume that
the theory can be viewed as a low-energy limit of a SUGRAV-theory. Thus the Lagrangian
of S-QFD has to have the form

Ls_grp = Lsusy + Lsost. (1.2)

Here Lgrrsy is a supersymmetric piece, while Lg, s explicitly breaks SUSY.

The ultimate aim of this section, will be to specify the different terms of Ls_grp. However
before we do so, we have to define the different fields which are present in S-QFD.

The first version of the MSSM was constructed in the early eighties by the authors of refs. 28
and 29 and later discussed in refs. 13 and 35. They promoted all the lepton fields of the
SM to chiral superfields, one for each generation. The same we will do, and denote these
superfields by i(:z;,@,é) and 7;(x,0,0). Here the former contains the charged leptons (like

2An alternative contemplation could be to consider the MSSM for leptons only. Hence the SU(3)-gauge
invariance becomes trivial as in the SM (of leptons), where all fields except the quark- and gluon-fields are
SU(3)-singlets, and a non-trivial SU(2) x U(1) theory remains. This resulting theory may be considered, as
is correct, to be a supersymmetric extension of QFD (or equivalently the Glasow-Weinberg-Salam theory).



the electron) and the latter the corresponding neutrinos. Here the generational indices have
been suppressed?.

It is useful, and we will henceforward use it, to assume, as for “ordinary” QFD, that the
neutrinos are completely left-handed. Hence the left-handed lepton superfields (for each
generation) can be arranged in an SU(2)-doublet and the right-handed in an SU(2)-singlet
according to* °

L(2,0,0) = (?(g?;:;)))ﬁ (1.3)
R = Ip(x,0,0). (1.4)

From the previous section, we already know that the MSSM, and hence S-QFD, contains
two doublets of (chiral) Higgs superfields, which we will defined as

e = (i) ) =

and

wien = (05 .

Note that the upper index on these superfields, sayifflz(x,@,é), is an SU(2) index taking
values in the set {1,2}. The same applies to L(x,0,6).

As for non-supersymmetric QFD, 5-QFD possesses an SU(2) x U(1)-gauge invariance. This
means that the theory contains four different gauge vector superfields — V'(x,0,0) for the
U(1)-gauge group and V%(x,0,0) (a = 1,2,3) for SU(2). As usual we will take the gauge

vector superfields to be Lie algebra valued, i.e.
V'(2,0,0) = Yi'(x,0,0), (1.7)
Vi, 0,0) = TV(x,0,0), a=1,23. (1.8)
Here Y and T* are the generators of U(1) and SU(2) respectively.

In table 1.1 the above definitions, together with the quantum numbers, are summerized.

1.2.1 The Supersymmetric Term Lg;sy.

The term Lspysy, is obtained by “supersymmetrizing” the Lagrangian of ordinary QFD.
In this generalizing procedure, the Yang-Mills Lagrangian [31, 32, 33] is useful. However

3Summation over the generational indices will be understood everywhere, if nothing else is said to indicate
otherwise.

“Here the subscripts L and R mean left- and right-handed respectively.

*From now on we will use hats () on the superfield quanteties of our S-QFD model.
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Multiplet | Superfields | Quantum Numbers
type SU(2) ‘ U(l)
Matter L(z,0,0) | doublet —1
]%(:1;, 0,0) | singlet 2
]:]1(:1;, 0,0) | doublet —1
]:]2(:1;, 0,0) | doublet 1
Gauge V'(z,0,0) | singlet 0
V“(:L', 0,0) | triplet 0

Table 1.1: The notation and quantum numbers used for the superfields in S-QFD (for
leptons). The index a labels SU(2) triplets of gauge bosons. All the generational indices
are suppressed.

the S-QFD Lagrangian becomes slightly more complicated due to the fact that we have a
larger gauge group, a richer particle spectrum with both left- and right-handed states, and
in addition a Higgs-sector as well to take into account.

With the identifications we made in the previous chapter for the kinetic terms of chiral- and
vector-superfields, the S-QFD Lagrangian reads

ESUSY = ELepton + EGauge + EHiggsv (19)
where
Lo = [ d'0 [L1e#7 4V [ o e+ ], (1.10)
1 , _
Louuge = 1/d‘*@ [ W ws ¢ Wew! ] 8(0) + hee., (1.11)
and finally

EHiggs = /d4(9 [H{re2g‘7+g/x7/[:]1 _I_f{;reZgV-I—g/f//Hz n W52((§) + W52(0)]‘ (1‘12)

Here g and ¢’ are the (gauge) coupling constants for SU(2) and U(1) respectively and W,
and W/ are the SU(2)- and U(1)-fieldstrengths defined by

1 _ _ N N

W, = _@DDe—WDaeW, (1.13)
1 A

W, = —7DDDV" (1.14)

A

Furthermore, W = W[ﬁ, fx’, Hy, [:]2] is the superpotential of the theory which we will discuss
in a moment®,

5We will not write the fieldstrengths without spinor indices so confusion between the symbols for the
superpotential and the fieldstengths will arise.



The factors of 2 appearing in eqgs. (1.10), (1.12) and (1.13) in connection with the SU(2)-
coupling constant g, are inserted for convenience. With this choice the (non-SUSY) field-
strength V7 contained in W, correspondes to that of the SM.

The Superpotential.

In order to give a complete expression for Lsysy, the superpotential W[ﬁ,fx’, ﬁl,ﬁg] has
to be specified. The superpotential can at maximum be cubic in the superfields in order to
guarantee a renormalizable theory.

In the MSSM the superpotential takes on the form

W = Wg+ Wy,
with the “Higgs-part” given by

Wi = p 5”[27{[315,

and the corresponding “Yukawa-part” by’

AAAAAAAAAA

Here p is a mass parameter and £% is an anti-symmetric tensor defined by

. = (_(1) (1)) (1.15)

Furthermore, f, f1 and f; are all (Yukawa) coupling constants containing one generational
index which has been suppressed. It is often the case that only the largest Yukawa couplings
(for the third generation) are of importance. However, we will not in particular take a stand
on this point.

As alluded to earlier, we will not be concerned about the quark-sector of S-QFD. Hence the
superpotential reduces to

W = Wy+ Wy
p e HIHD + f eV HILR. (1.16)

The first term of the above superpotential needs some further comments. If this term is
missing (i.e. p = 0), the theory has an additional Peccei-Quinn symmetry [36]. Under this
symmetry the Higgs superfield H, undergoes a phase transformation. In cases where the
bosonic component of [:]11 gets a non-vanishing vacuum expectation value, this symmetry
is spontaneously broken. The result of such a breaking is an experimentally unacceptable
Weinberg-Wilczek axion [37]. Hence, p # 0 is required in order to get a physically acceptable
theory.

"Here ( is a quark SU(2)-doublet while U and D are quark SU(2)-singlets.

10



1.2.2 The Soft SUSY-Breaking Term Lg,.

The most general soft SUSY breaking terms where described by Giraedello and Grisaru [30].
They found that the allowed terms can be categorized as follows; scalar mass tems, gaugino
mass tems and finally trilinear scalar interaction terms. However, S-QFD, as the MSSM,
has to possess R-invariance, as referred to in the previous section. This implicates that
trilinear terms contained in W/|,_,, have to be disregarded (and we do it from now) since
they are not R-invariant. The actual proof of this fact will be given in subsect. 1.3.3.

By adjusting the remaining allowed soft terms to our notation of S-QFD, one gets the
following Lagrangian (appropriate to Fermi scale) in terms of superfields:

Lsose = Lsur + Lamr, (1.17)

where the scalar mass term (SMT) piece reads

Lsyr = —/d40 [M,% LD+ m%LRYR + m2HT H,
+m3 Ly —m3e" (H T + h.c.)] 64(0.0), (1.18)
and the gauge mass term (GMT) is
Lovr = %/d“@ (M WeoWe + MWW, ) + hee| 640.0). (1.19)
Here
M2IYE = w2 oth 4 m? Ot

while the (soft) mass-parameters M and M’ are corresponding to the SU(2)- and U(1)-
gauge group respectively. The factor of % in front of Laasr 1s inserted for later convenience.

Within the framework of MSSM, the different couplings and mass-terms, appearing in the
above Lagrangian, are all undetermined both in origin and magnitude. However they are
usually interpreted as remnants of a more fundamental spontaneously broken (N = 1)
SUGRAV-theory. Keep in mind that at the Fermi scale, which we are working at, one deals
with renormalized parameters which are connected to their values at the Planck scale via
the renormalization group equations.

1.2.3 Conclusion.

To conclude this section, we collect our results for the Lagrangian Lgs_gpp, in terms of
superfields, for later reference. It reads:

Ls_orp = Lsusy + Lsoft
= [ {L e e

11



1
4
+ [A{;Fe2g‘7+g"7’f{1 + gge2gv+g’v’g2

+ W §(0) + W 6(0)

ML 4 B e A

+m2H]Hy — m2et (]:]{[Aﬁ + hc)] §*(0,0)

+ 5 [(Weews + WeW!) 62(0) + hec. |

_|_

DN | —

(MWW + MWW, + hee.] 60, 9)} . (1.20)

1.3 Invariances of the Lagrangian Ls_grp.

In this section, we will establish some of the symmetries of Ls_grp, and we start by demon-
strating the SUSY invariance of Lgpysy .

1.3.1 The SUSY Invariance of Lgsy.

It is well known that the highest (mass) dimensional component of any superfield combi-
nation is always supersymmetric (up to a total derivative) [31, 32, 33]. With this in mind,
the SUSY-invariance of Lgysy is easy to verify, due to its possible formulation in terms of
superfields®.

With eq. (A.142) we have that a four dimensional integration with respect to Grassmann
variables projects out the 60 00-component of the integrand. This is the highest, non-
vanishing dimensional component possible, because of the anti-commuting property of the
Grassmann variables. Hence, we may on this ground conclude that Lr.,s0, and the two first
terms of Ly, are supersymmetric.

The highest component of a product of two or three left-handed (right-handed) chiral super-
fields is a #f-component (#9-component). Hence, since [A/, fx’, [:]1, H, and the fieldstrenghts
W, and W/ are all left-handed chiral superfields, while their hermitian conjugated are
right-handed, L5y and the remaining terms of Lpy4,,, are SUSY-invariant. Note that the
two-dimensional delta functions over a Grassmann algebra, are inserted in order to adopt
with the four-dimensional Grassmann integration.

Hence Lsysy is proven to be SUSY-invariant.

As have been stated up to several time, Lg, ¢ breaks SUSY. To see this, it is enough to note

8Later on, when the component-form of Lsysy is obtained, we will also verify the SUSY invariance
explicitly without any reference to the superfield formalism. As we will see then, this line of action 1s much
more demanding then the approach made here.

12



that
/d405’54(0,§) - 3

oo (1.21)

is a (mass) dimensional zero term, with S being any superfield (or superfield combination).
Then according to our earlier discussion Lg,y; is notoriously not SUSY-invariant.

1.3.2 The Gauge Invariance of Ls_grp.

The gauge transtormations on chiral- and vector-superfields are defined by

'(2,0,0) = e WANEOND(2 0,0), DsA=0
O1(x,0,0) = ®f(x,0,0)eio =00 DAt =0 ¢. (1.22)
gV’ —  emighl gV gigh

and that of the fieldstrength W2 by
W, — W = e "W, 9t (1.23)
These transformations will be extensively used in this subsection.

We start by showing the SU(2) invariance of the theory.

The SU(2)-Invariance.

Since [V, V'] = [A, V'] = 0, the term LTe2V+9'V' [, is shown to be SU(2)-gauge invariant as
follows
[AJTGQQV‘HJ/V/[AJ — [AJTGQg‘A/eg'V'[AJ _ [AJTGQigATe—QigAT e?gveﬂg[&eg'v/e—%g[&jj
= [rePVHV] (1.24)

The invariance of the corresponding kinetic terms of R, Hy or H; are shown in the same
manner”,

If we can show that Wo*W2, W' W', and the superpotential W = W[j/, fx’, [:]1, [:]2] are
gauge invariant, then we have established the SU(2)-invariance of Lsysy. This is so because
the invariance of the other terms can be obtained by hermitian conjugation. From eq. (1.23)
we have

1 1 = P .
WerWwe = ETT (WW,) — ETT (e_QZgAWaeznge_zlgAWaezlgA)
1
= ETT(W“WQ)
= Worwe (1.25)

“Note that the invariance of the term containing R is trivial since R transform like a singlet under SU(2).

13



Here we have used the cyclic property of the trace. The SU(2)-invariance of W' eW! is
trivial since W/ is a singlet under this group.

Now we shall demonstrate the invariance of the superpotential W, and we start by Wy,
Wy = ,ueij [:]{[:[% — ,ue” [e‘QigAﬁl]i [e‘zigAﬁg]j, 1,7 =1,2
= e YUY f{fffé, U = ¢~2h, (1.26)
In order for Wg to be invariant we must have
efo= eyt (1.27)

This relation is in fact satisfied as we now will show. The matrix & = e=298 s obviously a

2 X 2-matrix, and its determinant is
detf = ¢ 20T (8) = 1 (1.28)

since I'r (A) =Tr (T“A“) = 0. Hence!f is an SU(2)-matrix. Then U, as any SU(2)-matrix,

can be written as

A B
with
AtA+ BB = 1. (1.30)

Here A and B are functionals of the chiral superfields A2, Their actual dependence on these
superfields are of no importance to us, so we will not worry about them.

Hence

Syttt = uteul”

= &M (1.31)

and Wy is (gauge) invariant under SU(2).

The inyariance of Wy 1s showed as above since [:]1 and L are both doublets under SU(2),
while R is a singlet under this group. Thus the superpotential W = Wy +Wy is SU(2)-gauge
invariant.

14



We now would like to draw the attention towards the SUSY-breaking term Lg,;. Because
of the particular form of Lanr (cf. eqs. (1.19)) the only invariance which has not been
checked yet, is that of Lsysr. Since

LML — Dfeode2ioh] — jTf (1.32)
is invariant, and the same applies for the corresponding terms of fx’, H, and [:]2, we may
conclue that Lsyr, and thus Ls,y, are SU(2)-invariant!®.

Thus the total Lagrangian Ls_grp is SU(2)-gauge invariant as it should.

The U(1)-Invariance.

Many of the invariances showed above easily generalize to U(1) with the substitutions 2¢g —
g, T*A* — YN = A’. This applies to all terms containing only vector superfields, and
terms built out of vector superfields and only one type of chiral superfields!!.

The remaining U(1)-invariance to check, is that of terms holding two, or more, types of chiral
superfields. Such terms are only contained in the superpotential W, and the invariance is
proved as follows

Wi = pe' Hif] — pe' o' 0mtVim)X frifrj
— Wy (1.33)

and

AAAAA

= Wy (1.34)

since Yi, + Yu, = 0 and Yg, + Y7 + Yr = 0 according to table 1.1. Hence the theory is
U(1)-invariant as well.

This completes the proof of the full SU(2)xU(1) gauge invariance of the theory.

1.3.3 The R-Invariance.

The definition of R-symmetry, generated by the operator R, was introduced by the authors
of refs. 1 and 27. It acts on left-handed chiral superfields ®(x, 6,8), and its (right-handed)
hermitian conjugated, as follows
RO(
ROY(

0) = e d(z,e 0, e0) (1.35)

x? 07
x,0,0) = ¥ dl(z, 70, ), (1.36)

10Note that the last two terms of Ly are invariant for the same reason as for instance W.
YThe different types in our model are L, R, Hy and H.
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and on vector multiplets according to

RV (x,0,0) = V(x,e 0, 0). (1.37)

Here « is a continuous real parameter, while ng is called the R-character of the chiral

superfield ®(x, 0, 0).
In terms of component fields, the above transformations read for the chiral multiplet

A — e?inq,ozA
p — Hlramplay o (1.38)

Fo— eQi(nq,—l)ozF
and for the vector multiplet

[
e~

e—22am

Vi
e\
d

(1.39)

N> =3 e

PLEEL]

Here the transformations for the remaining components are given by hermitian conjugation.

For products of left-handed chiral superfields we have [38]

RH O, (2,0,0) = Xlame T ®(x, 60, 0), (1.40)
and the following general superfield terms are all R-invariant:
/d40 o' (,0,0)0(x,0,0), (1.41)
/d40 O'(x,0,0)e" “OD(,0,0), (1.42)
/d40 [1®.(x,0.0)8(0), it =1, (1.43)
/d40 [T ®.(x.0.0)8'(0,0), it n, =0, (1.44)

Now returning to S-QFD, we have at once, from the above results, that Ls_grp 1s R-
invariant if and only if

n1—|—n2 == 1, (145)
ni+nyp+np = 1. (1.46)

Here we have used obvious notation, and we have chosen to give the superfields arranged
in doublets, the same R-character for convenience. Since the R-characters of the superfields
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in question are somewhat ambiguous, we will in addition take up the convention of all n’s
being positive. With the choices made in table 1.2, Lg_gpp is R-invariant, as it should.

Before we close this chapter, we will make one concluding remark. From eqs. (1.43) and
(1.44) it is obvious that both [d*0 W §2(0) (from Lsirsy ) and the soft term [d*0 W §*(0,0)
can not be R-invariant at the same time. On the other hand, R-invariance alone does not
favour one from the other. However, the unbroken S-QFD theory, described by Lspsy, must
have appropriate Yukawa-terms. This implies that [d*@ W 6*(#) must be included in Lsysy,
while the soft term [d*0 W §*(0,0) has to be excluded from Lg,;; (due to R-invariance) as

mentioned earlier in this chapter.

‘ Superfields ‘ R-character ‘

L(z,0,0) 1/4
R(z,0,0) 1/4
Hy(x,0,0) 1/2
Hy(x,0,0) 1/2

Table 1.2: The R-character of the different chiral superfields of S-QFD.
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Chapter 2

Component Field Expansion of
Ls_QFD-

In this chapter, the component expansion of the full Lagrangian Ls_grp will be developed,
even if it i1s Lsysy which will be our main consurn. Much of the explicit calculations are
pretty lengthy and are performed in the appendices. The time-consuming possedure of
explicitely proving the SUSY-invariance of Lgpsy will also be given in this chapter. Finally
we will transform the full Lagrangian into four-component notation.

2.1 Component Expansion of Lg;sy.

Before we go into the component expansion of Lspsy, the component form of the different
superfields of the model have to be given. This we will do now.

In the previous chapter, we arranged for one of the lepton superfields to be an SU(2)-

N N

doublet (L) and the other an singlet (R). These chiral superfields will be given the following
component expansions’

L(x,0,0) =

>
|
SN

191(1' 075)
! L

= E(:L') + 7 05"0 &LINJ(:L') — i 66 00 a“aﬂf/(:p)

+VZ 0L (2) + % 00 0540, L () + 00 Fr(x), (2.1)

R(z,0,0) = Ip(x)
— R(x) 41008 0, R(x) — i 60 90 90, R(x)

!These component expansions, and coming, would been simpler in the (y,0)-basis. However, this basis
will not often be used, so we have decided to work in the (z, @, #)-basis form the very beginning.
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+ V2 0RO (2) + % 00 05"0, R () + 00 Fr(z). (2.2)

‘ Field name ‘ Symbol ‘ Spin ‘ Charge ‘

Leptons L1 1/2 0
L& | 1/2 —1

R®) 1/2 1

Sleptons L! 0 0
L? 0 ~1

R 0 1

Higgs bosons H| 0 0
H, 0 -1

H} 0 1

H? 0 0

Higgsinos Vi, 1/2 0
O, 1/2 -1

Ui, 1/2 1

Wi, 1/2 0

Gauge bosons Vi 1 -
v, 1 -

Gauginos A? 1/2 -
N 1/2 -

Table 2.1: A summary of the SM-fields and their superpartners present in the S-QFD model.
The quantum numbers of the various fields are also summarized. All fermion fields are given
in terms of two-component (Weyl) spinors.

Here the component fields are defined by

ra=(in) - o=(), e (Rn)- e
and?

R(z) = I}(x) RO(z) = [(x) Fr(z) = fh(x). (2.4)

2The relation R = IN;LL (with a dagger on only one side) may seem a little bit strange at first sight. Tt is
introduced for convenience, and in particular to let LT and R! both create negatively charged sleptons. If
we have identified R = (g, then R would have created positively charged sleptons[39].
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‘ Field name ‘ Symbol ‘ Spin ‘ Charge ‘

Auxiliary Lepton Fields f 0 0
! 0 —1

L 0 1

Auxiliary Higgs Fields ! 0 0
2 |

1 0 |

5 0 0

Auxiliary Gauge Fields D 1 -
D 1 -

Table 2.2: A summary of the auxiliary fields of the S-QFD model and their quantum
numbers.

In the same way, we have for the two Higgs (doublet) superfields

. _ Hl(2.0,0)
m”ﬁ”::(éwew)

= Hi(z)+i00"0 0,H,(x) — i 00 00 90, H, (x)

+ V201 (2) + %5 00 059, 1% (x) + 00 Fy(x), (2.5)
. ~ 1 z,0,0
o0 = (g0

= Hy(z)+1i005"0 0,Hy(x) — i 00 00 9"0, Hy(x)
VB 0IP(2) + %ﬁ 00 59, 0 (2) + 00 Fy(x), (2.6)
where the component fields read
Hi(x) (2 Y, (x) _ | @)
mi = () i@ = () nw= (). eo
and
H,(x) (2 Y, (x) _ [ L)
Hy(z) = ( () ) HP (2) = ( o) ) Fy(z) = ( () ) (2.8)

Note that all the F-fields are auxiliary fields, which later on, when constructing the on-shell
Lagrangian, will be removed through the Fuler-Lagrange equations.

Here hats ("), as in the previous chapter, indicate superfields while tildes (7) denote su-
persymmetric partners of the SM particles. The subscripts L. and R on fermionic-fields,
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mean as usual, left- and right-handed fields®, while the superscript “(2)” means that we are
dealing with two-component (Weyl) spinors. The same goes for the SU(2) components of

the higgsino doublets gl(z) and ]:]1(2), even if the above mentioned superscript is missing on

the ¢’s.

The (minimal) S-QFD model also contains vector multiplets. As a matter of convenience,
we choose to work in the WZ-gauge. In this gauge the component expansions of the SU(2)-

and U(1)-gauge superfields V = T*V* and V' = Y0/, are given by
Ve(2,0,0) = —05"0 Vi(x)+1i00 0\ (x) —i 000\ (x) + % 0000 D*(x),  (2.9)
and
P(0.0.0) = —00“0 V() + 00 ON(x) — i 000X (2) + 0000 D'(x).  (210)

Here A*(x) and X () are the two-component (Weyl) gaugino fields, the superpartners of the
(SM) gauge bosons, and the D-fields are auxiliary fields.

With the above definitions, the Lagrangian Lgysy can be expanded in terms of component
fields. In appendix B, this calculation is performed in detail, and the result is according to

eq. (B.61)
Lsusy = (D*L)'(D.L) + (D*R)' (DuR) =i L?e*D,L® — i RP5"D,R®)
+ It (gT“D“ — %ng’) L+ RYYDR
NG (gT“)\“ _ %g/)\/) L® 3 L@ (gT“)\“ - %g’)\’) i

+ V2 RT¢NR® —/2i RY¢NR
+ FlFp + FlLFg
— i NG DA —i X" D, N

1 a v a ! v 1 a a
- (Vv v Vu’y)+§ (D*D*+ D'D")
+ (D" Hy)' (D, Hy) + (D" Hy)' (D, Hy)
= (2 ~ = (2 ~
i1V, i — i 5 e, Y
1 1
+ Hi (gT“D“ — 5g’D') Hy + H} (gT“D“ + §g’D’) H,

1 - =
+V2i Hi (gT“)\“ - §g’)\’) H® — 2 1

3When those subscripts occur on bosonic-fields, say on Ly, it only denotes a particular field and has
nothing to do with left-and right-handed fields (which are not defined for bosonic-fields).
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+ PR+ F R
et | P+ TR B T R i
+ e [FLR+ FLVR + HIF{ R+ 1y F TR
FH Ry B D, - BP0 i, e R
CHILRIR®) _ it L@ipe) _ g @i e, p‘f]
+t.d. (2.11)

Here t.d. means a total derivative and D, is the standard SU(2) x U(1)-covariant derivative
defined by

Y
Dy = Ou+igT"Vi+ig' SV, a=1,23. (2.12)

Note that when D, operates on e.g. the gauginos A* and )\, which lay in the adjoint
representation of SU(2) and U(1) respectively, i.e.

ab . rea
[T(fdj] = —if bv
Yy = 0,
we have (cf. eq. (B.23))
DAY = 9N — gf* VN, (2.13)
DN = 9N (2.14)

The various fields of the Lagrangian (2.11) are summarized in tables 2.1 and 2.2. Note that
this Lagrangian contains auxiliary fields, i.e. F- and D-fields, and thus is off-shell.

2.2 Elimination of the Auxiliary Fields.

The aim of this section will be to construct the on-shell Lagrangian, i.e. to eliminate the
different auxiliary fields given in table 2.2. When we do so, we will see that mass terms
for Higgs-bosons and different interaction terms between Higgses, Leptons and Sleptons,
without any Lepton-Slepton interaction, will appear.

If we pick all the terms from the off-shell Lagrangian (2.11) containing Lepton-, Higgs- and
Gauge-auxiliary fields (F- and D-fields) we get

EAuac — EAuac—F —I'EAuac—Da (215)
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with
Liwe-r = FIFp+ FLFr+ FIF + FJF,
e | HF 4 1 F
+ e [ LR+ FTLTRY + H{F) R + 1P TR
+HL L Fp+ H L] (2.16)
and
Loawp = % (DD*+ D'D")
+ Lt (gT“D“ — %g’D’) L+ Rt¢yD'R

1 1
+ Hj (gT“D“ - §g’D’) Hy + H] (gT“D“ + §g’D’) Hy  (217)

We will now show that these fields can be eliminated through the FEuler-Lagrange equa-
tions [41]

a_ﬁ - a# oL = 07

d¢ " 0(0u0)
where ¢ is any (also hermitian conjugated) Minkowski field. Formally auxiliary fields are
defined as fields having no kinetic terms. Thus, this definition immediately yields that the

Euler-Lagrange equations for auxiliary fields simplity to % =0.

Applying these simplified equations to various auxiliary F-fields yields the following relations
Fit = —fcHIR, (2.18)
Fl = —feHIL, (2.19)
Fit = —yeYH] — LR, (2.20)
F' = —peH (2.21)

Expressions for, say F,{ and so on, are given by hermitian conjugation of the above relations.
Substituting these expressions for the F-fields into eq. (2.16) yields according to eq. (D.7)

Law—r = —p* HIHy — p? HYHy — pf [HIL R+ LTH, R |
- P DLR R+ il (DL + BR) - WL ()] (222)

Note that mass terms for the Higgs bosons and Higgs-Lepton and Lepton-Lepton interactions
have now been generated as we clamed at the beginning of this section.

The same program for the D-fields gives

D* = —g|L'T*L+ HIT"H, + HIT"H,|, (2.23)
! ! !
D= %LTL —g k'R + %HIHl - %HJHQ, (2.24)
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and according to eq. (D.9) this means for La,,—p
2
Lawe-p = —% (LY7°L + HiT*Hy + H3T" 1y ) (LYT°L + H{T*Hy + HT"H, )
”

- % (L'E - 2R'R+ H{H, — H}H, ) . (2.25)
Now Higgs-Higgs, Higgs-Slepton and Slepton-Slepton interactions have come into play.

By substituting the expression for L4,, back into Lgrsy, the on-shell Lagrangian is ob-
tained. According to eq. (D.11) the result is

Lsusy = (L) (D) + (D*R) (D,R) — i L®6*D,L® —i R?5* D, R®
. 1 . N
NG (gT“)\“ _ §g/)\/) L® 3 L@ (gT“)\“ _ §g/)\/) i
+ V2 RT¢ NR® — \/2i RD¢'NR
. : 1 ,
—i NG DAN =i NG DN = o (VO VIV )
+ (D" Hy)" (D, Hy) + (D" Hy)' (D, Hy)
~ (2 ~ ~ (2 ~
i 1P, i1 —i 5D, HY
1
V2 (gT“)\“ _ §g/)\/) 2

2
—=
|
S
o~
nfy

BN (gT“)\“ 4 %g')\’) a2 i

i [ﬂ (ﬁf“ﬁf” 4 ﬁf”ﬁf”) v ( 7RV L) 4 NT)Z'L(z)ng)
+f (H;'L<2>m<2> b HITE@IR® L RO F@ifi 4 g, it )]

— y? H{Hy — p* H{Hy — pf | HIL R+ L'H, RY]

— [ LR R+ m (D + BR) - 0L (H]E)

- % (LY7°L+ H{T*Hy + HIT"Hy ) (LML + H{T*Hy + HIT"H, )

12
—%(LTL—ZRTR+H1TH1—HQTHQ)Q—l—t.d. (2.26)

This concludes this section.

2.3 Introducing the Photon-, W- and Z-Gauge Boson
Fields.

In order for our model to be realistic, the sector of the theory containing the SM-particles
has to coincide with non-supersymmetric QFD. In particular this means that the photon and
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heavy W- and Z-bosons have to be present. However, “generation” of heavy gauge bosons
requires some sort of gauge symmetry breaking as in the SM, and this will be discussed in
detail in the next chapter. Nevertheless, it is practical at this stage to introduce the W-
and Z-gauge fields even if they before gauge symmetry breaking are massless.

In analogy with the Standard Model we define

Au(x) = cosbw V;(l‘) + sin Oy Vf(:z;), (2.27)
Z,(x) = —sinfy VM/(J}) + cos Ow Vf(:z;), (2.28)
W;t(:zj) _ V;(x)$in(x)7 (2.29)

V2

and for the corresponding spin-1/2 gauginos

M(x) = cosby N(x) +sin by \P(2), (2.30)
Mz(x) = —sinfw N (z) + cos by X*(2), (2.31)
\(r) = M@ TN (2.32)

V2
With these definitions the SU(2) x U(1)-covariant derivative becomes (cf. eq. (C.15))
N a a N /Y !

DM = 8M + ZgT VM + g 5‘/# |
Yoyt o Y - 9
—T W, —T"W, A
V2 “+\/§ p e M—I_COSQW

where the charge operator () (with eigenvalues in units of the elementary charge “e”) is

= J,+ (1% — Qsin® 0w | Z,,  (2.33)

Y
Q = T3—|—§, (2.34)
and
T = TV T (2.35)

It is important to note that Q and the 1"”s are assumed to operate on the same field as D,,.
For instance, if D, operates on an SU(2)-doublet, T* = ¢%/2, and D, is a 2 x 2-matrix,
while for an SU(2)-singlet 7% = 0, and D, is no matrix at all.

In terms of the new fields (2.27)—(2.32), the Lagrangian Lsysy, in two-component notation,
can be obtained from appendix C by substituting for the various terms of eq. (2.26) rewritten
in this appendix.

Nevertheless, the result reads
Lsusy = (D*L)'(D.L) + (D*R)' (D.R) =i L?e*D,L? —i RP5"D,R®)
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+ig (LT LON = M LOTL) +ig (LT~ LOA = A" LOTHL)
—I—\/_w ( TZL 2) )\A — S\AIJ(Q)ZIN/)

\/_zg ( 2'3 _ Q; sin? 9w) [zTiL(Q)i)\Z _ S\ZIJ(Q)Z'EZ']
cos B
. in2 O s~ I
+V2ie (RN RPA4 = MR® R) — 2ig—— " (Rt RPA, — 3,R® R)
cos Ow

— i ATE N — i AT AN — i A48 DA — i NG D)
+gcosly [(Aza"A™ = XFa"Az) Wi — (A\za"At = A"a"Az) W,
+(ATeat —AmeaT) 7,
e [(Aag"A™ = oA ) Wi — (\ao" AT = A7a A, ) W
+(ATer At — A7) A,
- i (WHe Wy, + W W 4 A A, + 20 2,,)
+ (D" Hy)" (D, Hy) + (D" Hy)' (D, Hy)
< (2) (2)

—if, "D, H? — i, "D, HY

~ _ = (2 ~ - =(2
+ig (HIT+H{2>A+ -~ A+H§ )T‘Hl) +ig (HIT‘Hl(Q))\‘ - )\‘Hi )T+H1)
Coa . _ =(2)s .
+V2ieQ: (HI“HI(Q)Z)\A W H;)
Coa . _ =(2): .
L V2 (72 = Qusin o) [T PN, = 201} H;]
cos B
~ _ = (2 ~ - =(2
+ig (H§T+H§2>A+ il )T_Hz) +ig (HQTT‘HQ(Q))\‘ il )T+H2)
Coa . _ =(2)s .
+V2ieQ: (HQ“HQ(Q)Z)\A W e H;)
Coa . _ =(2): .
L V2 (77 = Qsin o) [H] AP0, — )\ZH; ) H;]
cos@
~ 2 ; o~
_€ZJ|:IM<H1(2)H()_|_H() ; )-I—f( )JR+H1()L(2)JRT)

w (H;L@)JR@) +HITIRR® 4 R D R<2>g1<2“p+)]
— i H{Hy — p* H{Hy — pf | HSL R+ L'H, R
— DR R+ 1l (LD + BOR) — 0L (HIL) ]
2
- % (LYr°L+ HiTeHy + 1371y ) (LYT°L + H{T*Hy + HIT"H, )
12

S (i —2RYR+ HIH, — HIH,) 1. 2.36
3
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Here, cf. eqs. (C.34), (C.34) , (C.36) and (C.37),

Ay = cosby V!, +sinby V7
A +ie (WHW, — W), (2.37)
Zu = —sinby V!, 4 cos by V)
L +ig cos b (WHWS —WIWF), (2.38)
- VL —iv?
py \/5
Wk +ie (AW} = WEA) +igeostw (W) —Wrz,),  (2.39)
Wy, —ie (AW — Wi A,) —igeosty (2,W; —W;Z,),  (240)

and A,,, Z,, and W;E, are the usual fieldstrengths given by

Note that the “scripted kinetic terms” are defined in complete analogy with eqgs. (2.27)—(2.29

Aw = 0,A, —9,A,,
Zuw = 0.2, —0,Z,,
Wi o= 9.WrF—-09,Wr.

and that they also contain interaction terms for the gauge bosons.

2.4 Introducing Four-Component Spinors.

241
2.42

(2.41)
(2.42)
(2.43)
—(2.29)

In order to make use of the Lagrangian (2.36) in field theoretical calculations, it is practical
to express it in terms of four-component spinors. This will be done in this section.

The interactions of the gauge-fermions of eq. (2.36) suggest that we introduce the Majorana
spinors

Az) = (‘Wm ) (2.44)

) : (2.45)

and the Dirac spinors

W(z) = (_zifg; ) (2.46)
We(e) = (_i;gg ) (2.47)



Here the Photino A(z) and the Zino Z(z) are neutral fields, while the Wino-field describes
charged (4+e) Winos. The state W is the charge conjugated of the Wino-state W (cf.
eq. (A.91)).

In sect. 2.1 we saw that the Higgs-sector contains two charged and neutral states (cf. ta-
ble 2.1). Hence we introduce the weak interacting neutral Majorana Higgsino states

7= Ym
Hy = 1 ) (2.48)

b

. 2
i = (‘Z’gb ) (2.49)

P

and the charged Dirac Higgsino states

. 1
H = ( @2;[2 ), (2.50)

77Z)I‘Il

. 2
e = (%ﬁ ) (2.51)

77Z)I‘12

The (four-component) leptons are as usual Dirac spinors, and they have according to sub-

sect. A.5.2, the form
1
R

By working in the Weyl basis for the y-matrices (cf. eqs. (4.48) and (A.49)), we demonstrate
in great detail in appendix C, eq. (C.51), that the four component version of the two-
component Lagrangian (2.26) (or equivalently (2.36)) is

Lsusy = (L)' (D,L) + (D*R)' (D,R) —i Ly*D,L —i Ry*D,R
—g HEIW L2 + L*We El} + h.c.] + V2e [{EQA L? — ZXR ];’} + h.c.]
V2

cos B

—1 ﬁ/’y“aMW — %Zwaﬂil — %27“8MZ

H (7;3 — Qysin’ 9W) L'Z 1 —sin® Oy ZR fx’} + h.c.]

— g cos by [ E’WW W, + ﬁ/’y“ZN W: — ﬁ/’y“W Zu]
—e [ZWMW W, + ﬁ/’y“zzl W: — ﬁ/’y“W AM]
1 v - 1 — pv 1 v 1 v
— ZW” Wi = V" Wi, — 12 B = A A
+ (D*Hi)' (D Hy) — pi* H Hy + (D" Hy)' (D, Hy) — p* Hy Hy

= . ~ 7 = ~ 7 = ~ =~ o~ ~ o~
- H (z*y“@u - IM) H - 5 Hl’}/uaqu - 5 Hg’y“aMHQ - ngHQ - gHQHl
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— % [ ([:{’WPR[:A —[:{’}/MPL[NJQ) W:’ —I—h.c.] —I—e[:if’y“[;i’ A,

g
2 cos O

— g [(WPRH H} + HPsW H} + HPRW H} + W Pply H}) + h.c]
+fe[(21PRﬁH2—J§PRAH1) + hecl
[{ZPRH1 H' — H,Pr7 H2

[ (1 — 2gin? GW) [:if’y“[:] — % ([ifﬂ“’ﬁfﬂ — ﬁ27“75g2) ] Z,

\/_COS Ow
— (1= 2sinOw) (ZPrfl H} — HPpZ H})} + h.c]
+ f{HLY R~ 02 Ry RLYHP — RL*H} + RIFC LY — R L2+ hoc]
— uf [HL R+ hee] - f° [LTL R+ w0 (I + RTR) — B L(HIL) ]
- g2—2 (LY7°L + HiT"Hy + 137" 1y ) (LY L + HIT"Hy + HT"H, )
g? tan? Oy
S

Here Pp, and Pg are the left- and right-handed projection operators given by eqs. ( A.80)
and (A.81).

(L'L - 2R'R+ HIH, — HH,) + t.d. (2.53)

This concludes this section, and after the long discussion of the Lagrangian Lspysy we will
finally draw our attention towards the soft-breaking piece Lg, ;.

2.5 Component Field Expansion of Lg,;.

From chapter 1, eq. (1.17), we recall that

Lsose = Lsvr + Lamr, (2.54)
with
Lsyr = —/d40 [M,% LD+ m%RVR + m2HTH,
+m3 Yy —me (T + h.c.)] 64(0.0). (2.55)
and
Loyt = %/d“@ (M W W+ MWW, + hee| 64(0.0). (2.56)

Now the component expansmn of ,Csoft will be calculated, and we start with Lspr. With
the component expansions of L, R, [y and [I, from sect. 2.1, we have (cf. [31, 32, 33])

Loyt = —M? LYL —m%RTR— m?HIH, — m*H]H,
+mieV (HiH]+ h.c.) . (2.57)
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and correspondingly for Laar

Lovr = —%M (A"A" 4 Amd) — %M’ (VX + V). (2.58)

Here M7 Ll is defined in analogy with the corresponding superfield definition, i.e. M; L =
m?; v+ m% ZEZL.

Since eq. (2.58) contains two-component Weyl-spinors, we will, as in the previous section,

introduce four-component notation.
Hence, with eq. (2.46) we have
1 141 Y1yl 1 2y2 | Y212
—§M()\ A4 A)—§M(A A2 42202
= —M (AAT+ A0
= My WW, (2.59)
where My, = M. Similarly, with eqgs. (2.44) and (2.45)
1 3133 13313 1 ! AV AV
—M (WX 4 XX7) — M (VX XN
1 ) -
= —3 (ZWsm2 Ow + M’ cos? GW) ()\A)\A + )\A)\A)

- % (M cos® Oy + M’ sin? GW) ()\Z)\Z + S\ZE‘Z)

1 o
— 5 (M = M')sin 20y (Aadz +Aakz)
1 ~ o~ 1 ~ o~
= 5 (M sin? Oy + M’ cos? GW) AA + 5 (M cos? Oy + M’ sin? GW) YA
1 -
1 ~ o~ 1 ~ o~ 1 ~ ~
where we have introduced the notation
M; = M’ cos* Oy + M sin® Oy, (2.61)
My = M'sin®Ow + M cos® Oy. (2.62)
Thus eq. (2.58) reads
~ o~ 1 ~ o~ 1 T o~ 1 ~ o~

and this section is concluded.



2.6 Conclusion — The Full Four-Component La-

grangian Ls_grp.

With the results from eqs. (2.53) and (2.63) we may conclude for Ls_grp = Lsusy + Lsoft

Ls_qrp

(pL)' (D, L) = M2 L'L + (D*R)" (D, R) — mbR'R
i Iy*D,L —i Ry"D,R
—q HEIW L?+ LPWe fjl} + h.c.] + /2 HI/ AL?— ZLR E)} + h.c.]

\/Zg 3 12 Tirr i . 92 = ~
—- H(Z — ;sin GW)LZL —sin“fw ZR R}—I—h.c.]
L1 = .
W (10, M)W L A0, - 0t A= L0, - a2
1
‘|‘§(MZ—MA)tan2(9WAZ

— gcos by [ E’WW W, + ﬁ/’y“z W: — ﬁ/’y“W Zu]
—e [ZL’WW W, + ﬁ/’y“zzl W: — ﬁ/’y“W AM]
1 1 1

v - — pv v 1 v
— ZW” Wi = W Wi, — 12 B — A A

+ (D" H) (D Hy) = (m} + p?) B H,

+ (D" Hy) (D, ) — (m3 + ) HIHy + m3e™ (H{HS + h.c.)

— [:{(Z’}/Mau — IM) ]:I — % [:ii’l’y“@uf{l — % [327“8#[:]2 — gﬁlgg — —ﬁzgl
g

— ﬁ [ ([:{’WPR[:A —ﬁ]’y“PL[N{g) W:’ —I—h.c.] + e ﬁ]’y“[:] A,

o=

QCOZ Ow [ (1 — 2sin’ GW) E'T’VMH - % (f{l’W’YSF]l - ]:{2’}/#75[;2) ] Z,
— g [(WPsH H} + HPRW H} + 0\ PRW H} + W PpHy H}) + h.c]
+fe[(ZPRﬁH2—J§PRAH1) + h.cl

fcos - ({ZPrfl, H} — [1,Pr7 1}

— (1~ 2sin?0w) (ZPrfl H? — [ PpZ HY)} + h.c]
+f[{HL' R — H,I* R+ RL' H} — RL* H + RH* L' — RH, L*}+ h.c/|
— uf [HL R+ he] - f° [LTL RR+ #  (DE+ RTR) — B L(HIL) ]

2
- % (LY7°L+ i1 Hy + 137" 1y ) (LY L + H{T"Hy + HIT"H, )
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2t 20 o .
T W (LIL — 2R R+ HIH, — HIH, ) + t.d. (2.64)

This Lagrangian is the final result for our S-QFD theory, but before we close this chapter
we will make several observations about this Lagrangian.

Firstly, it contains the correct kinetic terms for the bosons (sleptons, photons, Z-bosons,
higgs bosons ...) and fermions (leptons, photinos, zinos, winos, ...) of the theory.

Secondly, it holds the well known SM-interaction terms for the SM-particles, and in addition
interaction terms between SM- and SUSY-particles and SUSY-particles alone. Note the rich
number of different interactions, both cubic and quadratic, that are possible in this theory.

Thirdly, we observe that for the wino- and charged higgsino-fields, their charge conjugated
fields also appear in the Lagrangian. Such a situation is unknown from the SM. In part 2 we
will see that this has the strange consequence that the theory will contain fermion-number
violating vertices and propagators.

After these remarks we close this chapter.
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Chapter 3

Symmetry Breaking and Physical
Fields.

In this chapter the breaking of electroweak gauge symmetry and the introduction of physical
states will be demonstrated.

As alluded to earlier, the breaking of gauge symmetry is in the MSSM directly connected to
the breaking of supersymmetry. In fact this breaking — called radiative breaking — is an
effect of radiative corrections to the soft mass-parameters as we now will discuss in detail.

3.1 Radiative SU(2) x U(1) Breaking.

Our model has the attractive virtue of allowing for the possibility of a phenomenologically
acceptable radiative breaking of the electroweak gauge symmetry [4-22, 43-46]. This is
obtained through a generalization of the original Coleman-Weinberg mechanism [48]. Ra-
diative breaking also has the advantage, when combined with some additional plausible
assumptions, of being very powerful since it excludes large regions of parameterspace as we
will see. This takes part in increasing the predictiveness of the model. Now we will work
out the Coleman-Weinberg scheme [48] for our supersymmetric field theory.

In SUSY-theories, one has two kinds of potentials — superpotentials and scalar potentials.
Superpotentials have been discussed earlier in this thesis, so in consequence we now consider
the scalar potential, which has its analogy in the SM.

Contributions to the MSSM scalar potential, Vasssas, arise from three sources — the auxil-
iary F- and D-fields and the soft terms. We write

Vvssm = Vo 4+ Vi + Vsos, (3.1)
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where!

Vb = —Law-b
2

_ % (L7l + HiT iy + H3T 1y ) (LY L+ T dt, + ni1ed, )

2

+%(ETE—21%T1%+HIH1—H§H2)2, (3.2)
Vi = —Liaw-rF
= W H{H, + p* HYHy + uf |HIL R+ L'H, R
[ DR R+ 1L (DD + RUR) — 0L (HIL)' ], (3.3)
and
Vsost = —Lsmur
= M?L'L 4+ m%R'R + m2H{H, + m2H}H,
— m2eY (Hng + h.c.) . (3.4)

Now we leave this general scalar potential, and instead consider the pure scalar Higgs
potential because it is this potential which is of interest in the discussion of gauge symmetry
breaking.

3.1.1 The Scalar Higgs Potential.

Thus, for the pure Higgs sector of the theory, the (tree-level) scalar Higgs potential V =
Viriges reads® according to eqgs. (3.1)—(3.4)

Vo= (mi+p?) H{Hy + (m3 + p?) HIHy —m3 eV (HHS + hoc.)
+ "C’Q—Z (H{TH, + BT M) (H{T"H, + H{T"H,)
+ 98#2 (mim, — i) (3.5)

However, in appendix E this potential is rewritten for later convenience, and the result is
(cf. eq. (£.2))
Vo= miH{Hy +m} HJHy —mieY (H{H5 + h.c.)
41 (6 +97) (H{H: — H}H,) + s 1, (3.6)
3 1 2 5 [
!Generally can D' — D'+ £, where € is a Fayet-Iliopoulos term [42], but we will henceforth assume that
this term is neglectable.

ZNote that it is —Vargsar which appears in the Lagrangian.
3This potential is a special case of the general two-Higgs doublet potential [49, 50].

‘ 2
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Here we have taken advantage of the arbitrary nature of the soft mass-parameters m? and
m32, and absorbed p? into these, i.e.

2 2 2
mi+p? — mi,

m%—l—/ﬁ — m%
Without loss of generality, we may choose the phases of the (scalar) Higgs fields in such
a way that all mass parameters m? (i = 1,2,3) are real and that the vacuum expectation
values (v.e.v.’s) of the Higgs fields are non-negative. As in the Standard Model (SM),
the SU(2) x U(1) gauge symmetry has to be broken down to U(1)ga. This means that
electromagnetism is unbroken and hence the charged components of the Higgs-doublets can
not develop non-vanishing v.e.v.’s. Hence

(Hi) = (%1) (3.7)

(Hy) = ( ! ) (3.8)

U2
and the potential becomes at the vacuum

1 2
V. = mivi+mivi—2mivw, + 3 (g2 + g’z) [vf — v%] . (3.9)

For this potential to be bound from below, e.g. in the direction v; = vy, one has to be
careful and demand

B=m?+mi—2mj>0. (3.10)
This relation will hereafter be referred to as the stability condition.

From the SM Higgs-mechanism, it is a well-known fact that when the Higgs v.e.v. is non-
vanishing this signals breaking of the SU(2) x U(1)-symmetry because origo is “unstable”.
This situation applies equivalently well to the two Higgs doublet model [49, 50]. However,
what demands do we have to make in order to obtain non-vanishing v.e.v.’s? As long as
Vinin is non-negative, the minimum (V,,;, = 0) lies at the origo, i.e. at vy = vy = 0, and
the gauge symmetry is unbroken. Thus V,,;, has to be negative to obtain breaking of gauge
symmetry.

Now we will derive a condition on the mass parameters for this to happen. Rewriting

eq. (3.9) yields

1
V = VTMQV—I——(gQ—I—g'Q) [vf—vgr, (3.11)
8
where
()
v o= ,
M= (m m)
T3 Ny



Since M? is a symmetric matrix, the following is true for the quadratic form v M?v [51]

AP < VMY < AP (3.12)
Here A1 are the eigenvalues of M? given by
1
Ay = 3 (m% +m2 £ \/(m% +m2)? — 4 (mim?k — m%)) ) (3.13)

and the norm |v| is taken relative to the inner product space IR*.

Since the last term of eq. (3.11) is non-negative, the quadratic form v M?v has to be at its
minimum value in order to get a minimum of V, i.e.

viM*v = A |V|2.
Hence in order for V,,;, < 0 we must have A\_ < 0, something which implies
det M? = mimj —m3 < 0. (3.14)

Thus if eq. (3.14), in addition to the stability condition (3.10), are satisfied, this signals
SU(2) x U(1)-gauge symmetry breaking. Later on this will be demonstrated explicitly.

2 2 2 2,2 4
ml—l—m2—2|m3| mymy — Mg

12(130.00,49.00)(130.00,47.00)(130.00,46.00) 12(130.00,44.00)(130.00,42.00)(130.00,41.00) 12(130.00,39.00)(

Figure 3.1: The figure shows B and det M as functions of scale . The various sectors where
SU(2) x U(1) is broken in a satisfactory /unsatisfactory manner are also indicated.

When condition (3.14) is satisfied, the neutral components of Hy and Hs start to develop non-

vanishing v.e.v.’s (v1,v2 # 0). Now we will derive some useful relations, and an expression

for the potential at its minimum. At Vi, the potential has to fulfil the equations 8‘8/’511'" =

Wonin — () and 2V > (. This yields the following relations

ET 01 0v
miv; — mavy + i (g2 + g’z) [vf — v%] vy = 0, (3.15)
mivy — mavy — i (g2 + g’z) [vf — v%] vy = 0, (3.16)
—ng) — (g2 + g’z) vive > 0. (3.17)
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By multiplying eqs. (3.15) and (3.16) by v;! and v;' respectively, and then adding and
subtracting the resulting equations, we obtain

m%—l—m% = mg) (tan 3 4 cot 3), (3.18)
—2 tan f — cot 3
2 2 2 2 2 2
Uy — Uy = g2 + g7 [m1_m2_(m1+ Q)M]
—2 2 2 2 2
S S ) -
where
tanf = —. (3.20)
U1

Here the angle 3 is a new parameter of the model and since vy, vy > 0 we have

0 < 8 < g (3.21)
With eqgs. (3.15), (3.16) and (3.19) the minimum of the potential can be written as
—1 2 2 2 2 2
Viiin = SR [(ml — m2) + (ml + mz) cos Zﬂ] ) (3.22)

All the parameters of the model have a functional dependence on the renormalization point*
Q. This in particular applies to the mass parameters m? (i = 1,2, 3) and thus to det M?*(Q).
To proceed, one has to take the complicated (coupled) renormalization group equations
(RGE’s) into account. This we will not do here, but only refer the interested reader to the
literature [47]. The rest of the discussion of this section will be kept on a qualitative level.

At the Planck scale, Mp;, condition (3.14) is not fulfilled, and hence the critical scale
reads det M*(Q.) = 0, where ). < Mp;. Below ()., non-vanishing Higgs v.e.v.’s start to
develop, signalling SU(2) x U(1)-breaking as discussed earlier, but only as long as B(Q) > 0.
However, for some particular scale Qs < Q., B(Qs) < 0 is driven negative and for ) < Qs
one is in an instability region where SU(2) x U(1) is broken in an unsatisfactory manner.
Our picture is recapitulated in figure 3.1 for various scales Q.

Note that in the supersymmetriclimit, where all (soft) mass parameters of Lg,; are set equal
to zero, det M? = 0 and no electroweak breaking is possible in view of condition (3.14). So,
in our model the gauge symmetry breaking is connected to the breaking of supersymmetry,

as we already have noted several times®.

4This Q-dependence may for instance come from the renormalization-group-improved tree-level potential
which incorporates the large logarithmic corrections proportional to alog (Mgur/Q). Here Mgur is a grand
unification scale.

51t is possible to construct non-minimal models [23] where the Higgs-sector is enlarged by an SU(2) x
U(1)-gauge singlet and where the gauge-symmetry and SUSY can be broken separately.
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Before we close this section, we will make one final comment. Instead of our naive use of
the tree-level scalar potential (3.6), we should have used the full one-loop corrected effective
potential

Q) = V(Q)+AV(Q).

Here AV is the one-loop radiative correction to the scalar potential and in the leading
logarithm approximation it reads

AV(Q) ~ milog (MgUT),

where my is the top-quark mass and Mgy some super-high unification scale. By choosing

a low renormalization scale, one gets substantial contributions from AV. Until recently, it
was believed that the large logarithmic terms could be reabsorbed into the soft parameters®
of V(Q), and in consequence, AV only contained small logarithmic corrections. However,
this only applies to so-called field independent radiative corrections. For the field dependent
corrections we still can get substantial contributions as explained e.g. in ref. 52.

Even though the scalar potential can receive large corrections from AV, the use of the tree-
level potential V(@) is adequate for our discussion. Furthermore, it simplifies the discussion
enormously.

3.2 The Physical Higgs Boson Spectrum.

In the previous section we derived the condition for electroweak symmetry breaking. Hence-
forth we will assume that these conditions, i.e. egs. (3.10) and (3.14), are fulfilled, and show
that this implies the correct symmetry breaking pattern.

In the SM one starts by expanding around the Higgs v.e.v.’s and identify the new state
as the physical state. However, by performing the same scheme for the MSSM, these new
weak interacting eigenstates do not represent physical (mass) eigenstates, as we will see. So,
before we proceed, we will work out the physical Higgs boson states.

The physical eigenstates are obtained by diagonalizing the Higgs boson mass-square matrix.
This is most easily done in a real basis where

o hq + thy

H, = ( b+ ihy ) , (3.23)
o hs + the

H, = ( ho + ihe ) . (3.24)

5Recall that the soft parameters in our theory are arbitrary.
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In this basis the scalar (Higgs) potential (3.6) reads

4 8
V(hz) = m% Z h? —|— m Z h 2m3 h1h7 —|— h4h6 — h3h5 hzhg)
=1 =5

—_

+—(92+g ) [Z;h Zj:h]

9]
(¥

+ = (h1hs + hohe + hshr + h4h8)2

[}

g
2
+ % (hihe + hshs — hohs — hahz)? (3.25)

From this potential it is apparent that the Higgs field basis that we are working in can
not be a physical basis since it contains off-diagonal mass terms. Thus we are forced to
transform to a mass-eigenstate basis, and the method which we will apply, is described in
detail in ref. 49 for a general two doublet model.

The physical Higgs boson states are obtained by diagonalizing the Higgs boson mass-square
matrix” given by [49]

, 1 0*V
972 Oh; Ohy

. (3.26)
min
Here the term “min” means setting (hq1) = vy, (h7) = vy and (h;) = 0 for all other i’s. Note
from eq. (3.25) that the “mixed” second order partial derivatives of V(h;) are continuous

: 92V 32V . . S 5 a2
and thus equal (i.e. Thoh; = Thoh ), implying a symmetric mass-matrix, i.e. M7 = M?Z.

Now, the different parts of the Higgs sector will be analyzed in detail, and this will be the
aim of the next three subsections.

3.2.1 The Charged Higgs Sector; Indices 3, 4, 5 and 6.

With egs. (3.25) and (3.26) the Higgs boson mass-square matrix is easily calculated. Observe
that the real and imaginary sector decouple i.e.

M526 = M524 = M326 = M324 =0.

The remaining mass-square matrix components read

ML = md— = (g2 g?) (o2 = od) + 5ot}

"The factor of % in front of definition (3.26) stems from the normalization of the scalar fields in eqs. (3.23)
and (3.24).
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My o= mi+ 5 (2 +97) (vf —v3) + 50703

and
M626 = M5257
MZ4 = M??Sv
MZ, = —M2Z,. (3.27)

Here eqs. (3.15) and (3.16) have been taken advantage of in eliminating the mass parameters

mi and m3. Hence in the basis’s (hs, hs) and (—hg, hy), the charged Higgs mass-square

matrix reads®
1 2m2 v v
2 _ L o9 3 1 12
ME - 2(9 +—)( ) (3.28)

To obtain the physical charged Higgs states and their masses, one has to orthogonal diago-
nalize ® the matrix M7 since physical states always are orthogonal to each other. Note that
M3 always will be orthogonal diagonalizable because it is symmetric [51].

By calculating the eigenvalues and the corresponding set of orthonormal eigenvectors, the
charged mass matrix M3 can be written in the form (tanf = vy/v)

9 —sin 3 cos 3 0 0 —sin 3 cos 3
My = ( cos f3 sinﬁ)(() m%i)( cos f3 sinﬁ)’ (3.29)

where

1 2m?
miys = 5 (92 + ﬂ) (vf + v%) , (3.30)

is the mass-square of the physical charged Higgs-bosons. Note that by this diagonalization
procedure, two massless and two massive states have appeared. The mass-zero states will
be associated with Goldstone bosons, as we will see in a moment.

8The particular sign of the basis (—hg, ha), owing to the appearance of the sign in eq. (3.27), is chosen
such that the two mass matrices coincide with each other.

9Recall that an orthogonal diagonalizable n x n-matrix A always can be written in the form A = PDP~1,
where D is given by D = diag( A1 A oA, ), and P is the orthogonal matrix containing the eigen-
vectors in the following way P = ( v Vg ... Up ) Here (A;, v;) are corresponding sets of eigenvalues

and eigenvectors.
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After completing the diagonalizing procedure, the mass terms for the charged Higgs-bosons
in the Lagrangian can be written in the following way

h —h
( hs hg)Mi(hz)—l—(—hG h4)M1( hi)
. . hs — ih
h5—|—lh6 h3-lh4)Mi(hz+zhi)
1t
3 HfT)Mi(H2 )

(
(
(—H%sinﬁ—l—Hchosﬂ)T(O 0 )(—H%Tsinﬂ—l—ﬂfcosﬁ)
0
G
( i

H%Tcosﬂ—l—Hfsinﬂ

Here
G- = lecosﬂ—Hlesmﬂ, 3.31)
H™ = H?sinf+ H)'cosp, (3.32)
and
ot = (a)',
o= (1)

where G* are the charged Goldstone bosons while H* are the charged Higgs bosons.

This completes this subsection.

3.2.2 The Neutral Higgs Sector; Indices 2 and 8.

In the previous subsection we saw that the charged Higgs sector decouples into a real and
an imaginary part. This is also the case for the neutral Higgs sector as the reader may easily
verify by showing that ij =0 forz = 1,7 and 5 = 2,8. This owing to the fact that our
theory is CP-invariant. We start the discussion with the imaginary (CP-odd) sector, and

consider the real (CP-even) part in the next subsection'®.

Proceeding as in the previous subsection the mass-square matrix becomes

m% U% V1V
V102 U102 U%
10The various CP-assignments can be obtained by e.g. studying the interactions of (neutral) Higgs- and
gauge-bosons.
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in the basis (hs, he). By diagonalizing this matrix, which is identical to that for the charged
sector, the physical mass eigenstates are obtained as follows

2 2
& vy V102 hg
V102 ( h8 h2 ) ( V1V2 U% ) ( h2 )

—hgsin 3+ hy cos 3 (o o0 —hgsin 3+ hycos 3
hg cos 3 + hysin 3 2 hg cos 3 + hgysin 3

OmHO

GO

:(G_OH_2)00 72
V2 V2 0 m, o)

V2
Here
G° = V2(hycos — hgsin3)
= V2 (Im ] cos 3 —Im H}sin 3 ). (3.33)
H) = \/ﬁ(hzsinﬂ—l—hgcosﬂ)

= \/§(ImH11 sinﬂ—l—lmﬂgcosﬂ), (3.34)

where G° is a Goldstone boson (in this case neutral), and Hj is a neutral Higgs boson. The
mass of the Higgs boson is!!
2

m
3
quo = — (vf + v%)
s U102
= mis —miy. (3.35)

The factors of /2 are inserted in order for these fields to have the conventional kinetic
energy terms.

3.2.3 The Neutral Higgs Sector; Indices 1 and 7.

After completing the diagonalizing of the neutral imaginary sector, we will now consider the
corresponding real sector. For this sector the mass-square matrix reads

A B
CRNVED

relative to the basis (hy, k7). Here we have introduced the abbreviations

B Ly 2\ 2 2 U2
A = 5(9 +9 )vl—l_m?)av
1
B = —5 (g2—|—g/2) Ulvg—m?)),
_ Ly 2\ 2 201
¢ = 5(9 +9 )vz+m3v_27

1Tn sect. 3.3 we will show that the W- and Z-mass are respectively given by m% = %gz (v% + vg) and

mi = 1 (g% + ¢"%) (v} +03).
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and we notice that A,C' > 0 and B < 0. Also here egs. (3.15) and (3.16) have been used to

eliminating the mass parameters m? and ma3.

The orthogonal diagonalization scheme for this sector is not as straightforward as above.
Accordingly some more details will be given. The eigenvalues of M? read'!

1

1 2
= 3 l m%lg +my + ¢(m%§ + m%) — 4m%qug cos? 23 ] : (3.36)
where the positive (negative) sign is associated with qu? (qug) The corresponding eigen-

vectors are!?

1
Yz = NL?( —(A=C)E\/(A-C)* +4B2 ) : (3.37)
2B

Here Ny 5 are normalization constants.

As will become clear soon, it is useful to introduce the mixing angel « (not to be confused
with the fine structure constant) defined by

. 2B
sin 2 =
VA=) +4B?
m20+m20
— sin2p (u)
mi, —m
HY HJ
A-C
cos2a =

VA=) +4B?
TrLzo—TrL2
= —cos2f (;137;)
mse — Mo
Hl H2
2

From the mathematical identities sin 2a = 2sin a cos o and cos2a = cos
easily obtains the second order equation

a — sin’ «, one

2}2—|-2C0t(20é)$—1 = 0,

where ¥ = tan «. This equation generally has two distinct solutions. However, earlier we
have chosen vy,v; > 0 or equivalently 0 < 8 < 7, something which according to ref. 53
implies that —Z < o < 0. With this constraint in mind, one can uniquely solve for x, and
the result is (remember that B < 0)

12Here vy and vy correspond to the eigenvalues mlzqD and mlzqD respectively.
1 2

43



and by inversion (and some algebra)

(A= C)+ /(A= C) +4B?
2B '
By comparing eqs. (3.38) and (3.39) with eq. (3.37), we see that the second component of

v1 (v2) can up to a sign be identified with tan « (cot ). The mixing angle, a, was defined
in order to obtain this.

(3.39)

cota =

Thus we choose Ny = cos a and Ny = —sin « in order to obtain an orthonormal eigenvector
set, and the mass-square matrix of the real neutral sector takes on the form
cosa —sina M0 0 cosar —sina \
Mgz(. ) B ( ) : (3.40)
sina  CoS 0 mip sina  Ccos«
2

The corresponding mass terms of the Lagrangian now become

h
2 1
(a h7)MO(h7)
B hicosa+ hrsina 4 m,?q? 0 hicosa + hrsina (3.41)
- —hysina + hrcosa 0 quo —hysina+ hrcosa |7 '
When we now proceed by identifying the physical Higgs states HY and HJ, we have to be

careful. The reason is that these states, as any physical states, have to have zero vacuum
expectation values. Hence we make the following identifications

Hy + + v si h + hrsi
— f vycosa+ vgsina = cos av sin a,
Vol 2 1 7
Hy inao+ hysina 4 h
—= —vsina +vycosa0 = —hysina cos a,
Vo 2 1 7
or equivalently
HY = V2 [ (Re H — vl) cos a + (Re H — vz) sin oz] ) (3.42)
HY = V2 [— (Re H — vl) sin av + (ReHQ2 — vz) cos oz] . (3.43)

This concludes this section.

3.2.4 Conclusion and Comments.

In the three previous subsections the physical content of the Higgs sector of the MSSM was
obtained. It is the charged Higgs bosons (), the neutral Higgs bosons'® (H?, 7 =1,2,3)
and finally the charged (G*) and neutral Goldstone bosons (G°).

13Some authors use the notation H", h® and A" instead of our HY, HY and HJ.
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The new fields in terms of the “old” are given in eqs. (3.31), (3.32), (3.33), (3.34), (3.42) and
(3.43). However, in order to give the Lagrangian in terms of the physical fields, we have to
invert the above relations. The results, obtained by straightforward calculations, are

o - v1-|-%[chosoz—Hgsinoz—l—ngsinﬂ_|_igocosm o

YT\ Hosin B+ G cos B , .
H* cos 3 — Gtsin 3

= (vz+%[H?sinoz+H§cosa+@'chosg—z‘GOsinm)- (3.45)

By inserting these expressions into the Lagrangian (2.64) the interactions (and Feynman
rules) of the physical Higgs bosons can be obtained.

From the formulae for the Higgs-masses obtained earlier, eqs. (3.28), (3.35) and (3.36), it
is interesting to note that in the limit myo — oo (fixed tan 3), H*, HY (and HY?) decouple

from the theory, and thus the Higgs-sector contains only HY. In this limit, it is possible to
show that HY is identical to the Higgs of the (minimal) Standard Model.

It should be noticed that the Higgs-masses obtained in the previous subsections are tree-level
formulae. They fulfil the following relations

mp+ Z MW7
mpy < mz < mypp,
mp? > mpyyg.

Since my < my (at tree-level) it is believed, due to the interaction picture of HY, that HY
could be produced and hopefully detected at LEP. No Higgs has ever been seen and this
may seem like a problem. Thus it came like a relief to many physicists when it recently was
reported [52] (see subsect. 3.1.1) that the MSSM Higgses could get radiative corrections as
large as O (100) GeV. This at once may push the mass of Hj far above that of the Z-boson
(and outside the LEP 1 discovery range). These large radiative corrections also have the
implications [54], due to the unsuccessful Higgs searches at LEP 1, that'*

tanfg > 1, (3.46)
in the context of the MSSM.

3.3 The W-, Z- and Lepton Mass.

In this section we will give an illustrative demonstration (and a control for the sceptic one)
of the fact that our gauge symmetry breaking scheme is capable of “producing” masses of
the W- and Z-bosons and the (charged) leptons.

As for the SM case, we will make use of the gauge freedom of the theory and transform to
the unitary gauge. This consists of setting the Goldstone fields of eqgs. (3.44) and (3.45) to
zero, but it will have no practical implication for our discussion.

141t is usual to let tan # varies in the range 1 < tan § < 50.
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3.3.1 The W- and Z-Mass.

From the Lagrangian (2.64) (after symmetry breaking) we pick the following terms

(D*v) (D,vy) + mv2 (D VQ)
t i
— 2COS€W 2CQ§€W le“
zg leV_ % leVﬂ_
7 i 7
n Tg UQVV-I_M % UQW:—
2COS€W UQZM - 2cosg€w U2Z“
= L (vl + v2) AN
4 cos? Oy
+ ﬁ (v2 + v2) WHEW - + ﬁ (v2 + v2) W= HFWT,
4 1 2 M 4 1 2 M
T T
Wherevlz(vl O) andv2:(0 1)2) .
Hence the 7Z- and W-mass can be identified as
g
m%v = 5 (vf + v%) , (3.47)
m? = l g* (v2 —|—v2) _ l(gz _I_g/2) (v2 —|—v2) (3.48)
7z 2 COSQ 0W 1 2 2 1 2 2

which is consistent with the results from the SM.

Note that with the above results v{ 4 v} is fixed by the W-mass.

3.3.2 The Lepton Mass.

Now the lepton mass will be paid attention. The piece fe¥ RUH{ + h.c., stemming from
the Yukawa piece of the superpotential, gives raise to the lepton mass as we now will see.

With H, given by eq. (3.44), fe¥ RL'H! 4 h.c. contains the following terms

—fRL*vy +he. = —foy (Inly + ILlR)
= —fu (IPL1+1Pgl)
= —fv1 Zl

Hence, we can make the identification
mp = fvlv

and as in the SM, we notice that the lepton mass is undetermined by the theory.
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For later use we observe that the Yukawa coupling f can be written as

my gmy
= - = I 3.49
/ vy V2my cos I¢] ( )

3.4 The Physical Slepton States.

The Lagrangian (2.64) contains off-diagonal mass terms for the sleptons in the basis (I, [r).
So, also here we have to perform a diagonalizing procedure to obtain the physical mass
eigenstates, and hence we have

mes = —pfoy [n — pfog By — [0} (N + [lg)

2 18, — m2 Thin

- (1) mi + ffvf pfes IL
b pfve mp A+ ol J\ g )

By diagonalizing, one obtains the mass eigenstates (in the usual way)

l~1 = ZNLCOS@—I- ZNRsine,

ZNQ = ZNLsine—lNRcos@,
with!s
tan 20 — 2pfog _ 2pmytan 8
- (mi-mp)  (mi-mp)

and masses respectively given by

1
Mig, = [oits [(m% +m}) & V(m3 —m3)? + 42 20 ]
2 1 2 2 2 212 2,2 2
= m; —|—§ (mL—I—mR):I:\/(mL—mR) + 4p?mitan® g | . (3.50)

Unfortunately, there do not exist much information about the parameters contained in the
slepton mass matrix. All the same, we will assume maximal mixing, i.e. § = x/4 or

m; = my = m’. (3.51)

A motivation for this choice can be taken from supersymmetric QED where this choice is
made in order to keep parity unbroken.

5Notice from eqs. (3.20) and (3.49) that fvs = fv; 22 = my tan G.

V1
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Hence

- Ip+1
L= L\%R, (3.52)
. I —1
L = & (3.53)

and

Mi217l~2 = m*+m] £ || m;tan 3. (3.54)

This concludes this section.

3.5 Chargino and Neutralino Mixing.

The gaugino-higgsino sector of the theory also contains off-diagonal mass terms, as easily
seen from the Lagrangian (2.64). To obtain mass-eigenstates the now familiar diagonaliza-
tion procedure has to be performed, and the resulting mass-eigenstates are called charginos,
¥, and neutralinos, Y°. The discussion of these states will be the aim of the present section.

3.5.1 Chargino Mixing.

Charginos X (i = 1,2), which arise due to mixing of Winos, W#*, and charged Higgsinos,
H#, are four component Dirac spinors. Since there in principle are two independent mixings,
ie. (W‘, [:]_) and (W"’, f{"'), we will need two unitary matrices in order to diagonalize the
resulting mass-matrix [55].

From the Lagrangian (2.64) we pick the terms

LU = —gvn ﬁ/PRﬁ — guy [:ii’PLW — gvy ITIPRW — gvy ﬁ/PLH
Vo HH + My W,
which in two-component form reads
LT = g [01@/)12;11)\+ + vg)\_g/)}%] +p oh by, — M AT + hee. (3.55)

By introducing the notation

L —m) __(—i)\—)
77Z) - ( ¢}'J2 9 77Z) - ¢%’{1 9

and



eq. (3.55) takes on the form

Lrs = % (v5) Y0t 4 he.
Here
YE = ( )0( )gT ) : (3.56)
with
A ( —ﬂﬂi\fv cos /3 _\/EWLW " ) ' (3.57)
Now, two-component mass-eigenstates can be defined by (i,7 = 1,2)
xFo= VZ']‘L/J;', (3.58)
xi = Uydy, (3.59)
where U and V are unitary matrices, chosen in such a way that
U XVt = M3 (3.60)

Here M% is the chargino mass-matrix. Since we have assumed CP-invariance of our theory,
this in particular holds for the chargino sector. Thus the chargino-masses will be real and
non-negative'®. Furthermore, the two-component spinors of eqs. (3.58) and (3.59) can be

arranged in (four-component) Dirac-spinors as follows'":

+
- (XZ ) i=1,2. (3.61)

Xi

The Lagrangian (2.64) is given in terms of the non mass-eigenstates W and H, because
it leads to simpler expressions for the interaction terms. In converting to the (physical)

16Tt is possible to show that the masses read

M2 = A+VB,
MZ = A-VB,
where
A = %(M2+u2)+mév,
B o= L0 ) mcos? (29) iy (M7 4 4 4 20 in (29)).

In what follows, we will use the abbreviation y = ¥*. Hence ¢ = (Y1) = Y~ is a negatively charged
chargino.

e
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charginos, the following relations are useful

P =

PrWW =

PrH =
Prl =

PLVixG, (3.62)
PrUnx:, (3.63)
PLVIx:, (3.64)
PrUiY;. (3.65)

Here, repeated indices are summed from 1 to 2, and, as usual, P;, and Pg are (projection)

operators projecting out the top two and bottom two components of a Dirac-spinor. These
relations are easy to prove with eqs. (3.58), (3.59), (3.61) and the unitarity of the matrices
U and V. We will now demonstrate it for eq. (3.62).

Proof : With eq. (2.46), the left-hand side of eq. (3.62) reads

&W=&(ik

_Z'A-I-

)-(+)

(3.66)

By pre-multiplying eq. (3.58) with Vi3 (¢,k = 1,2), and using the unitarity of V, we

obtain

Viexd = ViVuh = ovf = of.

—iAt + . F . -
(5)- () () -mose

and by comparing this result with eq. (3.66) the proof of eq. (3.62) is competed.

Hence

In the same way the following relations for the charge-conjugated fields are obtained

PLUAXS, (3.67)
PrViax;, (3.68)
PLUSXS, (3.69)
PrViax;. (3.70)

Observe that by hermitian conjugation, two corresponding sets of equations, like for instance

WPR = ‘/2'1;(2' Pr, can be obtained.

By this observation we conclude this subsection, and instead consider neutralino mixing.



3.5.2 Neutralino Mixing.
Neutralinos (y?,¢ = 1,...,4) are Majorana-spinors arising due to mixing of photino, zino
and neutral higgsinos.

The appropriate mass-terms are

E;}’LO(ISS

g = ~ = ~ W=~ W= o~
_m [{Ul ZPRHI —UQHQPRZ} —|—hC] — §H1H2 — §H2H1

1 - . .
and in two-component form they read

mass Z-g 1 2 _ 1 2
LE* = Tcostm {01 Az¥p, — v2 )\21/);12} 1, i,

1 1 1
—5 A)\A)\A—§Mz)\2)\z—§(M2—MA)tan2(9W)\A)\2. (371)

In the basis
. . T
W = (=i —idz ol vh, ) (3.72)

eq. (3.71) can be written in the form

mass 1 T
£Ee = 3 (¢0) Yo© + h.c., (3.73)
where YV reads
M; %(MZ—MA)taHZGW 0 0
vOo _ %(MZ—MA)taHZGW M —mgcos B mgsin 3
- 0 —my cos 3 0 —

0 my sin 3 — 0

(3.74)

Note that Y° is symmetric, something which has to do with the Majorana nature of the
neutralinos. In consequence, only one unitary matrix N is required in order to diagonalize

YO
N*YO°NT = M. (3.75)

Here M is the diagonal neutralino mass matrix'®.

As in the previous subsection we define two-component mass-eigenstates by

X? = N2]¢?7 Za]:17747 (376)

18 Also here the matrix N may be chosen in such a way that the elements of M, are real and non-negative.
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but in this case we arrange them in (four-component) Majorana spinors defined by

et
X o= (Xa), i=1,....4 (3.77)

The relations corresponding to eqs. (3.62)—(3.65) read

PLA = PLN’;S(?v

K3

PrA = PrNax?,
PLZ = PN,
PrZ = PrNuy!
Pull; = Py N7 Y, j=1,2,

PRIN{]‘ = Pr N;j1aX5,

3.78
3.79
3.80
3.81
3.82

(
(
(
(
(
(3.83

)
)
)
)
)
)

and they are obtained in the same fashion. Here repeated indices are assumed to be summed
from 1 to 4.

3.6 Concluding Remarks.

In the previous chapter the full four-component Lagrangian for our supersymmetric elec-
troweak theory was established. Furthermore, we in this chapter introduced the physical
states and described the gauge symmetry breaking which gives masses to the gauge bosons
and the charged leptons.

With these elements at hand, one can in principle calculate any process contained within
this minimal electro-weak theory.
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Appendix A

Notation and Conventions.

A.1 Relativistic Notation.

In this report we will adopt standard relativistic units, i.e.
h=c=1. (A.1)
A general contravariant and covariant four-vector will be denoted by

At = (A% AL A A%) = (A% A)
Au (AO;ADA%AB) = (A07_A) ‘

The compact “Feynman slash” notation

4 =9"A,, (A.3)
will be used. The metric tensor, ¢"¥, which connects A* and A, is defined by

g = diag(l,—1,-1,—1). (A4)

Moreover, we will use the (relativistic) summation convention which states that repeated
Greek indices, u, v, p, o, 7, are summed from 0 to 3 and latin indices run from 1 to 3 unless
specifically indicated to the contrary.

The Minkowski product (the four-product) will be denoted by AB and defined as

AB = A"B, = A°B° - AB (A.5)
Practical notation for the four-gradients, 9* and 9, will be used
0 0
o = —=(—; -V A6
e = (=7 (A6)
0 0
0, = o (a, V). (A7)
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The totally antisymmetric Levi-Civita tensors in three and four dimensions are respectively

defined by

+1 , for even permutations of 123
Eijk = —1 , for odd permutations (A.8)
0 . otherwise,
+1 , for even permutations of 0123
Epvps = —1 , for odd permutations (A.9)
0 . otherwise,
where
Eijk = €ijk 5 (AlO)
Euvps = —€EMP7 . (A.11)

A.2 Pauli Matrices.

The well known Pauli matrices are defined by

0 1 0 —2 1 0
ol = , ot= ' e \ (A.12)
10 v 0 0 —1

and satisfy the commutator relation
(0!, 0] = 2ie*s", i, i k=1,2,3.

From this definition it is evident that

(o) = o, i=1,2,3, (A.13)
(e = 1, (A.14)
Tr(c') = 0. (A.15)

For later use, we also introduce!

o’ = ((1) (1)) (A.16)

and a useful arrangement of these matrices is

o) = (0% 0 0% o).

!Note that different signs are used in the literature for the definition of this quantity.
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The index structure of the o-matrices is given by
ot = [oh.] (A.17)
We now introduce some “Pauli related” matrices defined by

FH do = gt ad _ 5d65050g67 (A18)

where the “metrics” ¢ and ¢ have been used. By direct computations one can establish the
following relations

o = o° (A.19)
g = —o i=1,2,3. (A.20)

Moreover, the following relations are true

ot = 25060 (A.21)

Tr(ota”) = 2¢" (A.22)

(c'a” +o'a") ) = 2¢"60 (A.23)
(cho” + 6”0“)% = 29“”5% (A.24)
(ctc”o? + ofavc") = 2(g"o’ + g"fot — g o) (A.25)
(cho¥e’ +a"0"c") = 2(g"6" 4+ g""c" — g""5") (A.26)
Tr(c"c"c’a”) = 2(¢"¢" + ¢"¢"" — g""g"" — ic""7). (A.27)

Most of the above relations are easily proved by direct computations. Besides, Miiller-
Kirsten and Wiedemann [33, subsec. 1.3.5], have proved most of them, and in particular
eq. (A.27) which is the most difficult one.

Anti-symmetric matrices *” and *” are defined by
(ctc” —o"c"), (A.28)
(cto” —a"ch). (A.29)

By utilizing the index structure of the o-matrices, it is easily seen that o*” and #*” must

have the index structure o = [(6*) ] and " = [("*)";]. In fact are " and ** the

generators of SL(2, ) in the spinor representations (1,0) and (0, ) respectively. The proofs

together with the establishment of the below formulae can be found in ref. 33:
ot = g (A.30)

1
= ey, (A.31)
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G — _Zguwcr&pm (A.32)
Tr(c™) = Tr(E™) = 0 (A.33)
: .
Tr(e*o™) = S(g"g" —g"7g") + 5, (A.34)
1 .
Ir(e™e”) = (99" = 9"9") - %5“”0- (A.35)

A.3 Dirac Matrices.

The Dirac y-matices are defined by the anticommutation (Clifford) relations
{7} = 2™ (A.36)

From the four y-matrices above, it is possible to define a “fifth v-matrix” by

7 =" =iy (A.37)

It possesses the following properties which follows easily from the definitions (A.36) and
(A.37)

", =0, (A.38)
() = 1. (A.39)

We will now state three explicit representations of the ~-matrices, namely the so-called
Dirac representation, the Majorana representation, and finally the Chiral representation.

A.3.1 Representations

The lowest non-trivial representation of these matrices is of dimension four. and we will
concentrate on this represntation. From now on, we will assume that a four dimensional
representation is used.

The Dirac Representation or Canonical Basis.

In this particular representation the y-matrices read

N ((1) _(1)) (A.40)

. 0 o
4= ( o7 ) i =1,2,3, (A.A1)



0 o°
L A.42
7= (0 ) (A2

where 1 denotes the 2 x 2 identity matrix and ¢ and " are the Pauli matrices defined in
the previous section.

The Majorana Representation.

In this representation all v-matricrs are pure imaginary and have the explicit form:

NI (_2 “;) (A.43)

&
= (Mg mg) (A.44)
2 = (_02 _03)7 (A.45)
P o= (—m; w?) (A.46)

and finally

V= (”; 2) (AAT)

The Chiral representation or Weyl Basis.

This basis is of particular interest to persons doing SUSY. In this representation the ~-
matrices take on the explicite form

,yu:( 0 ““)7 (A.48)

ot 0

—1 0
5 . A .49
§ (01) (A.19)

A.4 Spinor Relations.

In two-component notation we have the anti-symmetric e-metric. The tensor oby the fol-
lowing relations, which are proven by stright forward calculations

e ey = 8% 8% — 6% 87, (A.50)
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cap e = 6080 =608, (A.51)

e e, = 8%, (A.52)
€ap e” = 5¢ﬁ- (A.53)

We start by postulating that the spinor components are Grassmann numbers, i.e.

(arths) = (87, 67 = [, 07} =0
{SCMSCB} = {)Zd,f(ﬁ} = {Xd,)%ﬁ} -0 }7 (A.b4)

and also anti-commute with other Grassmann numbers (e.g. fermion fields, spinor charges
etc.).

With this postulate an expression like ¢* Y, = 9x1 — 11 X2 do not vanish?, and in particular

e L
VXt = —X"a } (4.55)

Because of the signs in eq. (4.55), it is not well-defined what we mean by 1 or 1>y. To tackle
this problem, we introduce the summation convention that states that suppressed undotted
spinor indices are summed from upper left to downer right, while suppressed dotted indices
are summed from lower left to upper right. In particular this means, for instance, that

;/jX = ;E)axc.y (A.56)
Y = Pax” | (A.DT)
Yoty = Yol N (A.58)
etc.

We are now in position to establish some useful relations involving spinors which will fre-
quently be use in calculations.

Let ¢, 6 and x be two-comonent (Weyl) spinors. Then the following relations hold:

g 057

[}

. 0% 0570 = 00 %(%ﬁg“” —1 (o")
potax = Y[ =200 +g" ],

2This observation can be taken as a motivation of the above postulate.

vx = XY, (A.59)
X = XY, (A.60)
()" = X, (A.61)
voty = —xo', (A.62)
(o)’ = xo™y, (A.63)
oty = —xo"y, (A.64)
(A.65)

(A.66)
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pototy = [ =26 +¢" ]y,

1
0°0° = —§5a599,
0.0, = Lo 00
aVp = 9 af 9
L 1 .. __
0°9° = §5a599,
_ 1 __
005 = —5es00

(A.67)
(A.68)

(A.69)
(A.70)

(A.71)

The final results are only stated here. Most of the explicite proofs are given in detail in in

ref. 33.

A.4.1 Fierz Rearrangemant Formulae.

Some other relations have proven useful. They go under the name of Fierz Rearrangement

formulae and read:

00 O = —5 00 by,

0 Ox = —5 00 ¥

06 Xa = 00N P

Py = Lty ol
10" X1 P20 X2 = %QW 12 X1X25

N —%09 o,

0x 05" = —% 00 xa'ip,

botFy = yoUEHD.

(A.72)
(A.73)
(A.74)
(A.75)
(A.76)
(A.77)

(A.78)
(A.79)

Neither these formulae we will prove explicitly. The proofs can be found from the same

source as above.

A.5 Four Component notation.

A.5.1 The Projections Operators.

We start by defining the projection operators, well known from SM,
1

PL = 5(1_75)7
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Pr o= =(1+7s). (A.81)

DN | —

With the properties of the v-matrices from sect. A.3, it is straightforward to establish the
relations

PL+Pr = 1, (A.82)
PP, = Py, (A.83)
PLPr = PrP, = 0, (A.84)

Pl = P, (A.85)
Pyt = 4"Pp, (A.86)

and corresponding equations for Pg.

A.5.2 Connection Between the Two- and Four-Component Spinors.

Let us introduce the two two-component Weyl spinors &, and 7¢

{ € F,
TR

The vector-spaces F' and F* are inequivalent representation spaces of SL(2,C). Now we
construct the direct sum space

D = Fagl™ (A.87)
This space is a four-dimensional representation space of SL(2,C). The elements of D, are
just the well-known four-component Dirac-spinors.
Thus a Dirac-spinor, ¥, can be constructed from these Weyl spinors according to

v o= (53 ) (A.88)

n

Strictly speaking this is a Dirac-spinor in the Weyl-representation. Thus we see that if we
work in the Weyl representation (subsect. A.3.1) we have a direct relation between two-
and four-component spinors. Throughout this subsection we will thus assume the Weyl-
representation.

A Majorana spinor, A, is a (four-component) Dirac-spinor with the additional condition

A= x = oAl (A.89)
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Here C is the charge conjugation matrix® while A means, as usual, the the Dirac adjoint
spinor A = Ay, (independent of represnetation). In the Dirac-represntation C reads Cp =
i7*4, and in the Weyl-representation (with the correct index structure) [33, p. 135]

c 20y B
Cw = ( (i0°o%), 0. ) . (A.90)
B
Thus it is possible to show that [33, p. 140]
v o= Ul = ( g ) , (A.91)
i.e. the charge conjugation (in the Weyl representation) flips £ and 7.

Hence, we may conclude that a Majorana-spinor,\, defined in eq. (A.89), can be written

y= &), (A.92)
£
Furthermore, in the Weyl representation we have
10
PL - ( 0 0 ) Y
00
Fr = ( 0 1 ) ’

\IIL:PL\Il:(

Up = PpU = (a)
0

The Dirac-adjoint spinor of W, is

Vo= Uty = (97 &), (A.93)

and thus

as can be showed by straightforward calculations.

Useful Relations Between Two- and Four-Component Spinors.

Now we shall establish some relations, making the transitions between two- and four-
component spinors more explicite and easy later on. Let the Dirac- and Majorana-spinor,

U(z) and A(z), be defined as in eqs. (A.88) and (A.92).

3For more information on this matrix consider e.g. ref. 56.
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Hence we have (in the Weyl representation):

U0,
Uy,
U175 Wy

Uyt Wy
\1117“8M\112

U, PV,

U, PrU,
\T/l’y“PL\IIQ
Uy Pry
\T/l’y“PLaM\Ilz
U v* Pr0, Vs

més + i,
§15"E; — 720",
—més + b,
—&0"8y — 120",

Mot duna + £6"0,6

7725Mau771 + gl5uau€2 - au (7725#771) )

méz,

€172,

&10"é,

—N20"11,

5:15“@527

mo"duna,

120" Oy — 9y (720" -

A.6 Grassmann Variables.

A.94
A.95
A.96
A97

o~ o~ =
' e’ e e

(A.98
(A.99
A.100
A.101
A.102
A.103

e~ o~

(A.104)

In this appendix a differentiation and integration calculus for Grassmann variables will be

established. The obtained results will be extensively used in the text.

A.6.1 Differentiation with respect to Grassmann Variables.

In supersymmetry the Grassmann variables, which parametrize superspace, are important.

Because of their anticommuting properties, they can not be continuos varying variables.
However, they have to be discrete objects. Hence, defining differentiation with respect to

Grassmann variables in the normal sense, as the ratio of two infinitesimal increments, has

no meaning. However, formally we can define differentiation, following common practice, as

00,

= &
805 o ?
90 i
go7 — %"
80:0'“ — 8
P
96" .
008 = %
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The e-metric can be used to raise and lower indices of derivatives according to*

gaa% _ _aia (A.109)

Wa% — _aia (A.110)
and

gaff% _ _aid (A.111)

%% _ _agd (A.112)

Proof : Let the eq. (A4.109) operates (from the left) on 67:

o . 0

af_~_ g — _
YT EYR

gv.

Then by comparing each side of this equation we have

0
af _~ gy af ¢ v
€ 8050 = &%,
= gCW,
0 0
— g = _F 0
0., TG
= "7 §%
_e
= &9

Hence we can conclude eq. (A.109) is fulfilled. The other relations in eqgs. (A.110)—
(A.112) are showed in a similar fashion.

Due to the anticommuting character of § and #, we shall demand that

0 0 0 0 0 0
{va} = {WW} = {wvw} =0 (A.113)
{a%,eﬁ} = 5%, (A.114)
{agd,eff} — &, (A.115)

4Take particular notice in the sign on the right-hand side of these equations.

67



and, since # and  are concidered to be independent,

9 0
L _ gL _
{aea’e }_{aed’e }_o. (A.116)

These equations yield directly that

00 _ a0 _
204 90> 7

and also an “unusual” product rule (with a minus sign) like e.g.

B B B i i
a7 (002) = (W 95) 0, = O 5= 0 = 60, — 06", (A.117)

With the conventions for the differential operators established so far, the following relations
are true®

0

oga 00 = 20, (A.118)
O 95 = _2a, (A.119)
D0 B w ‘

g 0

3. 905 00 = 4, (A.120)

o 0

3% 50, 00 = 4. (A.121)

Proof : We start by proving eqs. (A.118) and (A.120)

J J
e = 6°0
d 6° ag- " 7’
= 6a50@ — Oﬁ{f@,}/éa’y
= 0,+0,6)
= 2 Oom
and
g 0 g 0
——— ) = ——— 09
6., 06° 90, 00> 7
When spinor indices are suppressed on the differentiation symbols, we will follow the convention
990 _ 9 90
9000 00, 00%
00 _ 0 0
0000 00400,
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o [ 0
_ I
- aay<awz9 %)

0
=290

26, " °
= 2 8

= 4.

Eqgs. (A.119) and (A.121) are proven in a similar way.

A.6.2 The Berezin Integral.

In ordinary field theories, a translation invariant action is constructed (assuming surface
terms to vanish), by integrating a Lagrangian density £(z) over d*z. In a similar fashion,
SUSY invariant actions in superspace can be obtained by an integration over the whole of
superspace.

The aim of this section will be to define what we understand by integration with respect to
Grassmann variables, i.e. to define the so-called Berezin integral [57].

We will start by considering the simplest situation with only one Grassmann variable (.
Since (" = 0, n > 2, due to the anticommuting property of (, any function of ¢, f((), has
always the form

FQ) = F0) +¢fO. (A.122)

Hence it is sufficient to define [d( and [d( ( in order tolet [d( f(() be well-defined. Following
F.A. Berezin [57] we define

/ﬁc ~ 0, (A.123)
/dcc - 1. (A.124)

Thus
Jac 1€y = [dc (50 +¢s®) = s, (A.125)

and formally differentiation and integration are the same, i.e.

0

Jacro) = 5z 110 (A.126)

Two important properties, follow as a consequence of the definitions (A.123), (A.124) and
use of eq. (A.122), should be noted

Jacsc+w) = fac (<), (A127)
JAC@ O +BhC) = a fdC f(QO)+b [dCh(C),  abeC,  (A128)
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i.e. translation invariance and complex linearity respectively.

Superspace is not parametrized in terms of only one Grassmann variable. However, it
“contains” the Grassmann algebras Gy = {#',0*} and Gy = {6',6?}. To define integration
on these algebras, we have to generalize the above results. By demanding

(d0,,d05) = {d6,,05) =0, (A.129)
{d0s.d0;} ={d0:,0,} =0, (A.130)
and using the definitions (A.123) and (A.124) we have
/d01d02 — 0, (A.131)
/d01d02 0, = /d01d02 0y = 0, (A.132)
/d01d02 0.0, = —1. (A.133)

Similar formulae hold for the algebra (5. Now the integral of any function on (5 and/or
(i can be obtained by Taylor expansion and linearity.

We now define “volume elements” of the anti-commuting part of superspace

20 = —i d0* do, = —%ﬁ o> do”, (A.134)
PO = —dd,dgt = S g, dp. (A.135)

o4 T Ty TR '
d*0 = d*0d*0. (A.136)

With these definitions the following relations are true

/d20 - /d29:0, (A.137)
/d20 = /dQééd — 0, (A.138)
/d20 00 = 1, (A.139)
/d2999 = 1, (A.140)
/d“@ 0006 = 1. (A.141)

Proof : Eq. (A.137) and (A.138) follow immediately from eq. (A.131) and (A.132)
and the corresponding equations for G.

By using the definition (A.133), (A.134) and the fact that 00 = ¢,56°¢° = —26'6?,
we have

/d20 69 — —%j/doadoﬁ (=2 6" 6?)
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= %/d@ldoz o' 02+%/d02d01 9" 92
- 512/d01d02 e
— 17

since .4 is antisymmetric and €15 = —1. Eq. (4.140) is proved in the same way. With
eqs. (A.139) and (A.140) established, it is rather straightforward to prove eq. (A.141)

/d40 0000 — /d20 420 66 09

= /d20 00
1.

With the formulae obtained so far, the integral [d*0 ®(z,0,0) of a general superfield can be
established. Hence we have

/d“@ O(z,0,0) = /d4 ) 0% () + B2 (2) + 00 m(z) + 00 n(z)
+000 Vu() + 00 053%(2) + 00 0o () + 00 00 d(x))
= d(z). (A.142)

Thus, by integration with respect to Grassmann supercoordinates, the 66 0f-component
of any integrand is always outprodjected. This fact, as we will see, is rather useful when
supersymmetric Lagrangians are being constructed.

A.6.3 Delta Functions on Grassmann Algebras.

Delta functions on superspace simplify the constructions of SUSY-invariant actions. Let
such delta functions on (G and (5, both two and four dimensional, be defined implicitly by

/d20 F0)8%0) = f(0),  f(0) € Gy, (A.143)
/d29g(§)52(9) = g(0),  g(0) € G, (A.144)

and
/d40h 0,0)6%0,0) = h(0,0),  h(0,0) € Gy x Ga. (A.145)

This implies that

§%(0) = 09, (A.146)
§*(0) = 00, (A.147)

and
540,0) = 6%(0)6%0) = 0000, (A.148)

as we now shall show.
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Proof: By using the anticommuting properties of the elements of G and eq. (A.139)
we have

/d20 f(0)60 = /d2 )+ 67D + 60 f(2))
= /d20 09 £(0)
= f(0).

Hence, with the identification 6%(0) = 66, eq. (A.143) is fulfilled, something which
shows that our identification is correct.

In a similar way eq. (A.147) is seen to be consistent with eq. (A.144).

For the same reason as above we have

o on oh -
4 4 _ 4 @ R
/doh(,o,o)(s (0,0) = /d ( (0,0)+ 6" “80d+"') 00 06

= £(0,0). (A.149)

Thus, the identification made in eq. (A.148) is correct.
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Appendix B

The Two-Component Form of the
Off-Shell Lagrangian Lqirgy.

In this appendix the expansion of Ly sy, in the two-component formalism, will be performed
in detail.

However, before we address this problem, some general calculations will be performed. To
be more specific, we will in sect. B.1 calculate the component form of the non-Abelian
fieldstrength W,. In sect. B.2 this expansion will be used in obtaining the component
form of the kinetic term of vectorsuperfields. Finally, in sect. B.3, which concludes our
general calculations of this appendix, we derive the expansion of the matter Lagrangian of
a G x U(1)- gauge theory, where G is some non-Abelian gauge group.

B.1 The Non-Abelian Fieldstrength.

In this section we will calculate the component expansion of the non-Abelian fieldstrengths,

as defined! by

1 _ _
W, = _@DDe—WDae?gV, (B.1)
_ 1 _

W, = —@DDe‘ngDdeZgV. (B.2)

We start by W, and for simplicity we will work in the WZ-gauge. By hermitian conjugation
the corresponding expression for W, is obtained. It is practical to work in the basis (y =
x+1006,0,0), since then the SUSY covariant derivatives take on a somewhat simpler form

Do(y,0,0) = i+2wg-éd 0

500 g (B.3)

!Here we have made the substitution ¢ — 2g.
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Hence (ImA(z) = 0)?2
Ve(2,0,0) = V(y—ibc0,0,0)
000V (y) + 100 OX"(y) — i 00 OX"(y)
+%09 00 | D"(y) +i0"Vi(y) |, (B.5)

where eq. (A.76) has been used. From now on, the y-dependence of the component fields
will be understood and suppressed.

Our program will be to first calculate e=29Y D, e??" and then the total (non-Abelian) field

strength. In these calculations, expressions for D, V¢, D, (V“Vb), and finally V*D,V?* are
useful. Hence we start by determine these expressions.

Using the results from appendix A.6, and in particular eqs. (A.106) and (A.118), yields

0 d Cuoaa O
DV = (aeammade ay“)

_ _ o 1 e
X (—00“0 Vi 000X 000X+ 500 00 [ D" 40"V D

= = Ol OV 200, 0N =i 00 X+ 0, 00 | D" +i 0"V |
—2i 0%.0% 0510 D,V —2 04,09 00 8, 9,00
= —oh 0V + 200, 00 —i 00 X!
+0, 00 | D*+i 0"V |
Y] 1 v . v a
— 2 00 [§5aﬁg " —1 (o “)aﬁ] 05 9,V
+00 00 %00t 9,8

Here eq. (A.65) has been used. By utilizing the antisymmetry of o*” (cf. sect. A.3) and
eq. (A.68) (together with a redefinition for the indices g and v) one obtains

DV = —oh 0%V 4200, 0N — i 00 X,
+00 { 0,D" — (o) 005 [0,V =0, V0]
+ 00 00 0", 9,2 . (B.6)

When we work in the basis (y, 0, é) the notation 9, will mean % if nothing else 1s said to indicate

otherwise.
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With eqs. (A.76) and (A.118) we have
D. (v = b, (Le000 v
() = o (Sean vy
= 000, V' V). (B.7)

Note that only the first term of D, contributes to D, (V“Vb) due to the anticommuting
properties of the superspace parameters 6.

Furthermore with eq. (A.118)
_ _ _ 1
VeDp, Vb = {—00“0 V400 0X" — 100 OX" + 3 00 00 D“}
x { =0l 09V + 21 0,0\ — i 90 X!,
+00 [0.D" — (™), 05 (9,V) = 0,V})| + 00 00 0%, 0,1}
= 000 0%, 0% VIV = 200070 0o 0N VI — i 00 OA" 67,0°V]).

For later convenience, we rewrite this expression. The first term is rewritten by eq. (A.65),
while the two next terms are rewritten as follows:

~2i00"0 0 OX° Vi = 2 00" W(gw 0, 050" Vi

—_

= 2 (=584 00) gt (%%a 00) X*" v
- _ % 09 60 ot AP Ve
and similarly
—i 00 0N 0l 05V = i 000%07 0¥, ALV
_ % 00 00 0¥, VP,
By collecting terms, eq. (B.8) reads
VEDLVY = 080 (o), 05V + % 00 0., Vv
+ % 00 00 oty | XUV - Xve) (B.8)

The reader should note that the first term of the above expression is antisymmetric under
the combined index transformation y <+ v and a < b, while the second and third terms are
symmetric and antisymmetric respectively under a < b.

Hence, by taking advantage of the fact that all powers of three (or higher) of vector super-
fields in the WZ-gauge always vanish, we have

eV DL = (1=2gT°V" +2g*T°T"VV") D, (14 297°V° +2¢*T°T"V V")
= 21D,V +2¢* 1°T" D, (V*V*) =2V D, V'], (B.9)
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We now rewrite the term in the square brackets, and with eqs. (B.7) and (B.8) we obtain
17" D, (VOVE) =2 VD,V
1T 00 | =2i ("), 0sViV) —i 00 oty (A V=2V )]

Since the terms in the square brackets are antisymmetric under the index transformation
v and a < b we have

11" D, (VOVE) =2 Ve,V
- % [, 1% 00 [—2i (o), 05V2V) — i 00 oy ( X2V =XV ) |
= [T 00 [ (") 05V V) + % 00 ot (A "V — Aty ) ]
= 1700 [ £ (o), 0sVEIVE = £ 00 ol VA (B.10)
Here we have used the antisymmetry of f*¢. With this result, eq. (B.9) becomes
eV D = 291" [— ol 00V 420 0, 0N — i 00 AL
00 { 0.0" — (o), 0, V1)
+ 00 00 o, {0,A° — gfeVINE ] (B.11)
where
Ve = 9V =0V — g fVIVE, (B.12)
is the non-Abelian, conventional fieldstength?.

Hence, the total fieldstrength becomes with eq. (A.121)

W, = —LDDe_ngD 29V
1

= g T [ (0.0 = (07 005V
4 005", (@Yw o gfabcvfj\ac)]
= T[N~ 0, D"+ (0™), 05V, — 0062 (9,03 — g fUVIN)] L (BI3)

By hermitian conjugation the component expansion for Wy is obtained, and it reads

W = 1° [_Mg — 05D+ 0, Ve, — 000k, (9,07 _gfabcvjw)]. (B.14)

& Vpy

The fieldstrengths with upper spinor indices are obtained in the usual way by applying £*”
and £%7 to the above expressions

We = "Wy, (B.15)
We = W, (B.16)

3The factor of two in front of the coupling constant was inserted in order to make this identification
possible.
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B.2 Calculation /d'0 (1/4k) Tr (W°W,) 6*(0) + h.c.
Since W, is Lie-Algebra valued one has
1 _
/d40 —Tr (WOW,) 82(0)
4k
- /d“@ — Ty (T°T") W "W 6(6)
= 1 W W2, - (B.17)
Here we have used the normalization (in the adjoint representation)
Tr(1°T") = ke (B.18)
Furthermore, eqs. (B.13), (A.69), (A.52), (A.64) and (A.50) yield
1 a o a
1 W Wa|€€
1 o cya a v a a abc I8¢
= ;¢ liNg =05 D" + (o)) 05V, — 0008, (9,07 — g [ VIN?)]

o Y Vpo

[N = 00 D% 1 (077), 0,V — 0002, (9,0 — g VN Y]

_ U a ya abcybyc 1 a ya
_ —1)\0“(8“)\ —qf VMA)+ZDD

1 v a a 1 v a a a
= 00DV + 2 (") (") e es, Vi V.

uv U po
o (DA — g fPVIN)
_ U a ya abcysbyc 1 a ya
= -3 o (A =g f VM)\)—l—ZD D
1
+ = () (0°7), (62,67 — 6%56° ) Ve, Ve, (B.19)

) wy tpo
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By rewriting the last term of eq. (B.19) with use of eqs. (A.34) and (A.34), one obtains

! v 7 o o a f/a
3 (o" )55(00 ) (5 wéﬁé _$ 655 ) veve
1 v gy o v o o a
- g ((O-M )ﬁﬁ(ap )oz - (O-M of ) )VMU‘/pCT
1
= _E (gﬂl)gl/cf ucr yp + ng,pg) Vuay‘/;;r
1 apry/a : vpoy/a {/a
T8 VAV = 16 eV Voo (B.20)

where we in the last transition have used the antisymmetry of the conventional fieldstrength.

Thus one can conclude
/d40 T (WOWL) 82(0)

_ - 1 1
_ a a abcysbyc a na aurysa
= —5)\0“(@)\ —g fVIN) o DD = SV,

7: vpo a a
— STV (B.21)

With eq. (A.62) the first term of the above equation can be rewritten as follows
Z a ya abc \¢
—y Ao (9.2 —gf YIA)

A" — gfVEIA) 5 A

DO | ==

w|~t\9|~ —

 egn (04" — gfeVEae) + %aﬂ (A2gx)
\eatD, A 4 S0 (). (B.22)
Here we have introduced the SU(2) x U(1)-covariant derivative

N a a N Y
D, = 0,+1gT"V] +1ig 5‘/;, a=1,2,3,
and when it operates on e.g. the gaugino A*, which lay in the adjoint representation of the
gauge group, 1.e.

12" = =i,
Yoai 0,

we have

DA\

(DA
(D] A

ab Yodai
= (0 +ig 1) Vi +ig =0 ) X
S (B.23)
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This yields for eq. (B.21)

a .~ 1 1
[0 e 80) = —ixorD Aaqpapa—ngv;y
i vpoysa a a—= a
= 16 VAV 4 50, (Vo).

Hence by hermitian conjugation (of eq. (B.21)), one has
/d4(9 i Ty (W Wd) 52((9) — 3 D )\ao_uj\a + l Depe — l yauvy/a
4k ¢ 2 K 4 8 wy

Z vpo a a

S 1 1
= —EAWDW + DDt VY

8

+ — TG eV v,

and by adding eqs. (B.24) and (B.25) we may conclude
1 4 o 2 ) o) £2
= /d 0 {Tr (WeW.,) 8(0) + Tr (WaWW*) 8%(6)}

cya = a 1 a Na 1 aurysa U ya = a
= —iNG DA+ 5 DD —ZV“VW+§@(A 74N |

B.3 Calculating /d'0 ¢ET629‘7+9/V’¢2.

(B.24)

(B.25)

(B.26)

In this section we will derive the component form of [d*0 qAﬁTezgv"'g/V/(/Aﬁ. Here &(:1;,(9,5)
is a chiral superfield and V(x,0,0) and V'(x,0,0) are gauge vector superfields for some

non-Abelian group G and U(1) respectively.

As usual we work in the WZ-gauge with Lie-algebra valued gauge superfields of the form

Vie,0,0) = T°V*(x,0,0),
Vi(,0,0) = Yi'(z,0,0),
and with the following component expansions for the superfields
N _ 1 __
&(x,0,0) = A(x)+1i600"00,A(x) — 1 06 66 0"0,A(x)
i B
+ V2 0p(x) + —= 00 05" D,1b(x) + 00 F(x),
V2
a,0.8) = Alx)—i 008 9, AT(x) — i 00 90 99, A ()
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(B.28)
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V2 0 (x) + %5 00 0579, (x) + 00 F'(x), (B.30)

Vo(0,0,0) = — 0020 Vo(x) +i 00 00 (x) — i 000X () + % 6006 D*(x), (B.31)
B - - I

V(. 0.0) = — 00" V() 100 0N (x) — i 00 ON(x) + 0000 D'(x).  (B32)

Furthermore, qAﬁ(:L', 0,0) will be taken to lie in a representation of the gauge group G x U(1)
described by the matrix representation T* and the hypercharge quantum number Y. Hence
qg(:zj, 0,0), and its component fields, are generally matrix-valued. As our notation indicates,
we will work in the (w8, 0)-basis, and from now on this dependence will be suppressed.

Since the two gauge super-multiplets are commuting, i.e. [V, V’] = 0, and we are working
in the WZ-gauge, we have

VIV = (14 29TV 4 262701V V)
1
% (1 ‘I’g/Yﬁ/‘l’ 5g/21/2®/2)
2
= 14 gV 42TV + %WW + 2T TV
+ 294’ YTV (B.33)

Here in the last line we have used the fact that third powers of vector superfields in the
WZ-gauge always vanish. Furtermore

A 1 __
Vvt = 5 0000 V° LV (B.34)
1 __
P = 5 0000 V"V, (B.35)
vee = Loggave wy (B.36)
2 K

and hence with eqs. (B.31), (B.32) and ( B.34)-( B.36) substituted into eq. ( B.33) one

obtains
VY = 1 o) [ 29TV 4 'YV |
+i000 | 297N + g YN | =i 000 [29T°\" + gV X']
1 -
+5 0900 [ 207D + 'Y D' 4 28> T°T" V"1V

1
—|—§g’2Y2V’“V; +29g'YT*"V 'V |. (B.37)

Postmultiplying the above expression with qg yields

¥ e A
629V+gV ¢
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= 1000 [ 29TV +g'VV] |
+i000 | 297N + g YN | =i 000 [29T°\" + gV X']
1 o
+5 0900 [ 207D + 'Y D' 4 28> T°T" V"1V
1
—|—§g’2Y2V’“V; + 29g'YT*"V* "V, ]
x [A i 009 9,A — i 09 09 99, A

V2 0 + % 00 05", + 00 F]
= A—00"0 [24T°V +g'YV]] A
+i000 29T N + g YN | A—i000] 29T\ +g'YN'] A
+ % 00 00 [ 201D + ¢'Y D' + 2> T*T"V**V}
g YV 29 YTV, | 4
+i00"0 0,A —i 000 00"0 | 29TV, + g'YV] | 9,4
- i 00 00 0"9, A+ V2 00 — V2 0020 | 29TV + gYV] | 0

V20 00 0] 29T\ + YN ] 03 + % 00 06"0,3b + 09 F.

Now we rewrite the fourth and third last term as follows:
V2000 [ 29TV + gV V] 0 = V2 [29TVE+ g YV 07050k, 0%,

1 _.
= V2 [ 29TV + gV V]| §gaﬁee ot 0%

1 _
- _ﬁea 0" | 29TV +gYV, |
V2000 0[ 29T N + 'Y N | b = —V/2i 00 07 29T\ 4+ g'Y N, ] 6%
: __
= ——— 0000 29T\ 4+ ¢V N ]
7 [ 297N+ g'Y AL T4
: __
= — 0000 29T\ + ¢’V N ]9, B.38
7 [ 29 +g YN ] (B.38)
and thus
e2g‘7+g"7’q§

= A+ V200400 F + 000 {id,A— [ 297"V +g'YV]| A}
+000{ i | 297N\ +g'YN | A
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1 a a — Z —
-7 [ 20TV + g'YV] | o + NG a“am}
—i000[2gTN" +¢'YN] A
1 -
+5 0900 {[201"D" + gV D + 28> T°T" V"1V
g YV 2 YTV | 4
1
—i 20TV +g YV 04— S 0"0,A
V20 207N + 'YX ] 0} (B.39)

Finally we can address the main purpose of this section. By premultiplying the above result
by ¢ and projecting out the 80 #0-component, equivalent to a Grassmann integration, we
obtain:

/d4(9 $T62g‘7+9"7’q§
_ 1 -
= / d*0 [AT — i 000 0,AT — 1 0000 "0, A
FVE 0+ = 000070, 00 FT]
x [A+ V2 00 + 00 F + 000 { 10,A — [ngav; +gYV! ] A }
+000{i| 297N\ +g'YN | A
1 ay/a — Z —
-5 [ 207V + g'Y V] | 5 + NG a“am}
— i 00 0[ 29T\ + g YN ] A
1 -
+5 0900 {[201"D" + gV D' + 28> T°T" V" V!

1

—|—§g’2Y2V’“VM’ +29g' YTV V! ] A
N a a 1

—i [ 21V 4 g YV | 9" A 2 0", A

V2 [ 29T\ + ¢'Y N ] ¢]}]
1
= A [QT“D“ + 5 YD 4 gt TV
%gﬂwwvg +gg' YTV V! ] A
. 1 1
AT [TV Y| A - AT,
1
V3 At [gT“)\“ + §g/Y)\/] ¥
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e . TS| 1
i 0070 000 0, At { 19,4 — 2 [gT Vit sy ] A } B
o _ 1 _
V320 900{ 2 [gT“)\“—l——g’Y)\’] A}
2 06 90
- 1 '
+2 00 00 0 { V2 [gTav; + = g’Yv;] Gl + —— a“am}
2 \/§ 66 66
+i 00 00" 9, 00|+ F'F. (B.40)
With eq. (A.76) and the following results
. . 1 o
V200000, = V2000,0:40° = ——0000 .,
¥ FL 7 ¥
{00 000,00 0 = —i00 0°0° 0", 0,0% vy = —% 00 00 100,

eq. (B.40) becomes
/d40 quengJrg'V'q;
= A [gT“D“ + %g’YD’ + g TV
—I&g’QY?V’“V; +gg'YT VY, ] A
—iat [V 4 gy | ora- L atora,a
42 At [gT“)\“ + %g’YX] y

| | 1 |
+ A A+ AT TV 4 DYV | A- 000,414

2

R T ) 1
NG [gT“)\“ + §g/Y)\/] At b [gTav; +ogYV ] &

2
. % b O — %w#aﬂ;ﬁ sy

With the following identities

@Z’Uuaﬂz’ = _axﬂbaﬂi’ + dy (?Z)UM@Z’)

= $"0,1) + 0, (Vo) .
»9,ATA = —0rA'9,A+0, (0ATA)
At9r9,A = —97A%9,A+0, (Al0"A)

the final expression for the matter Lagrangian reads
/d40 q§T62gV+g"7’q§
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_— [gT“D“ + %g’YD’ ] A+ 9 AT, A
+ A [92 T TV 4+ ig’QYQV’“V; +gg YT VY, ] A
piomat [ grve g Sgvvy | a—iat g+ v | ona
FVB AT TN gV | VG [T 4 gy ] A
+ et [gTav; + %g'YV; ] W — it O+ FTF + t.d. (B.42)

Here t.d. means a total derivative (t.d.), and it can be neglected if we like. This is so due
to the four dimensional Gauss-theorem® which implies that the total derivative does not
contribute to the action.

B.3.1 Introducing the Covariant Derivative.

Eq. (B.42) can be simplified even further if we introduce the G x U(1)-covariant derivative,
defined by

Y
DM = au ‘|‘ Z.gTaVMa —|— Zg’;V; (B43)

Here T* and Y have the same meaning as in the previous section.

With this definition one has
(D*A)' (D, A)

;
— (8“A—|—igT“V““A—|—ig’%V/“A) (aMAJrigTijAJrig’gV;A)

= 9"At9,A
AT (g 4 V) A—i AT (g1 e 4 g i) ora
+ 2 g M+95M — g M+95M
12
1 Al (fT“Tbvwvj +gg TY VOV 4 %YQV’“V;) A, (B.44)

and substituting eqs. (B.43) and (B.44) into eq. (B.42) yields
/d4(9 $T62g‘7+9"7’q§
4The four dimensional Gauss theorem states that
/ d*z F(x) = / d2sH OuF(2),
v s
where S is a 3-dimmentional surface enclosing the 4-dimensional volume V. In our case, V denotes the total

4-space, and hence S is an surface at infinity. Since the fields are assumed to vanish at infinity, the right
hand side vanish because F(x) is some function of quantum fields.
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= (DPAY (D,A) — i Dy
4ot ( gT*D* + g'%D’) A
V3 Al [gTw + g'%)\’ ] ¥ — Vi [gT“)\a + g'%)\’ A
+ FTF +t.d. (B.45)

This concludes this section.

B.4 Component Expansion of Ly .

Now we will leave the general situation, and instead consider, what is the purpose of this
thesis, the electroweak SU(2) x U(1)-theory. From chapter 1 we recall that the unbroken
theory is described by the Lagrangian

ESUSY — ELepton + EGauge + EHiggsa (B46)
where
ELepton — /d40 [[AJTGQgV-I—g/V/[AJ + ETG%JV‘I_gIVIE] 7 (B47)
1 / _
Louuge = 1/d‘*@ [ Weews ¢ W] 6(6) + hee., (B.48)

Liiggs = / 0 [ ffeV VL 4 [V i+ W ek0) + W (0)] . (B.A9)
Here the superpotential W is given by

W = Wg+ Wy
S 1 f R (B.50)

From chapter 2 we recall the component expansions of the various superfields of Lgpsy.
They are

L(z,0,0) = f/(:zj) +i 000 &LINJ(:L') — i 00 00 a“aﬂf/(:p)

+VZOLD(2) + %ﬁ 00 050, L () + 00 Fy(x), (B.51)

R(x,0,8) = R(x)+i00"0 auﬁz(x)—iee 69 9", (<)

+ V2 0RD (2) + %5 00 06"9, R (z) + 00 Fr(z), (B.52)

Hy(x,0,0) = Hy(x)+100"00,H () — i 00 00 9"0, H, (x)

FV2OHP (2) + %ﬁ 00 050, 1 (2) + 00 Fy(2), (B.53)
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and finally
N _ _ 1 __
Hg(:zj,@,@) == Hz(l’) + 1 Botd aMHQ(l') — 1 06 69 aMaMHQ(l’)

+V2 00D (2) + %ﬁ 00 050, 1\ () + 00 Fy(x). (B.54)

The various component fields are fully defined in the chapter mentioned above and the
quantum numbers are listed in table 1.1.

With the results from the previous sections of this appendix together with

Oily, 0)®;(y.0) = Aily)A;(y) + V20 [Ai(y)ei(y) + vi(y) A(y)]

+ 00 [Ai(y) Fi(y) + Fi(y)A;(y) — Li(y)v;(v)], (B.55)
and
iy, 0)0;(y,0)Pr(y,0)
= Aiy)A;(y)Ax(y)
+ V20 [0i(y) A (y) A(y) + 1 (1) Au(y) Ai(y) + Lul(y) Ai(y) A ()]
+ 00 [Fi(y)Ai(y) Ax(y) + Fi(y) Ar(y) A z'(y)+Fk y)Ai(y)Aj(y)
—i(y)i(y) Ar(y) — ¥ (y)ly) Aily) — Li(y)vi(y) As(y)],  (B.56)

it is easy to calculate the expansion of Lgysy. Note that the 6-component of eqs. (B.55)
and ( B.56) is independent of basis. We will now give the component expansions of the
different terms of eq. (B.46).

B.4.1 The Component Form of L.

With eqs. (B.45), (B.51), (B.52) and table 1.1 one has

Liopn = [ [L1070 [ 4 fre Va7 ]

= (0L)" (D,L) + (D*R)' (DuR) =i L®6*D,L®) —i RP*D,R®)
- 1 - - -
+ Lt (gT“D“ — §g’D’) L+ RY¢DR
3 1 B TN
NG (gT“)\“ _ —g/)\/) L® 3 L@ (gT“)\“ _ §g/)\/) i

+ V2 Rt¢NR® — /2 RD¢'NR
+ FIFy + FhFg +t.d. (B.57)

Here D, is the SU(2)xU(1)-covariant derivative given in complete agreement with eq. (B.43).
Furthermore 7% = 0%/2 (a = 1,...,3) and this will be understood from now on.
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B.4.2 The Component Form of Lgqy..

Lauge contains both an SU(2)- and an U(1)-piece. The SU(2)-piece can be taken directly
from eq. ( B.26), while the U(1)-piece is obtained by taking the non-Abelian limit of the
same equation. Hence we may conclude

1 , _
EGauge = 1/d40 [ Waons ‘|‘ W QW;] 52(0) —|— h.C.

= i NG (9N — gfVIN) =i N5hO,N

1 '
=3 (VI VL) S (DD DD ) (B5S)

L
2
Here V;;, and V), are the (non-SUSY) fieldstrengths for the SU(2)- and U(1)-gauge group

respectively.

B.4.3 The Component Form of Ly;,.
The expansion of the kinetic terms of H, and H, are obtained in a complete analogous way

to what we did in the subsect B.4.1.

However, in order to give the full expression for Lry;,45, the component form of the super-
potential piece has to be obtained. This is done with eqs. (B.55) and (B.56) and reads

/d40 W 8(0) = /d40 [ el + f 9L RY 6(0)

= peV [HiF 4+ P — 1P P
+ e | LR+ H{F{ R+ H{L' Fr
—HPULOIR - H{L®IR® — ROAPL | (B.59)
The corresponding expression for W1 is, of course, obtained by hermitian conjugation.

Thus the expression for Ly;,,s becomes
/:'Higgs — /d40 [f{{[e?gf/-l-g/f/lgl i f{;re?gV-I-g/V/gz i W52(é) + WT 52(0)]

= (D*H))' (D Hy) + (D" Hy)' (D, Hy)
=~ (2 ~ =~ (2 ~
i 1o, a® —i i1, 1

1 1
+ H (gT“D“ — §ng’) Hy + H] (gT“D“ + §ng') H,

1 ~ = (2 _ 1 -
+ V2 (gT“)\“ _ §g/)\/) a® i g (gT“)\“ - §g/)\/) i,
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+ V2 HY (gT“)\“ + %g’)\’) a® e i (gT“)\a +

+ B P+ FIF,

et [ i mg s m - i - |

+ e | B R+ TR + B PR+ 1T F TR
FH P+ B, - gL, e
CHIL®IRE) _ gitL@i ) _ g@ @i _ ey, ij]

+t.d. (B.60)

B.4.4 Conclusion — The Two-Component Form of Lg; 5y .

By adding the results from the three previous subsections, the expansion of Lsysy is ob-
tained.

Hence
Csusy = (D*L) (D,L)+ (D*R) (D,R) —i L®6D, L — i RP5"D,R®
3 1 . 3
+Jﬁ@T%V—§¢U)L+RWDR
. 1 ] TN
4—v§iLT(gT“A“—-§jA)<L@)—~V§iL@)(gT“A“—-ﬁjA)<L
+v2i Rt¢NR® — \/2i RD¢'NR

+ FLFL 4 FhFg
— i AGH DA — i NP DN
1 a urysa "uy 1
(e o
+ (D*Hy) (D Hy) + (D Hy)' (D, Hy)
~ (2 ~ ~ (2 ~
i 1P, 1® i 1 e, 1

1 1
4—Hf(gT“D“——§j[Y)£hﬁ—H§(gT“D“+—§y[Y)f5

(D*D* +D'D')

1 ~ ~
+ \/5@ Hg (gTa)\a T 5g/)\/) 2(2) _ \/§Z H
+ PR+ FI R,
et | B T E R - a2 - |

+ e | FLR + FTLYRY + I F) R+ 1T TR
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i T 7 it 7 ~ ; -~ ~ (2) = .
D P+ LR - AP LR - g, L0
— = (2)7 ~ .

—H{L(Q)f]%@) _ H{Tﬁ(z)jﬁ(z) . R(z)gl(z)izj B R(Q)Hl it
+ t.d. (B.61)

and this appendix is concluded.
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Appendix C

The Four Component-Form of the
On-Shell Lagrangian Lgq;gy.

In this appendix the two component Lagrangian (2.26), i.e.

'CSUSY -

(p2)' (D, L) + (D*R)' (D.R) — i L®6#D,L®) — i RP5"D,R®)
. 1 _ LN
NG (gT“)\“ _ §g/)\/) L® 3 L@ (gT“)\“ _ §g/)\/) i
+ V2 RT¢ NR® — \/2i RD¢'NR
CVa = a abc c Y/ = 1 a ury;a my
—i Xt (9,47 — g vjx)—@xaﬂaux—z (vermve, + Vv, )
+ (D" Hy)' (D Hy) + (D Hy) (D Hy)
=~ (2 ~ =~ (2 ~
i 1P+, i —i 550D, Y
1 . -
+V2i Hi (gT“)\“ - §g’)\’) @ i
1 . =
+V2i H} (gT“)\“ + §g/)\/) P —2i 1
.. ~ i~ . =~ (2)t =(2)7 ~ ; o~ = (2)¢
e [ (P AP+ i)+ g (AP R
w (H;L@)JR@) + HITLRIR® 4 g F®ifi 4 R<2>g1<2“zﬂ)]
— y* H{Hy — p? H{Hy — pf | HIL R+ LVH, RY]
— [ LR R+ m (D + BR) - 0L (H]E)
2
- % (LYT°L+ H{T* Hy + HIT" Hy ) (LYT°L + HITHy + HIT"Hy )

2

g
8

(L'L - 2R'R+ HIH, — H}H,) + t.d., (C.1)
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will be transformed into four-component notation (i.e. to introduce four-component spinors).

Our strategy will be as follows. First the following well known gauge boson combinations

Au(x) = cosbw V;(l‘) + sin Oy Vf(:z;), (C.2)
Z,(x) = —sinfy VM/(J}) + cos Ow Vf(:z;), (C.3)
Vi(x) FiV2(x)
+
Wa(z) - 7 —, (C.4)
and corresponding relations for the spin-1/2 gauginos
M(x) = cosbyw N (z) + sin by \P(2), (C.5)
Mz(x) = —sinfw N(x) + cos by \P(2), (C.6)
Al )2
V() = LT )

V2
will be introduced. Next, the two component spinors will be arranged in various (four-
component) Majorana- and Dirac-spinors. As we will see, the S-QFD theory contains
Photino- (A), Zino- (Z) and two neutral Higgsino-states (Hy, Hy) defined in terms of two-
component spinors as follows

) o
I o

: (C.10)

)
) o

1
Hy
1
H1
R 2
i, = ( Vir,
H?2
These spinors are all of the Majorana type.

For the Dirac-spinors, we have the Winos (W) and the charged Higgsinos (H) given by
~ [ —iAT(2) . =i (o)
o = (Th ) e = (Tadn ) e
N 1 N 2
(2) = (%fz ) () = (%ﬁ ) (C.13)
77le ¢H2

(A9

Here the upper “c” on W€ and [/° means charge conjugation (cf. eq.(A91)).

Finally we have the leptons which as usual are arranged in four-component Dirac-spinors

defined by
1Y



After introducing all necessary notation, one is in position to show attention to the main
purpose of this appendix — the four-component formulation of the Lagrangian Lgpsy .

The coming calculations rely heavily on the results of subsect. A.5.2, and in order to avoid
clutter in our description, these results will be used without any further reference. Those
readers not familiar with the connection between two- and four-component spinors are
guided to study this subsection most carefully.

C.1 Rewriting Kinetic Terms.

C.1.1 Slepton and Higgs Kinetic Terms.

From eq. (C.1) we see that the transcription of the kinetic terms of sleptons and Higgses
is completed once the SU(2) x U(1)-covariant derivative is written in terms of the new

field-combinations eqs. (C.2)—(C.4).
Hence
D, = 0,+1igT*"V!+1 ’YV'
4 - e —I_ Z.g m —I_ Z.g 5 n

) aﬁ%(leT?) (V;(:I;)\—/;Vf(l')) +%(T1—¢T2) (Vi(x)jgvi(x))

Y
+igT? (A4 sin Oy + Az cos O ) + ig'; (A4 cosbw — Az sinfyw)

g g

V2 V2
- . 3 Y - 3 i Y

+1 (g sin w1 4 ¢ cos ng) ) (g cosbwl” — g sm@w5) Z,

= O+ —=TTWF+ =T"W,

iy iy

V2 V2
Y : Y

—|—z'e<T3—|——)AM—|— 9 [TS—(T3+§)sm2ew]zM

2 cos B

= O+ —=TTWF+ =T"W,

) iy 3 .
7§T W —|—ET Wi +ieQAu+ - 7% = Qsin® 0w | Z,,  (C.15)

where we have used the SM-relations

= 0,+

¢ = gsinfy = ¢ cosby, (C.16)
and introduced the operators

T = TV +£4T7 (C.17)
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Q = T3—|—%. (C.18)

Here the operator () is the charge operator, with eigenvalues in units of the elementary
charge e.

C.1.2 Lepton and Higgsinos Kinetic Terms.

After completing the rewriting of the covariant derivative in the previous subsection, we
have for the kinetic term of left-handed leptons!

—i L®6"D,L®) = —i[@igrDI[) i,j=1,2,
= —ivar D — P D2
— iP5 D2y — i 1Per p22 P
= — Dl’yuDill/l —1 DIVMD}LQZL
—1 iLVMDilyl —1 iLVMDZQZL
) B B Dll D12 v
= —Z(l/l ZL)’YM(D% Dgz ) (ZL)
= —iLy"D,L. (C.19)

T
Here L = ( v )L is the SU(2)-doublet of four-component Dirac-spinors, well known from

the SM.

In a similar way, we can show that (R = [g)
—i RP6*D,R® = —iRo"D,R, (C.20)
for the right-handed leptons.

Furthermore, one has for the kinetic term of the two-component Higgsino gl(z)

= (2 ~ _ _
i1 oD AP = i gl et DYy, — i Bl e DY,
—1 ;/;HlﬁuDilg/)}ql —1 ;/;H15“D32@/)12;11
Sy g o
= —i ¢y, "9y, + T cos O U, 0V, Zy
9 71 —u2 T 9 T2 _u1 -
+ == a” WT + 2= a” %%
\/5 77ZJI—11 77Z)I—Il 1 \/§ 77Z)I—Il 77Z)I_Il 12

PR, — e G, A,

I (1 2sin 0y ) 03, 0"0%, 7,

"~ 2cos Ow

'Keep in mind that the covariant derivative has SU(2) x U(1)-indices, and that the neutrinos are assumed
to be completely left-handed.
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¢

= —5 ]:]1’7“8“]:]1 — 4COS 0W gl’}/u’)%gl ZM
g = ~ g = ~ _
— = H~*PrH, W — == H\4*PrH W
NG TR W, V2 17 IR 4

—1 ﬁ]’y“PRQMI:] +e [if’y“PR[:] A,
+ ot (1 2sin®0w) Hy"Prll Z,+1.d.  (C.21)

2 cos O

Here the charge of the various (two-component) fields, recapitulated in table 2.1, has been

taken advantage of.

In a complete analogous way, we obtain for the kinetic term of [NJQ(Z)

=~ (2 ~ ) = ~
— H(z )WDMHz(Z) = L oy 0, Hy + 4cog

S Uw

Hoy'ys i, 7,

o |

g ~ ~ g ~ ~ _
+ 7 H~y"PLHy W+ 7 Hoyy"PLH W,

—1 ]:if’y“PLaufzf +e [if’y“PL[:] A,
t ot (1= 2sin® 0) Hy* Pl Z, +t.d. (C.22)

2 cos Ow

By adding eqs. (C.21) and (C.22), and using eq. (A.82), one may conclude

(2)

= (2 ~
—i H, ) )

_up 7@ _ - FPo,
o"D,H" —+ H, o"D, H,

= —Z [if’y“@ulﬁ] - % [:ii’l’y“auf{l - % [327“8#[:]2

_ 9 [ ([:{’y“PRINﬂ — [:{’VMPL[:E) W:— + h.c.] +e E”VMI:] A,

V2
g . = ~ 1 = ~ = ~
2 cos Ow [ (1 — 2sin® GW) Hy"H — 2 (HI’W%HI - HﬂM%Hz) ] i
+t.d. (C.23)
C.1.3 Gaugino Kinetic Terms.
With eqs. (2.13) and (2.14) we have
—iNG D — iNGHD, N
= —iNe 9N —iNG N +ig fUN GV (C.24)

Using the inverse of the transformations (C.5)—(C.7) yields for the two first terms of eq. (C.24)

—iA\ TN — N TN
. (A— + A+) 43 (A— + A+)
= —12 — | o -
V2 "\ V2
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) ()

—1 (5\,4 sin Oy + Ay cos GW) "0, (Aasin Oy + Az cos Ow)

—1 (5\,4 cos by — Ay sin GW) "0, (A4 cos Oy — Az sin by )

= —ATFINT — i AT O — i A48 DA — i Nzt D). (C.25)
For the last term of eq. (C.24) we have
o f“bcj\“6“Vf)\c
= g fPINGHVIN +ig fINHVIN +ig [PNGHVIN
= ige [NFVIN = NG VIN + NG VIN] L ij =120 (C.26)
Here we have used that
=,
where £ is the usual antisymmetric tensor defined by £'? = 1.
Now each term in square brackets of eq. (C.26) will be rewritten separately. The results are:
SV NGVIN = Mgt (A - A2
= 3 (5\,4 sin By + Ay cos HW) ot ()\‘"W; - )\_W;’) ,

eI NGHYEN = (P&“)\l _ 5\15“)\2) Ve
= 1 (5\_5“)\_ — 5\‘"6“)\‘") (A, sinfw + Z, cosbw),

EINGVIN = (MerVE— MV N
= i (MW = Ae" W) (Aasin Oy + Az cos Oyy) .
Hence, collecting terms yields
ig [N GVNE

= —g (Aasinfy + Az cosOy) o (AN — AW}
— g (A76"A7 = AT aAT) (A, sin Ow + Z,, cos Oy)
— g (MW = A7) (AasinOw + Az cos Oy)

= gcos Oy [(5\25“)\— _ 5\+5“)\Z) Wi — (5\25“)\+ _ 5\—5“)\2) W

+(ATerat —Amta7) 7,
+e [(L@“)\‘ _ X*&“)\A) Wi — (X,m“)ﬁ _ X‘&“)\A) Wy
+ (Aot —AeraT) 4, (C.27)
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and thus
NG DA — NG DN
= —i MG INT — i NG INT — i A" DA — 1 Az0 D)
1 g cos Oy [(5\25“)\— _ 5\+5“)\Z) Wi — (5\25“)\+ _ 5\—5“)\2) W
+(Afeat —A7a7) Z,]
+e [(L@“)\‘ _ X*&“)\A) Wi — (X,m“)ﬁ _ 5\‘5“)\,4) Wy
+ (Ataat — A7 A7) A, (C.28)

With eqs. (C.8), (C.9), (C.12) and (A.64), the four-component form of (C.28) is easily

obtained, and it reads
—iAGH D A — NG DN
= W, — LA, A - L 700,7
—geostw | Zy"W W, + WA Z W — WA W Z,]
— e[ Ay W W A WA AWE - Wt A, + L, (C.29)

C.1.4 Gauge-Boson Kinetic Terms.

By introducing the practical “scripted” quantities

A, = cos HWV;U + sin HWVﬁ,, (C.30)
Z, = —sin GWV;U + cos QWVM?’U, (C.31)
Vuly T iny

\/§ )

defined in complete analogy with the eqs. (C.2)—(C.4), the kinetic terms of the gauge-bosons
can be rewritten in a compact form as we will see in a moment. However, first the explicit

W, (C.32)

form of these “scripted” fieldstrengths will be derived. Hence

Ay = Vi, cosby + V5, sin by
= 9,A, — 9,A, — gsinby [T (V;VVQ _ Vi‘/z})

= A +ie (WW, —WoW), (C.33)
Z, = —V;y sin Ovw + ny cos Ow

= 0,2, — 0,2, — gcos Oy 12 (VIVE = V2V,

= Zu +igeos Oy (WIW; — W7 W}, (C.34)
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with

AMV = auAy_aqu
Zp = 0,7, —0,7,.

Furthermore
Vi, FiV2,
V2
_ g (EVEY g (Ve F
ARV ‘T2
123 (Vfo’ o V;’Vf) == if231 (vayl o V;Vf’)}

£ _
Wo, =

g
_ 7§{f
= OWF—-09,WF
_ % [(W:’ — W;) (A, sinOw + 7, cos Oyw)
— (A, sinOw + 7, cos bw) (Wy‘" — Wy_)

T {(AM sinfw + Z,, cos fw) (Wy-l— + Wv_)
— (W: + W;) (A, sinbw + Z, cos GW)H

= QWS —-oW;
W (AL £ A)sin O + (7, & 2,) cos )

— W {(A, F A)sinbw + (2, F Z,) cos b}

— {(A, £ A,)sinbw + (Z, + Z,) cos Oy } W

+{( A F A sin O + (2, F Z,) cos Oy } W | (C.35)
where

wE = 9WF-0,WF, (C.36)
is the “normal” fieldstrength of the W-bosons.
Writing eq. (C.35) out in full yields (e = gsin fy)
Wi = Wi +ie(AW —Wrfa,)

+igeosOw (Z,W = WiZ,), (C.37)
and
Wy, = W —ie(AW, —W;A,)
—igeosOw (2, W, —W;Z,). (C.38)
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Note that ny contains neither WF nor WF (reversed signs) as we may have guessed in
advance.

With the above relations established, we have for the kinetic terms of gauge-bosons

1
1 (‘fauy‘fuay ‘NMU‘ZU)

= Al WHHw- ! W™ Wt ! ZvZ,, — ! A A C.39

1 ey ey Wy o (C-39)

This concludes this subsection.

C.2 Rewriting Interaction terms.

In this section the various interaction terms of eq. (C.1) will be rewritten.

C.2.1 Rewriting Interaction Terms Containing Gauginos.

Before proceeding, a useful general calculation will be performed. From the no-shall La-
grangian (2.26), or equivalently from eq. (B.45), we see that the transcription of the matter
field Lagrangian is completed once the expression (adopting the general notation of sect. B.3)

1 T
VB A TN 4 gV X ] b — 2 [gT“)\“ g VY| A, (C.40)

is rewritten. The first term of eq. ((C.40), in square brackets, can in analogy with the
covariant derivative, be written as

gl " + %g'Y)\’
= L (T 4 TA7) 4 eQha+ —L— [1° — @sin® 0| Az (C.41)
V2 cos B

Here T2 and Q) are the representations of 7 and @ respectively.

By hermitian conjugation, one obtains for eq. (C.40)

V3i Al [gT“)\“ + %g’Y)\’ ] b — V2P [gT“)\“ + %g’YX] A
= g (AMTF M — AT PT=A) +ig (AT A~ = A~ YT A)
+V2ie (ATQy Aa — A4 $QA)
V2ig

cos Ow

i (AT[T% = @sin® O] v Az — Az & [T% — Qsin® O] A)
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= g (AMTF M — AT PT=A) +ig (AT A~ = A~ YT A)
+V2ieQ); (Aﬂ%/ﬂi Aa— Aa %/;ZAZ)
. Vg

3 . fii N Y. Ti Al .
cos Oy [7; — Qisin GW] (A P Az = Az A) , 1=1,2. (C42)
Here 7.* and Q; are the eigenvalues of T and Q) respectively.

To introducing the new two-component spinors (A%, AAs A7) in the various interaction terms
is thus straightforward in view of the general expression (C.42). Hence we have

Vai LT (g7 - o N) L = vai 19 (g73e - %g’)\') ;
= g (ETI @2\t _ ][22 El) +ig (ET? L@ - _\-[@1 p)
— V2ie (L2 120, — A LO? [2)
. Vg

cos B

(7;3 —Q; sin? GW) (Eh’ (2 i)\Z B XZE(Q)i El)

= —g (LM W' PLL* 4+ L2PpWe L) — g (LY WPLL' + L' PW L)
+V2e (L2 APLL? + [ PRA L)
V2

cos Ow

(T = Qisin? ) (LY ZPpLi + L' PrZ L)

g (LA B D E2) 4 e 1A 1
V2

cos Ow

(77 = Qisin®0w) L'Z L' + h.c. (C.43)

Here in the last line we have utilized that Pr,L = L.

The corresponding term for the right-handed leptons is rewritten as follows
V2 RTg¢ NR® — /2i R ¢'NR
= \/§ig' Rt (A4 cos by — Azsinbfy) R®
— \/§ig' R® (S\A cos by — Ay sin GW) R
= V2ie (R RO\; — \4RP R)

. sin? Oy St o) T B B
—V2ig ; (B" R®A; — X\zR® R)

cos Ow

= V2 (R'RPLA+ APRR R)
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29
vz w (R' RPLZ + ZPrR R)

cos Ow

= ~ in? 0 = ~
= —V2e AR R+ V2¢=—"" 7R R + h.c. (C.44)
cos B

Here we have used that R is a right-handed gauge-singlet (and thus also the component
fields), and that ¢’ = g tan Ow.

Hence, adding eqs. (C.43) and (C.44) yields
~ 1 - - 1 -\ ~
Vi It (gT“)\“ - —g’x) L 3 IO (gT“)\“ _ §g/)\/) i
+V2i RT¢ NR® — /2 R
(I W D) s b 4 vEe [{IPA B AR R + b
ol

cos B

— (Q; sin® GW) L'Z L' — sin? Oy 7R E’} + h.c.] ) (C.45)
With eq. (C.42) and the fact that QH;, = ( 0 —H? )T we have
. t aya 1 ey rr(2) ) aya 1 AV
V2i H) gT)\—ﬁg)\)Hl —\/ﬁzH1 (gT)\—ﬁg)\)Hl

= ig (H{ "R AT = N0, HY) 4 ig (Hi T p, A" = Aoy, H)
—V2ie (leT Ui Aa — Aty H12)

U (H kA — Azl 1Y)

49
V2 cos Oy
g . -
ey (1= 2sint o) (T i\ = Az, )
w

= —g (B HPW + WPpH HY) — g (B} WPLH, + HPRW )
+ V2 (H} Y HPLA + APRIT 1)

g 11 7 5o o 1
- —F \H, " H\PLZ + ZPrH H
ﬂcos@w( ! L R 1)
9 .2 2t Irp oy P I 2
+m(1-281ﬂ GW) (Hl HPLZ—|—ZPRH Hl)

= —g (WPpH H} + [, PRW H2) +V2e APRH H?

ZPpily HY + (1 - 2sin® O) ZPrll H}

g
\/§COS Ow \/_cos Ow
+ h.c. (C.46)
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A corresponding calculation for the Hj-term yields
1 ~ ~ (2 _ 1 -
V3 1} (gT“)\“ + §g/)\/) a® = v i (gT“)\“ + §g/)\/) i,

- g (ﬁ/PRH2 HY + HPpW H2) — V2¢ HPrA H}

(1 — 92sin ew) HPpZ H + —YF1,Pp7 H?

g
ﬂcos@w \/_COS Ow
+ h.c. (C.47)

Here we have used that for Majorana spinors U;¥, = U,W¥; and @175\112 = @275\111 (cf.
eqs. (A.94) and (A.96))

Adding eqs. (C.46) and (C.47) yields
\/_' t ava 1 Y 7r(2) \/_ ~(2) aya 1 N/
2t H{ { gT"\ —§g)\ Hy"W — 20 Hy [ gTA —§g)\ H,y

1 ~ = (2 —
+V2i H} (ﬂw + §g’)\’) ) — /2 H; ) (gT“)\“ +

= g [(WPRIT H} + HPRW HE + [, PRW H} + W Pgily H}) + h.c]
+fe[(21PRﬁH2—J§PRAH1) + hecl

1 2
fcos - [{ZPRH1 ' — H,Pr7 H:

— (1= 2sinOw) (ZPrfl H? — APRZ HY)}+ he] (C.48)

This completes this subsection.

C.2.2 Rewriting the Cubic Interaction Terms.

In the previous subsection, cubic interaction terms containing gauginos were transcripted.
The aim of the present subsection is to perform a paraphrase of the remaining cubic inter-
action terms of the Lagrangian (C.1). The calculations go like this

= (2)1

—fe (ﬁ{”’z@)ié + Hy " LPIRT 4 HL®I RO

FHITE®I RO 4 RO D g, T)

= —f [ [jjl(z)lL(z)z R — E,1(2)2L(2)1 i n ﬁiz)li(z)z Pt ﬁiz)zf,@)l Bt
+L@2R® [l [1RO) 2 4 [2R@) git _ 1RO 21

FRO D[ Z g @2 fr L g P e per gt
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= b R— e 1P R+ 0 o R - g 1P R
b1 2 D gty O g2t @@ g
ok, L — 1%, L2 4+ 1098, L — 1y, 12T

== f[f{PLl/llff—l-DlPRf{ﬁfT —ﬁlleLﬁf—ZLPRgllffT
—I-iRPLZ/lle—I-DlPRlRHl ZRPLZLH ZLPRZRHI
VHIpPLH LY + H Prlp LM — [Py Hy 1P — Hy Prlp L2

= f[{#L" R~ H,I* R+ RL' H} — RL* H]
+RO° L' — REy L*} + hec. | . (C.49)

C.2.3 Rewriting the Higgsino Mass Terms.

In order to complete the rewriting of the Lagrangian (C.1), one has to transform the terms

pe f{l@)igz(?)j, and their hermitian conjugated, into four-component notation. This is done

like this

.. ~ A . =~ (2): =(2)7
e [P P

= [;/}12;11;/)}[2 + o Y, — Vi, — J)}Vﬂzlzb]

= ﬂHH_§H1H2_§H2H17 (050)

and finally the rewriting procedure is completed.

C.3 Summation — The On-Shell Lagrangian.

In the two previous sections the transcription from two- to four-component notation of the
various terms of the Lagrangian (C.1) was completed. In this section we will collect the

results, and with eqgs. (C.15), (C.19), (C.20), (C.23), (C.29), (C.39), (C.45), (C.48), (C.49)
and finally eq. (C.50) we obtain
Lsusy = (D) (D.L) + (D*R)' (DuR) =i Ly*D,L —i Ry"D,R
—g HEIW L? + L2We El} + h.c.] 1 4/2e prl L? — ZXR ];’} + h.c.]

C(ﬁiv H (7;3 — Q) sin? QW) Li7 [} — sin? Ow ER fji} + h.c.]

—1 ﬁ/’y“aMW — %Zwaﬂil — %27“8MZ
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— g cos by [ E’WW W, + ﬁ/’y“ZN W: — ﬁ/’y“W Zu]
—e [ZWMW W, + ﬁ/’y“zzl W: — ﬁ/’y“W AM]
1

1 v — 1 — uv v 1 v
— ZW” Wi = V" Wi, — 12 B = A A

+ (D*Hy)" (D, Hy) — p* H Hy + (D" Hy)' (D, Hy) — p* HIH,
— ]:i, (z*y“@u — IM) ]:I — % [:ii’l’y“@uf{l — % [327“8#[:]2 — g[i[lgz — gﬁzgl

= (R — B ) W) e 20 A,
+ 2COgS Ow [ (1 — Zsin® GW) [:Y’W[:] N % (E,WM’VS[NJI - Eiz’Y“%[N{?) ] Z,

— g [(WPRH H} + HPsW H} + HPRW H} + W Pply H}) + h.c]
+ V2 [ (APRIT H} — [TPRA H}) + h.c]

g ~ ~ 1 ~ ~ 2
SRvorre {ZPril, HY — H,PrZ H

— (1~ 2sin?Ow) (ZPrfl H? — APRZ HY)} + h.c]
+ f[{HLY R — H L2 R+ RLYHE — RLP HY + RACL — RE, 1?4 hec
— (3L R+ he] = P IR R 1L (DD + RUR) — il L (1]E)|
2

- % (LY7°L + HiT"Hy + 137" 1y ) (LY L + HIT"Hy + HT"H, )

2t 20 o .
TN (1L — 2R R+ HIH, — HIH, ) + t.d. (C.51)

Here W* is the charge conjugated (defined in eq. (A.91)) of the spinor (2.46) and Pp and
Pr are the left- and right-handed projection operators given by eqs. (A.80) and (A.81), i.e.

Pro= —(1— ), (C.52)

Pr o= =(1+47). (C.53)
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Appendix D

The Two-Component Form of the
On-Shell Lagrangian Lgq;gy.

In this appendix, starting with the off-shell Lagrangian (2.11), we will construct the cor-
responding (two-component) on-shell Lagrangian, i.e. we have to eliminate the auxiliary

fields.

D.1 The Auxiliary Fields.

In sect. 2.2 we obtained, by using the Euler-Lagrange equations, the following relations for
the auxiliary fields

Fi' = —feVHIR, (D.1)
Pl = —feVHIL, (D.2)
Fit = —peH] — feVIIR, (D.3)
B = —peiH, (D.4)
and

D* = —g|L'TL + HIT*H, + HIT"H,|, (D.5)
! ! !

D = %LTL—g'RTRJr%HIHI—%HgHQ. (D.6)

In this appendix, the detailed calculations for the back-substitution of these relations into
L auz, given by eq. (2.16), will be performed, and we start by eliminating the auxiliary
F-fields.
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D.1.1 Auxiliary F-fields.

With eqs. (D.1)—(D.4) we have
Lawe-r = FJFL+ FLFr+ FIF + FJF,
+ e [HF 4 1 E g+ F
+ e [ LR+ PR+ Wi Fi R+ 1y PR
+H{L P+ HTLTF |

= (e HR) (e VR 4 (g ) (g )
b (et B FIEIR) (e HE — AR
n (—,ue” H{) (—,uekj H{vT)
+ e My (—pe® B + e YT (—pe 0
+ e (—,ue““ HytT— f@iki“ﬁff) Hj
+ p e (—,ue““ HY — f@ikikﬂ’) it
T (Cpet R DR
b r e (et b - fRERR) DR
o o (g ) Rt g BT (g ) B
£ LD (= I 4 f 0 H D (e L)
= —p? H{Hy — p? HiH, — pf | HIL R+ L1, RY]
_p [m R+ #{H (I + RUR) — BT (H{E)T]. (D.7)
Here in the last transition the following relations have been used:

glighi =  gik

clighl _ gikgil _ gilgik
D.1.2 Auxiliary D-fields.
When one is going to rewrite £ 4,.—p, given by
(D*D*+ D'D")

1
EAuac—D — 5
_I_



1 1
4—Hf<gT“D“——§y[Y)fh4—H§(gT“D“%—ﬁy[Y)fh,

it is practical to introduce the following temporary abbreviations
A = L'T°L,

= HiT*H,,

= HIT"H,,

'L,

= R'R,

= HiH,

= HIH,.

QT QW
Il

Here the SU(2)-index “a” has been suppressed for convenience.

With these abbreviations eqs. (D.5) and (D.6) take on the form

D" = _g[A—I_B—I_C]v
D FG
D = 4|12+ X,
919 T3

We will now rewrite each term of eq. (D.8). Hence

1 2
§DUP::%{A+B+CMA+B+C%

12
Loy - 9_<Q_E E_§)<Q_E+E_§)7
2 2 \2 2 2 2 2 2

N 1 N
LT<gTaDa-§y[V)1,

1 D F G
= —g?A[A+B ——Wﬂ——E ——%
g[—l——|—0]29 5 —I—22,
. . D F G
T'¢D'R = QEC——E ———)
R'¢D'R g 5 —|—22,
Taalll
Hy(gT"D" = 5g'D" ) Hy
1 D F G
= —¢*B[A+ B ——%ﬂ——E ——%
PBA+B+C]-5¢"F |5 t5 -5
Taalll
Hy (gT"D" + 5g'D" ) Hy
1 D F G
= —¢*C[A+B —Q[——E ———}
FOATB+ O+ 50°G |5 — B+ 5 -
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For L 4y p this implies

2

Liawp = —%(A+B+C)(A+B+C)
g"” (D F G) (D F G)
A e e Y (e /) N R
2 \2 5 73) % Ty o3
or in terms of the S-QFD fields
2
Loawep = _% (LY7°L + HiT*Hy + H3T" 1y ) (LYT°L + H{T*Hy + HT"H, )
12
. % (L'L —2R'R + H{H, — H}H, ) . (D.9)

D.1.3 Conclusion.

From the two previous subsections, we can conclude that the expression for the “auxiliary”
Lagrangian is

EAuac — EAuac—F + EAuac—D

= —p? H{H, — p* H{H, — pf | HSL R + L1H, R
— 7 [ DR R+ il (LD + BOR) - 0L (H]L) |
2
-~ % (LYr°L+ HiT*Hy + BT Hy ) (LML + H{TH, + HIT"H, )
12

—%(ETE—QJ%TJ%+HIH1—H§H2)2. (D.10)

This concludes this section.

D.2 The On-Shell Lagrangian.

The on-shell Lagrangian Lspsy is with the results of the previous section, easily obtained
from the corresponding off-shell Lagrangian (2.11) by substituting for eq. (D.10).

The result is:
Lsusy = (L) (D) + (D*R) (D,R) — i LP0#D,L® —i R?5" D, R
. | , RN
420 L (gT“)\“ - §gw) L~ 3 [ (gT“)\“ _ §g/)\/) i
+v2 RT¢NR® —/2i RY¢NR

— _ 1 ,
—9 )\aa.MDM)\a — )\la_MDM)\/ o 1 (Va M/V;y 4 1% M/VM/U )
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+ (D" Hy)' (D, Hy) + (D" Hy)' (D, H,)

~ (2 ~ ~ (2 ~
i 1P, —i 5, HY

( )
+ V72 H} (gT“)\“ + %g')\’) H — /i Erf) (gT“)\“ + g’)\’) i,
i [ﬂ< 72 +ﬁ§2)iﬁf”) —|—f( 7R @i 4 Niz)iL(Q)JﬁgT)
+f (H{L@)JR(?) +HITT@IR® £ g2 @i g g, it )]
— y? H{Hy — p* H{Hy — pf | HIL R+ L'H, RY]
— 7 [DLR R+ il (LT + BOR) - 0L (H]L) ]
- g (LY7°L+ H{T*Hy + HIT"Hy ) (LML + HIT*Hy + HIT"Hy )

2

—%(ETE—QETE—l—HIHl — HIH,) +td. (D.11)

Hence this appendix is concluded.
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Appendix E

Transcription of the Scalar Higgs
Potential.

The aim of this appendix is to eliminate the SU(2) representation matrices T'* appearing in
the scalar Higgs potential given by eq. (3.5), i.e.

Vitigss = (m3+ u?) H{Hy + (m3 4 0?) H{Hy — m3 <V (H{H + h.c.)

i % (HT"H, + HYT" 1) (H{T"H, + HIT"H,)

g/2 2
+55 (#iHy — 1) (E.1)

Our starting point is the following general calculation

1
HY,T*H,, HY,T*H, = T HY,0"H,, H',c"H, m,n =1,2 (no sum)

— HHTm(? é)HmHTn((l) é)Hn
+HTm((2 _é)HmHTn(g _S)Hn
(3 Sy (3 2)a

_ i[(HyHmH;*H;) (a'u? + 12 H)

. (Hz THl _ THz) (HQTHI—H”HQ)
+ (L, - a2 a2 (H - 12 )

109



2 2T o2t o p2 Tt gt

| =

+HTH g ey g2t gt
_ gt THl HzTHz_Hz THz HITHI ‘

With this result we have

gQ_2 (i7" Hy + BT ) (HIT*Hy + BT 1)

2 2 2 2 2
= L\ () + () + () + (w3 3)
+2 HX'HY HUTH? 42 HETHD HYUH?

2 ual gt 2 w2t m
—o mH m2ta? -2 n2tu? mltml
4 HIHE HETHY 4 g H

2
-2

@

_ 9 [2 1 1 U I

‘ 2

+ (H;*H; _ Hg*Hg) 2 (Hi'H) (Hg*Hg)]
|

= (mm) (m3'm).

- L l(H{TH{ - HgTHé) +a|mith,

Here in the last transition we have used the identity

[ |ew i

‘ 2

which can be derived by straightforward calculations.

Hence the scalar Higgs potential (£.1) reads

Vitigss = (m3 4+ 0®) H{Hy + (m2 4 0?) H{Hy — m2 <Y (HLH] + hec.)

2
’

+ 1 (g2 4 g?) (st —HTH)2+£\H 'H
] 1441 2442 9 1 2

and this concludes this appendix.
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