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Abstract

In this review article we study the Minimal Supersymmetric Electro-Weak theory. The
Lagrangian is constructed step by step in great detail, both in the super�eld and component

�eld formalism | both on and o� shell. Furthermore the Lagrangian is written in the more
familiar four component formalism. Electro weak symmetry breaking is discussed, and the
physical chargino- and neutralino states are introduced and discussed.
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Preface

When I �rst started to work on supersymmetry, my interest fell upon the minimal super-

symmetric electro-weak theory, or if you like, on supersymmetric quantum 
avour dynamics

(S-QFD). To my disappointment, as a person at that time with no background in super-
symmetry, I was not able to �nd any good detailed review article on this subject.

In this report I try to present such a review article with the hope that it may be useful to

others. The material is presented in great detail, and somebody may rightly say that the
presentation is too comprehensive. For that reason most of the detailed calculations are
reserved for the appendices. However, my personal motivation for including so much details
was to easy the chance of following the calculations step by step for a person not familiar
with the Minimal Supersymmetric Standard Model.

In this report I have mostly followed the notation used by the authors of ref. [31, 32,
33] and I give some useful formulae and comments about notation in appendix A. These
references together with ref. [34] are also good introductions to the necessary background
of supersymmetry needed for this report.

�� ? ��

I would like to take the opportunity to express my deep appreciation to Prof. Dr.tech.
Haakon A. Olsen at the University of Trondheim, Norway. He has been very helpful, and I

in particular thank him for great many stimulating and clarifying discussions and for fruitful

suggestions during the course of this work.

Trondheim, April 1995

Ingve Simonsen
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Chapter 1

Supersymmetric Extension of QFD.

We will now start the construction of a supersymmetric extension of QFD of leptons. In
this chapter the Lagrangian, in the super�eld formalism, will be derived.

However, before we do so, we will say a few words about possible extensions of the Standard
Model (SM).

1.1 Possible Extensions of the Standard Model.

In a supersymmetric theory, any fermionic state has to be accompanied by a bosonic one,
and vice versa. In the early days of SUSY, one had hoped that some of the states required
by SUSY, could be identi�ed with some of the known particle states. For instance one
tried to identify the spin-0 �elds associated with the neutrino- and the electron-�elds, as

the photon and Higgs-�eld respectively [1]. Unfortunately, this idea runs into di�culties.
Firstly, if one of the spin-0 neutrino states is associated with the photon, what happens
to the lepton-quark symmetry? Secondly, and more convincing, is the observation that

the spin-0 states, associated with the leptons and quarks, carry lepton number and colour
respectively. By demanding a theory with unbroken colour and electromagnetism, only

the scalar neutrino can acquire a vacuum expectation value. This results in a theory with
the unwanted possibility of lepton number violation. However, this scenario can not be

completely ruled out [3], but no realistic model, with such properties, exists. Thus, in
consequence, one is forced to introduce a complete Higgs (SUSY) multiplet in addition to

the multiplets of leptons and quarks.

In the SM, it is su�cient with only one Higgs doublet (and its charge conjugated) in order

to generate masses for the leptons and charge-1
3
and -2

3
quarks. In SUSY, however, one has

to have at least two Higgs doublets if suitable mass terms shall be generated [2, 4, 5, 13].
The reason is rather technical and relies on the fact that SUSY do not allow for charge

5



conjugation1.

1.1.1 The Minimal Supersymmetric Standard Model.

The di�erent supersymmetric extensions of the SM are naturally divided into two main

classes. The �rst one, is the Minimal Supersymmetric Standard Model (MSSM) [4|22]

containing the minimal number of �elds and parameters required to construct a realistic

model of leptons and quarks. The second class, goes under the name of Non-Minimal Su-

persymmetric Standard Models (NMSSM) [23]. Several such models can also be constructed,

but they typically increase the number of parameters (and �elds) without any corresponding

increase in predictive power and physical motivation.

The MSSM has a high degree of predictivity, and within this model all masses and coupling

constants of the Higgs boson sector, can be calculated at tree level.

Since the MSSM is the most attractive one from a practical point of view, and since no
theoretical aspects (at present) seem to discredit it, we will be considering this model in
the present work. It is also interesting to note that the MSSM has survived all the strin-
gent phenomenological tests coming from resent LEP-experiments, and that in most of its

parameter space the (relevant) MSSM predictions are impressively close to the SM values
(calculated for a relative light SM Higgs) [24].

Model Ingredients.

In a more complete way, the central ingredients of the MSSM can be de�ned by the following
points:

� The minimal gauge group: SU(3)� SU(2) � U(1).

� The minimal particle content, holding three generations of leptons and quarks, twelve

gauge bosons (de�ned in the usual way), two Higgs doublets and, of course, all these

particles superpartners.

� SUSY breaking parametrized by soft breaking terms.

� An exact discrete R-parity.

The three �rst points need no further comments at this early stage. However, the same can
not be said about the fourth point. If we construct a theory based on the three �rst points

only, a theory possessing baryon- and lepton-number violation will emerge [25]. The terms

responsible for this, give unacceptable physics (fast rates of nucleon decay). Thus, these

1Two Higgs doublets are also needed in order to avoid gauge anomalies originating from the spin-1
2

higgsinos.
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termsmust somehow be avoided, and it is believed that this can only be done in a satisfactory

manner by introducing additional symmetries, e.g. gauge- or discrete-symmetries. The

last possibility is used in the MSSM. Here an unbroken R-symmetry [1, 26, 27] with a

corresponding R-parity, or equivalently matter-parity, is introduced in order to eliminate

the o�ending terms. The R-parity of a state is related to its spin (S), baryon-number (B),

and lepton-number (L) according to

Rp = (�1)2J+3B+L
: (1.1)

Note that the assumption of baryon- and lepton-number conservation implies the conserva-

tion of R-parity.

Furthermore, an immediate consequence of the above expression is that all SM particles

(including the Higgs bosons) are R-even, while their superpartners are R-odd. As a result
the \new" supersymmetric particles can only be pair-produced, and any of their decay
products have to contain an odd number of supersymmetric particles. This implies that
the lightest supersymmetric particle (LSP) has to be stable, since it has no allowed decay
channels.

1.2 The Lagrangian for Supersymmetric QFD.

In this section, we shall construct a (minimal) supersymmetric extension of QFD. We have

chosen to work within the framework of the MSSM, and consider supersymmetric QFD to
be a part of this more fundamental theory2. Thus the content of the Higgs-sector is de�ned
to contain two Higgs-doublets, as we discussed in the previous section.

In order to construct the Lagrangian of supersymmetric QFD (S-QFD), we will assume that

the theory can be viewed as a low-energy limit of a SUGRAV-theory. Thus the Lagrangian
of S-QFD has to have the form

LS�QFD = LSUSY + Lsoft: (1.2)

Here LSUSY is a supersymmetric piece, while LSoft explicitly breaks SUSY.

The ultimate aim of this section, will be to specify the di�erent terms of LS�QFD . However
before we do so, we have to de�ne the di�erent �elds which are present in S-QFD.

The �rst version of the MSSM was constructed in the early eighties by the authors of refs. 28

and 29 and later discussed in refs. 13 and 35. They promoted all the lepton �elds of the
SM to chiral super�elds, one for each generation. The same we will do, and denote these

super�elds by l̂(x; �; ��) and �̂l(x; �; ��). Here the former contains the charged leptons (like

2An alternative contemplation could be to consider the MSSM for leptons only. Hence the SU (3)-gauge

invariance becomes trivial as in the SM (of leptons), where all �elds except the quark- and gluon-�elds are

SU (3)-singlets, and a non-trivial SU (2)�U (1) theory remains. This resulting theory may be considered, as

is correct, to be a supersymmetric extension of QFD (or equivalently the Glasow-Weinberg-Salam theory).
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the electron) and the latter the corresponding neutrinos. Here the generational indices have

been suppressed3.

It is useful, and we will henceforward use it, to assume, as for \ordinary" QFD, that the

neutrinos are completely left-handed. Hence the left-handed lepton super�elds (for each

generation) can be arranged in an SU(2)-doublet and the right-handed in an SU(2)-singlet

according to4 5

L̂(x; �; ��) =

 
�̂l(x; �; ��)

l̂(x; �; ��)

!
L

; (1.3)

R̂ = l̂R(x; �; ��): (1.4)

From the previous section, we already know that the MSSM, and hence S-QFD, contains

two doublets of (chiral) Higgs super�elds, which we will de�ned as

Ĥ1(x; �; ��) =

 
Ĥ1

1
(x; �; ��)

Ĥ2

1
(x; �; ��)

!
; (1.5)

and

Ĥ2(x; �; ��) =

 
Ĥ1

2
(x; �; ��)

Ĥ2

2
(x; �; ��)

!
: (1.6)

Note that the upper index on these super�elds, say Ĥ2

1
(x; �; ��), is an SU(2) index taking

values in the set f1; 2g. The same applies to L̂(x; �; ��).

As for non-supersymmetric QFD, S-QFD possesses an SU(2)�U(1)-gauge invariance. This
means that the theory contains four di�erent gauge vector super�elds | V̂ 0(x; �; ��) for the
U(1)-gauge group and V̂ a(x; �; ��) (a = 1; 2; 3) for SU(2). As usual we will take the gauge
vector super�elds to be Lie algebra valued, i.e.

V̂ 0(x; �; ��) = Y v̂0(x; �; ��); (1.7)

V̂ (x; �; ��) = T aV̂ a(x; �; ��); a = 1; 2; 3: (1.8)

Here Y and T a are the generators of U(1) and SU(2) respectively.

In table 1.1 the above de�nitions, together with the quantum numbers, are summerized.

1.2.1 The Supersymmetric Term LSUSY .

The term LSUSY , is obtained by \supersymmetrizing" the Lagrangian of ordinary QFD.

In this generalizing procedure, the Yang-Mills Lagrangian [31, 32, 33] is useful. However

3Summation over the generational indices will be understood everywhere, if nothing else is said to indicate

otherwise.
4Here the subscripts L and R mean left- and right-handed respectively.
5From now on we will use hats (̂) on the super�eld quanteties of our S-QFD model.
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Multiplet Super�elds Quantum Numbers

type SU(2) U(1)

Matter L̂(x; �; ��) doublet �1
R̂(x; �; ��) singlet 2

Ĥ1(x; �; ��) doublet �1
Ĥ2(x; �; ��) doublet 1

Gauge V̂ 0(x; �; ��) singlet 0

V̂ a(x; �; ��) triplet 0

Table 1.1: The notation and quantum numbers used for the super�elds in S-QFD (for

leptons). The index a labels SU(2) triplets of gauge bosons. All the generational indices

are suppressed.

the S-QFD Lagrangian becomes slightly more complicated due to the fact that we have a
larger gauge group, a richer particle spectrum with both left- and right-handed states, and
in addition a Higgs-sector as well to take into account.

With the identi�cations we made in the previous chapter for the kinetic terms of chiral- and
vector-super�elds, the S-QFD Lagrangian reads

LSUSY = LLepton + LGauge + LHiggs; (1.9)

where

LLepton =
Z
d4�

h
L̂ye2gV̂+g

0V̂ 0

L̂+ R̂ye2gV̂+g
0V̂ 0

R̂
i
; (1.10)

LGauge =
1

4

Z
d4�

h
W a�W a

� + W
0 �W 0

�

i
�2(��) + h:c: ; (1.11)

and �nally

LHiggs =
Z
d4�

h
Ĥy

1e
2gV̂+g0V̂ 0

Ĥ1 + Ĥy
2e

2gV̂+g0V̂ 0

Ĥ2 +W �2(��) + �W �2(�)
i
: (1.12)

Here g and g0 are the (gauge) coupling constants for SU(2) and U(1) respectively and W�

and W 0
� are the SU(2)- and U(1)-�eldstrengths de�ned by

W� = � 1

8g
�D �De�2gV̂D�e

2gV̂ ; (1.13)

W 0
� = �1

4
DD �D _�V̂

0: (1.14)

Furthermore,W � W [L̂; R̂; Ĥ1; Ĥ2] is the superpotential of the theory which we will discuss
in a moment6.

6We will not write the �eldstrengths without spinor indices so confusion between the symbols for the

superpotential and the �eldstengths will arise.
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The factors of 2 appearing in eqs. (1:10), (1:12) and (1:13) in connection with the SU(2)-

coupling constant g, are inserted for convenience. With this choice the (non-SUSY) �eld-

strength V a
�� contained in W� correspondes to that of the SM.

The Superpotential.

In order to give a complete expression for LSUSY , the superpotential W [L̂; R̂; Ĥ1; Ĥ2] has

to be speci�ed. The superpotential can at maximum be cubic in the super�elds in order to

guarantee a renormalizable theory.

In the MSSM the superpotential takes on the form

W = WH +WY ;

with the \Higgs-part" given by

WH = � "ijĤ i
1
Ĥj

2 ;

and the corresponding \Yukawa-part" by7

WY [L̂; R̂; Ĥ1Ĥ2] = "ij
h
fĤ i

1
L̂jR̂ + f1Ĥ

i
1
Q̂jD̂ + f2Ĥ

j
2Q̂

iÛ
i
:

Here � is a mass parameter and "ij is an anti-symmetric tensor de�ned by

" =

 
0 1

�1 0

!
: (1.15)

Furthermore, f , f1 and f2 are all (Yukawa) coupling constants containing one generational
index which has been suppressed. It is often the case that only the largest Yukawa couplings
(for the third generation) are of importance. However, we will not in particular take a stand

on this point.

As alluded to earlier, we will not be concerned about the quark-sector of S-QFD. Hence the

superpotential reduces to

W = WH +WY

= � "ijĤ i
1
Ĥ

j
2 + f "ijĤ i

1
L̂jR̂: (1.16)

The �rst term of the above superpotential needs some further comments. If this term is

missing (i.e. � = 0), the theory has an additional Peccei-Quinn symmetry [36]. Under this

symmetry the Higgs super�eld Ĥ1 undergoes a phase transformation. In cases where the
bosonic component of Ĥ1

1
gets a non-vanishing vacuum expectation value, this symmetry

is spontaneously broken. The result of such a breaking is an experimentally unacceptable
Weinberg-Wilczek axion [37]. Hence, � 6= 0 is required in order to get a physically acceptable

theory.

7Here Q̂ is a quark SU (2)-doublet while Û and D̂ are quark SU (2)-singlets.
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1.2.2 The Soft SUSY-Breaking Term LSoft.

The most general soft SUSY breaking terms where described by Giraedello and Grisaru [30].

They found that the allowed terms can be categorized as follows; scalar mass tems, gaugino

mass tems and �nally trilinear scalar interaction terms. However, S-QFD, as the MSSM,

has to possess R-invariance, as referred to in the previous section. This implicates that

trilinear terms contained in W j
�=0

, have to be disregarded (and we do it from now) since

they are not R-invariant. The actual proof of this fact will be given in subsect. 1.3.3.

By adjusting the remaining allowed soft terms to our notation of S-QFD, one gets the

following Lagrangian (appropriate to Fermi scale) in terms of super�elds:

LSoft = LSMT + LGMT ; (1.17)

where the scalar mass term (SMT) piece reads

LSMT = �
Z
d4�

h
M2

L L̂
yL̂+m2

RR̂
yR̂+m2

1
Ĥ
y
1Ĥ1

+m2

2
Ĥ
y
2Ĥ2 �m2

3
"ij
�
Ĥ i

1
Ĥ

j
2 + h:c:

�i
�4(�; ��); (1.18)

and the gauge mass term (GMT) is

LGMT =
1

2

Z
d4�

h�
M W a �W a

� +M 0 W
0 �W 0

�

�
+ h:c:

i
�4(�; ��): (1.19)

Here

M2

L L̂
yL̂ = m2

~� �̂
y�̂ +m2

L l̂
y
Ll̂L;

while the (soft) mass-parameters M and M 0 are corresponding to the SU(2)- and U(1)-
gauge group respectively. The factor of 1

2
in front of LGMT is inserted for later convenience.

Within the framework of MSSM, the di�erent couplings and mass-terms, appearing in the
above Lagrangian, are all undetermined both in origin and magnitude. However they are
usually interpreted as remnants of a more fundamental spontaneously broken (N = 1)

SUGRAV-theory. Keep in mind that at the Fermi scale, which we are working at, one deals

with renormalized parameters which are connected to their values at the Planck scale via

the renormalization group equations.

1.2.3 Conclusion.

To conclude this section, we collect our results for the Lagrangian LS�QFD, in terms of

super�elds, for later reference. It reads:

LS�QFD = LSUSY + LSoft

=
Z
d4�

n
L̂ye2gV̂+g

0V̂ 0

L̂ + R̂ye2gV̂+g
0V̂ 0

R̂
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+
1

4

h�
W a�W a

� + W
0 �W 0

�

�
�2(��) + h:c:

i
+ Ĥ

y
1e

2gV̂+g0V̂ 0

Ĥ1 + Ĥ
y
2e

2gV̂+g0V̂ 0

Ĥ2

+W �2(��) + �W �2(�)

�
h
M2

L L̂
yL̂ +m2

R R̂
yR̂+m2

1
Ĥ
y
1Ĥ1

+m2

2
Ĥ
y
2Ĥ2 �m2

3
"ij
�
Ĥ i

1
Ĥ

j
2 + h:c:

�i
�4(�; ��)

+
1

2

h�
MW a �W a

� +M 0W
0 �W 0

�

�
+ h:c:

i
�4(�; ��)

�
: (1.20)

1.3 Invariances of the Lagrangian LS�QFD.

In this section, we will establish some of the symmetries of LS�QFD, and we start by demon-

strating the SUSY invariance of LSUSY .

1.3.1 The SUSY Invariance of LSUSY .

It is well known that the highest (mass) dimensional component of any super�eld combi-

nation is always supersymmetric (up to a total derivative) [31, 32, 33]. With this in mind,
the SUSY-invariance of LSUSY is easy to verify, due to its possible formulation in terms of
super�elds8.

With eq. (A:142) we have that a four dimensional integration with respect to Grassmann

variables projects out the �� ����-component of the integrand. This is the highest, non-
vanishing dimensional component possible, because of the anti-commuting property of the
Grassmann variables. Hence, we may on this ground conclude that LLepton and the two �rst
terms of LHiggs are supersymmetric.

The highest component of a product of two or three left-handed (right-handed) chiral super-

�elds is a ��-component (����-component). Hence, since L̂, R̂, Ĥ1, Ĥ2 and the �eldstrenghts
W� and W 0

� are all left-handed chiral super�elds, while their hermitian conjugated are

right-handed, LGauge and the remaining terms of LHiggs are SUSY-invariant. Note that the
two-dimensional delta functions over a Grassmann algebra, are inserted in order to adopt

with the four-dimensional Grassmann integration.

Hence LSUSY is proven to be SUSY-invariant.

As have been stated up to several time, LSoft breaks SUSY. To see this, it is enough to note

8Later on, when the component-form of LSUSY is obtained, we will also verify the SUSY invariance

explicitly without any reference to the super�eld formalism. As we will see then, this line of action is much

more demanding then the approach made here.
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that Z
d4� Ŝ �4(�; ��) = Ŝ

���
�=��=0

(1.21)

is a (mass) dimensional zero term, with Ŝ being any super�eld (or super�eld combination).

Then according to our earlier discussion LSoft is notoriously not SUSY-invariant.

1.3.2 The Gauge Invariance of LS�QFD.

The gauge transformations on chiral- and vector-super�elds are de�ned by

�0(x; �; ��) = e�ig�(x;�;
��)�(x; �; ��); �D _�� = 0

�
0y(x; �; ��) = �y(x; �; ��)eig�

y
(x;�;��) D��

y = 0

egV
0

= e�ig�
y

egV eig�

9>>>=
>>>; : (1.22)

and that of the �eldstrength W a
� by

W� ! W 0
� = e�ig�W� e

ig�: (1.23)

These transformations will be extensively used in this subsection.

We start by showing the SU(2) invariance of the theory.

The SU(2)-Invariance.

Since [V̂ ; V̂ 0] = [�̂; V̂ 0] = 0, the term L̂ye2gV̂+g
0V̂ 0

L̂ is shown to be SU(2)-gauge invariant as
follows

L̂ye2gV̂+g
0V̂ 0

L̂ = L̂ye2gV̂ eg
0V̂ 0

L̂ �! L̂ye2ig�̂
y

e�2ig�̂
y

e2gV̂ e2ig�̂eg
0V̂ 0

e�2ig�̂L̂

= L̂ye2gV̂+g
0V̂ 0

L̂: (1.24)

The invariance of the corresponding kinetic terms of R̂, Ĥ1 or Ĥ2 are shown in the same

manner9.

If we can show that W �aW a
� , W

0 �W 0
�, and the superpotential W � W [L̂; R̂; Ĥ1; Ĥ2] are

gauge invariant, then we have established the SU(2)-invariance of LSUSY . This is so because
the invariance of the other terms can be obtained by hermitian conjugation. From eq. (1:23)

we have

W � aW a
� =

1

k
Tr (W �W�) �! 1

k
Tr

�
e�2ig�̂W �e2ig�̂e�2ig�̂W�e

2ig�̂
�

=
1

k
Tr (W �W�)

= W � aW a
� (1.25)

9Note that the invariance of the term containing R̂ is trivial since R̂ transform like a singlet under SU (2).
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Here we have used the cyclic property of the trace. The SU(2)-invariance of W
0 �W 0

� is

trivial since W 0
� is a singlet under this group.

Now we shall demonstrate the invariance of the superpotential W, and we start by WH ,

WH = �"ij Ĥ i
1
Ĥ

j
2 �! �"ij

h
e�2ig�̂Ĥ1

ii h
e�2ig�̂Ĥ2

ij
; i; j = 1; 2

= �"ij U ikU jl Ĥk
1
Ĥ l

2
; U = e�2ig�̂: (1.26)

In order for WH to be invariant we must have

"kl = "ij U ikU jl: (1.27)

This relation is in fact satis�ed as we now will show. The matrix U = e�2ig�̂ is obviously a

2� 2-matrix, and its determinant is

detU = e�2igTr(�̂) = 1; (1.28)

since Tr
�
�̂
�
� Tr

�
T a�̂a

�
= 0. Hence U is an SU(2)-matrix. Then U , as any SU(2)-matrix,

can be written as

U =

 
Â B̂

�B̂y Ây

!
; (1.29)

with

ÂyÂ+ B̂yB̂ = 1: (1.30)

Here Â and B̂ are functionals of the chiral super�elds �̂a. Their actual dependence on these
super�elds are of no importance to us, so we will not worry about them.

Hence

"ij U ikU jl =
h
UT "U

ikl

=

0
@ 0 ÂyÂ+ B̂yB̂

�
�
ÂyÂ+ B̂yB̂

�
0

1
A
kl

=

 
0 1

�1 0

!kl

= "kl; (1.31)

and WH is (gauge) invariant under SU(2).

The invariance of WY is showed as above since Ĥ1 and L̂ are both doublets under SU(2),
while R̂ is a singlet under this group. Thus the superpotentialW = WH+WY is SU(2)-gauge

invariant.
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We now would like to draw the attention towards the SUSY-breaking term LSoft. Because
of the particular form of LGMT (cf. eqs. (1:19)) the only invariance which has not been

checked yet, is that of LSMT . Since

L̂yL̂ �! L̂ye2ig�̂e�2ig�̂L̂ = L̂yL̂; (1.32)

is invariant, and the same applies for the corresponding terms of R̂, Ĥ1 and Ĥ2, we may

conclue that LSMT , and thus LSoft, are SU(2)-invariant10.

Thus the total Lagrangian LS�QFD is SU(2)-gauge invariant as it should.

The U(1)-Invariance.

Many of the invariances showed above easily generalize to U(1) with the substitutions 2g !
g0, T a�̂a ! Y �̂0 = �̂0. This applies to all terms containing only vector super�elds, and
terms built out of vector super�elds and only one type of chiral super�elds11.

The remaining U(1)-invariance to check, is that of terms holding two, or more, types of chiral

super�elds. Such terms are only contained in the superpotential W, and the invariance is
proved as follows

WH = �"ij Ĥ i
1
Ĥj

2 �! �"ij e�ig
0(YH1+YH2 )�̂0 Ĥ i

1
Ĥj

2

= WH (1.33)

and

WY = f"ij Ĥ i
1
L̂jR̂ �! f"ij e�ig

0(YH1+YL+YR)�̂
0

Ĥ i
1
L̂jR̂

= WY (1.34)

since YH1
+ YH2

= 0 and YH1
+ YL + YR = 0 according to table 1.1. Hence the theory is

U(1)-invariant as well.

This completes the proof of the full SU(2)�U(1) gauge invariance of the theory.

1.3.3 The R-Invariance.

The de�nition of R-symmetry, generated by the operator R, was introduced by the authors

of refs. 1 and 27. It acts on left-handed chiral super�elds �(x; �; ��), and its (right-handed)
hermitian conjugated, as follows

R�(x; �; ��) = e2in���(x; e�i��; ei���) (1.35)

R�y(x; �; ��) = e�2in���y(x; e�i��; ei���); (1.36)

10Note that the last two terms of LSMT are invariant for the same reason as for instance WH .
11The di�erent types in our model are L̂, R̂, Ĥ1 and Ĥ2.
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and on vector multiplets according to

RV (x; �; ��) = V (x; e�i��; ei���): (1.37)

Here � is a continuous real parameter, while n� is called the R-character of the chiral

super�eld �(x; �; ��).

In terms of component �elds, the above transformations read for the chiral multiplet

A �! e2in��A

 �! e2i(n��
1

2
)� 

F �! e2i(n��1)�F

9>>=
>>; ; (1.38)

and for the vector multiplet

f �! f

 �! e�i� 
m �! e�2i�m
V� �! V�
� �! ei��

d �! d

9>>>>>>>>=
>>>>>>>>;
: (1.39)

Here the transformations for the remaining components are given by hermitian conjugation.

For products of left-handed chiral super�elds we have [38]

R
Y
a

�a(x; �; ��) = e2i
P

a
na�

Y
a

�(x; e�i��; ei���); (1.40)

and the following general super�eld terms are all R-invariant:Z
d4� �y(x; �; ��)�(x; �; ��); (1.41)Z
d4� �y(x; �; ��)eV (x;�;

��)�(x; �; ��); (1.42)Z
d4�

Y
a

�a(x; �; ��) �
2(��); if

X
a

na = 1; (1.43)

Z
d4�

Y
a

�a(x; �; ��) �
4(�; ��); if

X
a

na = 0; (1.44)

Now returning to S-QFD, we have at once, from the above results, that LS�QFD is R-

invariant if and only if

n1 + n2 = 1; (1.45)

n1 + nL + nR = 1: (1.46)

Here we have used obvious notation, and we have chosen to give the super�elds arranged

in doublets, the same R-character for convenience. Since the R-characters of the super�elds
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in question are somewhat ambiguous, we will in addition take up the convention of all n's

being positive. With the choices made in table 1.2, LS�QFD is R-invariant, as it should.

Before we close this chapter, we will make one concluding remark. From eqs. (1:43) and

(1:44) it is obvious that both
R
d4� W �2(�) (from LSUSY ) and the soft term

R
d4� W �4(�; ��)

can not be R-invariant at the same time. On the other hand, R-invariance alone does not

favour one from the other. However, the unbroken S-QFD theory, described by LSUSY , must
have appropriate Yukawa-terms. This implies that

R
d4� W �2(�) must be included in LSUSY ,

while the soft term
R
d4� W �4(�; ��) has to be excluded from LSoft (due to R-invariance) as

mentioned earlier in this chapter.

Super�elds R-character

L̂(x; �; ��) 1=4

R̂(x; �; ��) 1=4

Ĥ1(x; �; ��) 1=2

Ĥ2(x; �; ��) 1=2

Table 1.2: The R-character of the di�erent chiral super�elds of S-QFD.
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Chapter 2

Component Field Expansion of

LS�QFD.

In this chapter, the component expansion of the full Lagrangian LS�QFD will be developed,
even if it is LSUSY which will be our main consurn. Much of the explicit calculations are

pretty lengthy and are performed in the appendices. The time-consuming possedure of
explicitely proving the SUSY-invariance of LSUSY will also be given in this chapter. Finally
we will transform the full Lagrangian into four-component notation.

2.1 Component Expansion of LSUSY .

Before we go into the component expansion of LSUSY , the component form of the di�erent
super�elds of the model have to be given. This we will do now.

In the previous chapter, we arranged for one of the lepton super�elds to be an SU(2)-
doublet (L̂) and the other an singlet (R̂). These chiral super�elds will be given the following

component expansions1

L̂(x; �; ��) =

 
�̂l(x; �; ��)

l̂(x; �; ��)

!
L

= ~L(x) + i ����� @� ~L(x)�
1

4
�� ���� @�@�~L(x)

+
p
2 �L(2)(x) +

ip
2
�� �����@�L

(2)(x) + �� FL(x); (2.1)

R̂(x; �; ��) = l̂R(x)

= ~R(x) + i ����� @� ~R(x)�
1

4
�� ���� @�@� ~R(x)

1These component expansions, and coming, would been simpler in the (y; �)-basis. However, this basis

will not often be used, so we have decided to work in the (x; �; ��)-basis form the very beginning.
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+
p
2 �R(2)(x) +

ip
2
�� �����@�R

(2)(x) + �� FR(x): (2.2)

Field name Symbol Spin Charge

Leptons L(2) 1 1=2 0

L(2) 2 1=2 �1
R(2) 1=2 1

Sleptons ~L1 0 0
~L2 0 �1
~R 0 1

Higgs bosons H1

1
0 0

H1

2
0 �1

H2

1
0 1

H2

2
0 0

Higgsinos  1

H1
1=2 0

 2

H1
1=2 �1

 1

H2
1=2 1

 2

H2
1=2 0

Gauge bosons V a
� 1 {

V 0
� 1 {

Gauginos �a 1=2 {

�0 1=2 {

Table 2.1: A summary of the SM-�elds and their superpartners present in the S-QFD model.
The quantum numbers of the various �elds are also summarized. All fermion �elds are given

in terms of two-component (Weyl) spinors.

Here the component �elds are de�ned by

~L(x) =

 
~�l(x)
~lL(x)

!
L(2)(x) =

 
�
(2)

l (x)

l(2)(x)

!
L

FL(x) =

 
f�(x)
f lL(x)

!
; (2.3)

and2

~R(x) = ~lyR(x) R(2)(x) = l
(2)

R (x) FR(x) = f lR(x): (2.4)

2The relation ~R = ~l
y

R (with a dagger on only one side) may seem a little bit strange at �rst sight. It is

introduced for convenience, and in particular to let ~Ly and ~Ry both create negatively charged sleptons. If

we have identi�ed ~R = ~lR, then ~Ry would have created positively charged sleptons[39].
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Field name Symbol Spin Charge

Auxiliary Lepton Fields f� 0 0
f lL 0 �1
f lR 0 1

Auxiliary Higgs Fields f1
1

0 0
f2
1

0 �1
f1
2

0 1

f2
2

0 0
Auxiliary Gauge Fields Da 1 {

D0 1 {

Table 2.2: A summary of the auxiliary �elds of the S-QFD model and their quantum
numbers.

In the same way, we have for the two Higgs (doublet) super�elds

Ĥ1(x; �; ��) =

 
Ĥ1

1
(x; �; ��)

Ĥ2

1
(x; �; ��)

!

= H1(x) + i ����� @�H1(x)�
1

4
�� ���� @�@�H1(x)

+
p
2 � ~H

(2)

1 (x) +
ip
2
�� �����@� ~H

(2)

1 (x) + �� F1(x); (2.5)

Ĥ2(x; �; ��) =

 
Ĥ1

2
(x; �; ��)

Ĥ2

2
(x; �; ��)

!

= H2(x) + i ����� @�H2(x)�
1

4
�� ���� @�@�H2(x)

+
p
2 � ~H

(2)

2 (x) +
ip
2
�� �����@� ~H

(2)

2 (x) + �� F2(x); (2.6)

where the component �elds read

H1(x) =

 
H1

1
(x)

H2

1
(x)

!
~H
(2)

1 (x) =

 
 1

H1
(x)

 2

H1
(x)

!
F1(x) =

 
f1
1
(x)

f2
1
(x)

!
; (2.7)

and

H2(x) =

 
H1

2
(x)

H2

2
(x)

!
~H
(2)

2 (x) =

 
 1

H2
(x)

 2

H2
(x)

!
F2(x) =

 
f1
2
(x)

f2
2
(x)

!
: (2.8)

Note that all the F-�elds are auxiliary �elds, which later on, when constructing the on-shell
Lagrangian, will be removed through the Euler-Lagrange equations.

Here hats (̂ ), as in the previous chapter, indicate super�elds while tildes (~) denote su-

persymmetric partners of the SM particles. The subscripts L and R on fermionic-�elds,
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mean as usual, left- and right-handed �elds3, while the superscript \(2)" means that we are

dealing with two-component (Weyl) spinors. The same goes for the SU(2) components of

the higgsino doublets ~H
(2)

1 and ~H
(2)

1 , even if the above mentioned superscript is missing on

the  's.

The (minimal) S-QFD model also contains vector multiplets. As a matter of convenience,

we choose to work in the WZ-gauge. In this gauge the component expansions of the SU(2)-

and U(1)-gauge super�elds V̂ = T aV̂ a and V̂ 0 = Y v̂0, are given by

V̂ a(x; �; ��) = � ����� V a
� (x) + i �� ����a(x)� i ���� ��a(x) +

1

2
�� ���� Da(x); (2.9)

and

v̂0(x; �; ��) = � ����� V 0
�(x) + i �� ����0(x)� i ���� ��0(x) +

1

2
�� ���� D0(x): (2.10)

Here �a(x) and �0(x) are the two-component (Weyl) gaugino �elds, the superpartners of the
(SM) gauge bosons, and the D-�elds are auxiliary �elds.

With the above de�nitions, the Lagrangian LSUSY can be expanded in terms of component
�elds. In appendix B, this calculation is performed in detail, and the result is according to
eq. (B:61)

LSUSY =
�
D� ~L

�y �
D�

~L
�
+
�
D� ~R

�y �
D�

~R
�
� i �L(2)���D�L

(2) � i �R(2)���D�R
(2)

+ ~Ly
�
gT aDa � 1

2
g0D0

�
~L + ~Ryg0D0 ~R

+
p
2i ~Ly

�
gT a�a � 1

2
g0�0

�
L(2) �

p
2i �L(2)

�
gT a��a � 1

2
g0��0

�
~L

+
p
2i ~Ryg0�0R(2) �

p
2i �R(2)g0��0 ~R

+ F y
LFL + F y

RFR

� i ��a���D��
a � i ��0���D��

0

� 1

4

�
V a ��V a

�� + V
0��V 0

��

�
+
1

2
( DaDa +D0D0 )

+ (D�H1)
y (D�H1) + (D�H2)

y (D�H2)

� i
�~H
(2)

1
���D�

~H
(2)

1 � i
�~H
(2)

2
���D�

~H
(2)

2

+Hy
1

�
gT aDa � 1

2
g0D0

�
H1 +Hy

2

�
gT aDa +

1

2
g0D0

�
H2

+
p
2i Hy

1

�
gT a�a � 1

2
g0�0

�
~H
(2)

1 �
p
2i �~H

(2)

1

�
gT a��a � 1

2
g0��0

�
H1

+
p
2i Hy

2

�
gT a�a +

1

2
g0�0

�
~H
(2)

2 �
p
2i �~H

(2)

2

�
gT a��a +

1

2
g0��0

�
H2

3When those subscripts occur on bosonic-�elds, say on ~LL, it only denotes a particular �eld and has

nothing to do with left-and right-handed �elds (which are not de�ned for bosonic-�elds).
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+ F
y
1F1 + F

y
2F2

+ �"ij
�
H i

1
F
j
2 +H

i y
1 F

j y
2 + F i

1
H

j
2 + F

iy
1 H

j y
2 � ~H

(2) i

1
~H
(2) j

2 � �~H1

(2) i �~H2

(2) j
�

+ f"ij
h
F i
1
~Lj ~R + F

iy
1
~Lj y ~Ry +H i

1
F
j
L
~R+H

i y
1 F

j y
L

~Ry

+H i
1
~LjFR +H

i y
1
~Lj yF y

R � ~H
(2) i
1 L(2) j ~R� �~H1

(2) i
�L(2) j ~Ry

�H i
1
L(2) jR(2) �H

i y
1
�L(2) j �R(2) �R(2) ~H

(2) i
1

~Lj � �R(2) �~H1

(2) i
~Lj y

�
+ t:d: (2.11)

Here t.d. means a total derivative and D� is the standard SU(2)�U(1)-covariant derivative
de�ned by

D� = @� + igT aV a
� + ig0

Y

2
V 0
�; a = 1; 2; 3: (2.12)

Note that when D� operates on e.g. the gauginos �a and �0, which lay in the adjoint
representation of SU(2) and U(1) respectively, i.e.

h
T c
adj

iab
= �if cab;

Yadj = 0;

we have (cf. eq. (B:23))

D��
a = @��

a � gfabcV b
��

c; (2.13)

D��
0 = @��

0: (2.14)

The various �elds of the Lagrangian (2:11) are summarized in tables 2.1 and 2.2. Note that
this Lagrangian contains auxiliary �elds, i.e. F- and D-�elds, and thus is o�-shell.

2.2 Elimination of the Auxiliary Fields.

The aim of this section will be to construct the on-shell Lagrangian, i.e. to eliminate the
di�erent auxiliary �elds given in table 2.2. When we do so, we will see that mass terms

for Higgs-bosons and di�erent interaction terms between Higgses, Leptons and Sleptons,

without any Lepton-Slepton interaction, will appear.

If we pick all the terms from the o�-shell Lagrangian (2:11) containing Lepton-, Higgs- and

Gauge-auxiliary �elds (F- and D-�elds) we get

LAux = LAux�F + LAux�D; (2.15)
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with

LAux�F = F
y
LFL + F

y
RFR + F

y
1F1 + F

y
2F2

+ � "ij
h
H i

1
F
j
2 +H

i y
1 F

j y
2 + F i

1
H

j
2 + F

iy
1 H

j y
2

i
+ f "ij

h
F i
1
~Lj ~R+ F

i y
1
~Lj y ~Ry +H i

1
F
j
L
~R +H

i y
1 F

j y
L

~Ry

+H i
1
~LjFR +H

i y
1
~Lj yF y

R

i
; (2.16)

and

LAux�D =
1

2
( DaDa +D0D0 )

+ ~Ly
�
gT aDa � 1

2
g0D0

�
~L+ ~Ryg0D0 ~R

+H
y
1

�
gT aDa � 1

2
g0D0

�
H1 +H

y
2

�
gT aDa +

1

2
g0D0

�
H2: (2.17)

We will now show that these �elds can be eliminated through the Euler-Lagrange equa-

tions [41]

@L
@�

� @�
@L

@(@��)
= 0;

where � is any (also hermitian conjugated) Minkowski �eld. Formally auxiliary �elds are

de�ned as �elds having no kinetic terms. Thus, this de�nition immediately yields that the
Euler-Lagrange equations for auxiliary �elds simplify to @L

@�
= 0.

Applying these simpli�ed equations to various auxiliary F-�elds yields the following relations

F j y
L = �f "ijH i

1
~R; (2.18)

F
y
R = �f "ijH i

1
~Lj; (2.19)

F iy
1 = �� "ijHj

2 � f "ij ~Lj ~R; (2.20)

F
j y
2 = �� "ijH i

1
: (2.21)

Expressions for, say F j
L and so on, are given by hermitian conjugation of the above relations.

Substituting these expressions for the F-�elds into eq. (2:16) yields according to eq. (D:7)

LAux�F = ��2Hy
1H1 � �2H

y
2H2 � �f

h
H
y
2
~L ~R + ~LyH2

~Ry
i

� f2
�
~Ly~L ~Ry ~R+Hy

1H1

�
~Ly~L+ ~Ry ~R

�
�Hy

1
~L
�
Hy

1
~L
�y �

: (2.22)

Note that mass terms for the Higgs bosons and Higgs-Lepton and Lepton-Lepton interactions
have now been generated as we clamed at the beginning of this section.

The same program for the D-�elds gives

Da = �g
h
~LyT a~L+Hy

1T
aH1 +Hy

2T
aH2

i
; (2.23)

D0 =
g0

2
~Ly~L � g0 ~Ry ~R+

g0

2
H
y
1H1 �

g0

2
H
y
2H2; (2.24)
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and according to eq. (D:9) this means for LAux�D

LAux�D = �g
2

2

�
~LyT a~L +H

y
1T

aH1 +H
y
2T

aH2

� �
~LyT a~L+H

y
1T

aH1 +H
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2T

aH2

�

� g02

8

�
~Ly~L� 2 ~Ry ~R+H

y
1H1 �H

y
2H2

�2
: (2.25)

Now Higgs-Higgs, Higgs-Slepton and Slepton-Slepton interactions have come into play.

By substituting the expression for LAux back into LSUSY , the on-shell Lagrangian is ob-

tained. According to eq. (D:11) the result is

LSUSY =
�
D� ~L

�y �
D�

~L
�
+
�
D� ~R

�y �
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~R
�
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2
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p
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1
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+
p
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1
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p
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2
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1
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1H1 � �2Hy

2H2 � �f
h
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2
~L ~R+ ~LyH2
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i
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�
~Ly~L ~Ry ~R+H

y
1H1
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y
1
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y
1
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�y �
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2
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aH1 +H
y
2T
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y
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aH1 +H
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� g02

8
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~Ly~L� 2 ~Ry ~R+H

y
1H1 �H
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�2
+ t:d: (2.26)

This concludes this section.

2.3 Introducing the Photon-, W- and Z-Gauge Boson

Fields.

In order for our model to be realistic, the sector of the theory containing the SM-particles

has to coincide with non-supersymmetric QFD. In particular this means that the photon and
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heavy W- and Z-bosons have to be present. However, \generation" of heavy gauge bosons

requires some sort of gauge symmetry breaking as in the SM, and this will be discussed in

detail in the next chapter. Nevertheless, it is practical at this stage to introduce the W-

and Z-gauge �elds even if they before gauge symmetry breaking are massless.

In analogy with the Standard Model we de�ne

A�(x) = cos �w V
0
�(x) + sin �w V

3

� (x); (2.27)

Z�(x) = � sin �w V
0
�(x) + cos �w V

3

� (x); (2.28)

W�
� (x) =

V 1

� (x)� iV 2

� (x)p
2

; (2.29)

and for the corresponding spin-1=2 gauginos

�A(x) = cos �w �
0(x) + sin �w �

3(x); (2.30)

�Z(x) = � sin �w �
0(x) + cos �w �

3(x); (2.31)

��(x) =
�1(x)� i�2(x)p

2
: (2.32)

With these de�nitions the SU(2) � U(1)-covariant derivative becomes (cf. eq. (C:15))

D� = @� + igT aV a
� + ig0

Y

2
V 0
�

= @� +
igp
2
T+W+

� +
igp
2
T�W�

� + ieQA�+
ig

cos �w

h
T 3 �Q sin2 �w

i
Z�; (2.33)

where the charge operator Q (with eigenvalues in units of the elementary charge \e") is

Q = T 3 +
Y

2
; (2.34)

and

T� = T 1 � iT 2: (2.35)

It is important to note that Q and the T 's are assumed to operate on the same �eld as D�.
For instance, if D� operates on an SU(2)-doublet, T a = �a=2, and D� is a 2 � 2-matrix,

while for an SU(2)-singlet T a = 0, and D� is no matrix at all.

In terms of the new �elds (2:27){(2:32), the Lagrangian LSUSY , in two-component notation,

can be obtained from appendix C by substituting for the various terms of eq. (2:26) rewritten

in this appendix.

Nevertheless, the result reads

LSUSY =
�
D� ~L

�y �
D�

~L
�
+
�
D� ~R

�y �
D�

~R
�
� i �L(2)���D�L

(2) � i �R(2)���D�R
(2)
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Here, cf. eqs. (C:34), (C:34) , (C:36) and (C:37),

A�� = cos �w V
0
�� + sin �w V

3

��

= A�� + ie
�
W+

� W
�
� �W�

� W
+

�

�
; (2.37)

Z�� = � sin �w V
0
�� + cos �w V

3

��

= Z�� + ig cos �w
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� W
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� �W�

� W
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�
; (2.38)
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�
� ig cos �w
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Z�W

�
� �W�
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�
; (2.40)

and A�� , Z�� and W
�
�� are the usual �eldstrengths given by

A�� = @�A� � @�A�; (2.41)

Z�� = @�Z� � @�Z�; (2.42)

W�
�� = @�W

�
� � @�W

�
� : (2.43)

Note that the \scripted kinetic terms" are de�ned in complete analogy with eqs. (2:27){(2:29)
and that they also contain interaction terms for the gauge bosons.

2.4 Introducing Four-Component Spinors.

In order to make use of the Lagrangian (2:36) in �eld theoretical calculations, it is practical
to express it in terms of four-component spinors. This will be done in this section.

The interactions of the gauge-fermions of eq. (2:36) suggest that we introduce the Majorana
spinors

~A(x) =

 
�i�A(x)
i��A(x)

!
; (2.44)

~Z(x) =

 
�i�Z(x)
i��Z(x)

!
; (2.45)

and the Dirac spinors

~W (x) =

 
�i�+(x)
i���(x)

!
; (2.46)

~W c(x) =

 
�i��(x)
i��+(x)

!
: (2.47)
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Here the Photino ~A(x) and the Zino ~Z(x) are neutral �elds, while the Wino-�eld describes

charged (�e) Winos. The state ~W c is the charge conjugated of the Wino-state ~W (cf.

eq. (A:91)).

In sect. 2.1 we saw that the Higgs-sector contains two charged and neutral states (cf. ta-

ble 2.1). Hence we introduce the weak interacting neutral Majorana Higgsino states

~H1 =

 
 1

H1

� 1

H1

!
; (2.48)

~H2 =

 
 2

H2

� 2

H2

!
; (2.49)

and the charged Dirac Higgsino states

~H =

 
 1
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� 2

H1

!
; (2.50)

~Hc =

 
 2

H1

� 1

H2

!
: (2.51)

The (four-component) leptons are as usual Dirac spinors, and they have according to sub-
sect. A.5.2, the form

l =

 
l
(2)

L

�l
(2)

R

!
: (2.52)

By working in the Weyl basis for the 
-matrices (cf. eqs. (A:48) and (A:49)), we demonstrate
in great detail in appendix C, eq. (C:51), that the four component version of the two-
component Lagrangian (2:26) (or equivalently (2:36)) is
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Here PL and PR are the left- and right-handed projection operators given by eqs. (A:80)
and (A:81).

This concludes this section, and after the long discussion of the Lagrangian LSUSY we will
�nally draw our attention towards the soft-breaking piece LSoft.

2.5 Component Field Expansion of LSoft.

From chapter 1, eq. (1:17), we recall that

LSoft = LSMT + LGMT ; (2.54)

with

LSMT = �
Z
d4�

h
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L L̂
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and
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1

2

Z
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�
+ h:c:

i
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Now the component expansion of LSoft will be calculated, and we start with LSMT . With

the component expansions of L̂, R̂, Ĥ1 and Ĥ2 from sect. 2.1, we have (cf. [31, 32, 33])
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L
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and correspondingly for LGMT

LGMT = �1

2
M
�
�a�a + ��a��a

�
� 1

2
M 0

�
�0�0 + ��0��0

�
: (2.58)

HereM2

L
~Ly~L is de�ned in analogy with the corresponding super�eld de�nition, i.e. M2

L
~Ly~L =

m2

~� ~�
y~� +m2

L
~lyL
~lL.

Since eq. (2:58) contains two-component Weyl-spinors, we will, as in the previous section,

introduce four-component notation.

Hence, with eq. (2:46) we have

�1

2
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�
�1�1 + ��1��1

�
� 1
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M
�
�2�2 + ��2��2

�
= �M

�
���+ + �����+

�
= M ~W

�~W ~W; (2.59)

where M ~W =M . Similarly, with eqs. (2:44) and (2:45)
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�~A ~Z; (2.60)

where we have introduced the notation

M ~A = M 0 cos2 �w +M sin2 �w; (2.61)

M ~Z = M 0 sin2 �w +M cos2 �w: (2.62)

Thus eq. (2:58) reads

LGMT = M ~W

�~W ~W +
1

2
M ~A

�~A ~A+
1

2
M ~Z

�~Z ~Z +
1

2
(M ~Z �M ~A) tan 2�w

�~A ~Z; (2.63)

and this section is concluded.
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2.6 Conclusion | The Full Four-Component La-

grangian LS�QFD.

With the results from eqs. (2:53) and (2:63) we may conclude for LS�QFD = LSUSY +LSoft
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� g2 tan2 �w

8

�
~Ly~L� 2 ~Ry ~R +H

y
1H1 �H

y
2H2

�2
+ t:d: (2.64)

This Lagrangian is the �nal result for our S-QFD theory, but before we close this chapter

we will make several observations about this Lagrangian.

Firstly, it contains the correct kinetic terms for the bosons (sleptons, photons, Z-bosons,

higgs bosons : : :) and fermions (leptons, photinos, zinos, winos, : : :) of the theory.

Secondly, it holds the well known SM-interaction terms for the SM-particles, and in addition

interaction terms between SM- and SUSY-particles and SUSY-particles alone. Note the rich

number of di�erent interactions, both cubic and quadratic, that are possible in this theory.

Thirdly, we observe that for the wino- and charged higgsino-�elds, their charge conjugated

�elds also appear in the Lagrangian. Such a situation is unknown from the SM. In part 2 we

will see that this has the strange consequence that the theory will contain fermion-number

violating vertices and propagators.

After these remarks we close this chapter.
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Chapter 3

Symmetry Breaking and Physical

Fields.

In this chapter the breaking of electroweak gauge symmetry and the introduction of physical
states will be demonstrated.

As alluded to earlier, the breaking of gauge symmetry is in the MSSM directly connected to
the breaking of supersymmetry. In fact this breaking | called radiative breaking | is an

e�ect of radiative corrections to the soft mass-parameters as we now will discuss in detail.

3.1 Radiative SU(2) � U(1) Breaking.

Our model has the attractive virtue of allowing for the possibility of a phenomenologically
acceptable radiative breaking of the electroweak gauge symmetry [4{22, 43{46]. This is
obtained through a generalization of the original Coleman-Weinberg mechanism [48]. Ra-
diative breaking also has the advantage, when combined with some additional plausible

assumptions, of being very powerful since it excludes large regions of parameterspace as we

will see. This takes part in increasing the predictiveness of the model. Now we will work
out the Coleman-Weinberg scheme [48] for our supersymmetric �eld theory.

In SUSY-theories, one has two kinds of potentials | superpotentials and scalar potentials.
Superpotentials have been discussed earlier in this thesis, so in consequence we now consider

the scalar potential, which has its analogy in the SM.

Contributions to the MSSM scalar potential, VMSSM , arise from three sources | the auxil-

iary F- and D-�elds and the soft terms. We write

VMSSM = VD + VF + VSoft; (3.1)

33



where1 2
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and
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j
2 + h:c:

�
: (3.4)

Now we leave this general scalar potential, and instead consider the pure scalar Higgs
potential because it is this potential which is of interest in the discussion of gauge symmetry
breaking.

3.1.1 The Scalar Higgs Potential.

Thus, for the pure Higgs sector of the theory, the (tree-level) scalar Higgs potential V �
VHiggs reads

3 according to eqs. (3:1){(3:4)

V =
�
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1
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However, in appendix E this potential is rewritten for later convenience, and the result is

(cf. eq. (E:2))

V = m2

1
Hy

1H1 +m2

2
Hy

2H2 �m2

3
"ij
�
H i

1
Hj

2 + h:c:
�

+
1

8

�
g2 + g02

� �
H
y
1H1 �H

y
2H2

�2
+
g2

2

���Hy
1H2

���2 : (3.6)

1Generally can D0 ! D0+ �, where � is a Fayet-Iliopoulos term [42], but we will henceforth assume that

this term is neglectable.
2Note that it is �VMSSM which appears in the Lagrangian.
3This potential is a special case of the general two-Higgs doublet potential [49, 50].
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Here we have taken advantage of the arbitrary nature of the soft mass-parameters m2

1
and

m2

2
, and absorbed �2 into these, i.e.

m2

1
+ �2 �! m2

1
;

m2

2
+ �2 �! m2

2
:

Without loss of generality, we may choose the phases of the (scalar) Higgs �elds in such

a way that all mass parameters m2

i (i = 1; 2; 3) are real and that the vacuum expectation

values (v.e.v.'s) of the Higgs �elds are non-negative. As in the Standard Model (SM),

the SU(2) � U(1) gauge symmetry has to be broken down to U(1)EM . This means that

electromagnetism is unbroken and hence the charged components of the Higgs-doublets can

not develop non-vanishing v.e.v.'s. Hence

hH1i =

 
v1
0

!
; (3.7)

hH2i =

 
0
v2

!
; (3.8)

and the potential becomes at the vacuum

V = m2

1
v2
1
+m2

2
v2
2
� 2m2

3
v1v2 +

1

8

�
g2 + g02

� h
v2
1
� v2

2

i
2

: (3.9)

For this potential to be bound from below, e.g. in the direction v1 = v2, one has to be
careful and demand

B � m2

1
+m2

2
� 2m2

3
� 0: (3.10)

This relation will hereafter be referred to as the stability condition.

From the SM Higgs-mechanism, it is a well-known fact that when the Higgs v.e.v. is non-

vanishing this signals breaking of the SU(2)� U(1)-symmetry because origo is \unstable".
This situation applies equivalently well to the two Higgs doublet model [49, 50]. However,
what demands do we have to make in order to obtain non-vanishing v.e.v.'s? As long as
Vmin is non-negative, the minimum (Vmin = 0) lies at the origo, i.e. at v1 = v2 = 0, and

the gauge symmetry is unbroken. Thus Vmin has to be negative to obtain breaking of gauge

symmetry.

Now we will derive a condition on the mass parameters for this to happen. Rewriting

eq. (3:9) yields

V = vTM2v +
1

8

�
g2 + g02

� h
v2
1
� v2

2
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; (3.11)

where

v =
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�v2

!
;

M2 =

 
m2
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3
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3
m2

2

!
:
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SinceM2 is a symmetric matrix, the following is true for the quadratic form vTM2v [51]

�� jvj2 � vTM2v � �+ jvj2 : (3.12)

Here �� are the eigenvalues of M2 given by

�� =
1

2

�
m2

1
+m2

2
�
q
(m2

1 +m2
2)

2 � 4 (m2
1m

2
2 �m4

3)

�
; (3.13)

and the norm jvj is taken relative to the inner product space IR2.

Since the last term of eq. (3:11) is non-negative, the quadratic form vTM2v has to be at its

minimum value in order to get a minimum of V, i.e.

vTM2v = �� jvj2 :
Hence in order for Vmin < 0 we must have �� < 0, something which implies

detM2 = m2

1
m2

2
�m4

3
< 0: (3.14)

Thus if eq. (3:14), in addition to the stability condition (3:10), are satis�ed, this signals
SU(2)� U(1)-gauge symmetry breaking. Later on this will be demonstrated explicitly.

m2

1
+m2

2
� 2 jm2

3
j m2

1
m2

2
�m4

3
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Figure 3.1: The �gure shows B and detM as functions of scale Q. The various sectors where

SU(2)� U(1) is broken in a satisfactory/unsatisfactory manner are also indicated.

When condition (3:14) is satis�ed, the neutral components ofH1 andH2 start to develop non-

vanishing v.e.v.'s (v1; v2 6= 0). Now we will derive some useful relations, and an expression

for the potential at its minimum. At Vmin, the potential has to ful�l the equations
@Vmin
@v1

=
@Vmin
@v2

= 0 and @2Vmin
@v1@v2

> 0. This yields the following relations

m2

1
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3
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1
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� h
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1
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2

i
v1 = 0; (3.15)
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1
� v2
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i
v2 = 0; (3.16)

�2m2

3
�
�
g2 + g02

�
v1v2 > 0: (3.17)
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By multiplying eqs. (3:15) and (3:16) by v�11 and v�12 respectively, and then adding and

subtracting the resulting equations, we obtain

m2

1
+m2

2
= m2
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(tan � + cot �) ; (3.18)

v2
1
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2
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�2
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"
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2
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1
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#
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h
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1
�m2

2
+
�
m2

1
+m2

2

�
cos 2�

i
; (3.19)

where

tan� =
v2

v1
: (3.20)

Here the angle � is a new parameter of the model and since v1; v2 � 0 we have

0 � � � �

2
: (3.21)

With eqs. (3:15), (3:16) and (3:19) the minimum of the potential can be written as

Vmin =
�1

2(g2 + g
0 2)

h�
m2

1
�m2

2

�
+
�
m2

1
+m2

2

�
cos 2�

i2
; (3.22)

All the parameters of the model have a functional dependence on the renormalization point4

Q. This in particular applies to the mass parametersm2

i (i = 1; 2; 3) and thus to detM2(Q).
To proceed, one has to take the complicated (coupled) renormalization group equations
(RGE's) into account. This we will not do here, but only refer the interested reader to the

literature [47]. The rest of the discussion of this section will be kept on a qualitative level.

At the Planck scale, MP l, condition ( 3:14) is not ful�lled, and hence the critical scale
reads detM2(Qc) = 0, where Qc < MP l. Below Qc, non-vanishing Higgs v.e.v.'s start to

develop, signalling SU(2)�U(1)-breaking as discussed earlier, but only as long as B(Q) � 0.

However, for some particular scale Qs < Qc, B(Qs) < 0 is driven negative and for Q < Qs

one is in an instability region where SU(2) � U(1) is broken in an unsatisfactory manner.
Our picture is recapitulated in �gure 3.1 for various scales Q.

Note that in the supersymmetric limit, where all (soft) mass parameters of LSoft are set equal
to zero, detM2 = 0 and no electroweak breaking is possible in view of condition (3:14). So,

in our model the gauge symmetry breaking is connected to the breaking of supersymmetry,

as we already have noted several times5.

4This Q-dependence may for instance come from the renormalization-group-improved tree-level potential

which incorporates the large logarithmic corrections proportional to � log (MGUT=Q). HereMGUT is a grand

uni�cation scale.
5It is possible to construct non-minimal models [23] where the Higgs-sector is enlarged by an SU (2) �

U (1)-gauge singlet and where the gauge-symmetry and SUSY can be broken separately.
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Before we close this section, we will make one �nal comment. Instead of our naive use of

the tree-level scalar potential (3:6), we should have used the full one-loop corrected e�ective

potential

V1(Q) = V (Q) + �V (Q):

Here �V is the one-loop radiative correction to the scalar potential and in the leading

logarithm approximation it reads

�V (Q) � m4

t log

 
MGUT

Q

!
2

;

where mt is the top-quark mass and MGUT some super-high uni�cation scale. By choosing

a low renormalization scale, one gets substantial contributions from �V . Until recently, it
was believed that the large logarithmic terms could be reabsorbed into the soft parameters6

of V (Q), and in consequence, �V only contained small logarithmic corrections. However,
this only applies to so-called �eld independent radiative corrections. For the �eld dependent

corrections we still can get substantial contributions as explained e.g. in ref. 52.

Even though the scalar potential can receive large corrections from �V , the use of the tree-
level potential V (Q) is adequate for our discussion. Furthermore, it simpli�es the discussion
enormously.

3.2 The Physical Higgs Boson Spectrum.

In the previous section we derived the condition for electroweak symmetry breaking. Hence-
forth we will assume that these conditions, i.e. eqs. (3:10) and (3:14), are ful�lled, and show

that this implies the correct symmetry breaking pattern.

In the SM one starts by expanding around the Higgs v.e.v.'s and identify the new state
as the physical state. However, by performing the same scheme for the MSSM, these new
weak interacting eigenstates do not represent physical (mass) eigenstates, as we will see. So,

before we proceed, we will work out the physical Higgs boson states.

The physical eigenstates are obtained by diagonalizing the Higgs boson mass-square matrix.
This is most easily done in a real basis where

H1 =

 
h1 + ih2
h3 + ih4

!
; (3.23)

H2 =

 
h5 + ih6
h7 + ih8

!
: (3.24)

6Recall that the soft parameters in our theory are arbitrary.
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In this basis the scalar (Higgs) potential (3:6) reads

V (hi) = m2

1

4X
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h2i +m2
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2
(h1h6 + h3h8 � h2h5 � h4h7)

2
: (3.25)

From this potential it is apparent that the Higgs �eld basis that we are working in can

not be a physical basis since it contains o�-diagonal mass terms. Thus we are forced to
transform to a mass-eigenstate basis, and the method which we will apply, is described in
detail in ref. 49 for a general two doublet model.

The physical Higgs boson states are obtained by diagonalizing the Higgs boson mass-square
matrix7 given by [49]

M2

ij =
1

2

@2V

@hi @hj

�����
min

: (3.26)

Here the term \min" means setting hh1i = v1, hh7i = v2 and hhii = 0 for all other i's. Note

from eq. (3:25) that the \mixed" second order partial derivatives of V (hi) are continuous
and thus equal (i.e. @2V

@ hi@ hj
= @2V

@ hj@ hi
), implying a symmetric mass-matrix, i.e. M2

ij =M2

ji.

Now, the di�erent parts of the Higgs sector will be analyzed in detail, and this will be the
aim of the next three subsections.

3.2.1 The Charged Higgs Sector; Indices 3, 4, 5 and 6.

With eqs. (3:25) and (3:26) the Higgs boson mass-square matrix is easily calculated. Observe
that the real and imaginary sector decouple i.e.

M2

56
=M2

54
=M2

36
=M2

34
= 0:

The remaining mass-square matrix components read
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1
;

7The factor of 1
2
in front of de�nition (3:26) stems from the normalization of the scalar �elds in eqs. (3:23)

and (3:24).
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and
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64
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: (3.27)

Here eqs. (3:15) and (3:16) have been taken advantage of in eliminating the mass parameters
m2

1
and m2

2
. Hence in the basis's (h5; h3) and (�h6; h4), the charged Higgs mass-square

matrix reads8
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2
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1

v1v2
v1v2 v2

2

!
: (3.28)

To obtain the physical charged Higgs states and their masses, one has to orthogonal diago-
nalize 9 the matrixM2

� since physical states always are orthogonal to each other. Note that
M2

� always will be orthogonal diagonalizable because it is symmetric [51].

By calculating the eigenvalues and the corresponding set of orthonormal eigenvectors, the
charged mass matrixM2

� can be written in the form (tan� = v2=v1)
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� sin� cos �
cos � sin�

! 
0 0
0 m2

H�

! 
� sin � cos�
cos � sin�

!
; (3.29)

where

m2

H� =
1

2

 
g2 +

2m2

3

v1v2

!�
v2
1
+ v2

2

�
; (3.30)

is the mass-square of the physical charged Higgs-bosons. Note that by this diagonalization
procedure, two massless and two massive states have appeared. The mass-zero states will

be associated with Goldstone bosons, as we will see in a moment.

8The particular sign of the basis (�h6; h4), owing to the appearance of the sign in eq. (3:27), is chosen

such that the two mass matrices coincide with each other.
9Recall that an orthogonal diagonalizable n�n-matrix A always can be written in the formA = PDP�1,

where D is given by D = diag
�
�1 �2 : : : �n

�
, and P is the orthogonal matrix containing the eigen-

vectors in the following way P =
�
v1 v2 : : : vn

�
. Here (�i; vi) are corresponding sets of eigenvalues

and eigenvectors.
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After completing the diagonalizing procedure, the mass terms for the charged Higgs-bosons

in the Lagrangian can be written in the following way

�
h5 h3

�
M2

�

 
h5
h3

!
+
�
�h6 h4

�
M2

�

 
�h6
h4

!

=
�
h5 + ih6 h3 � ih4

�
M2

�

 
h5 � ih6
h3 + ih4

!

=
�
H1

2
H

2 y
1

�
M2

�

 
H

1 y
2

H2

1

!

=

 
�H1

2
sin � +H

2 y
1 cos�

H1

2
cos � +H

2 y
1 sin�

!T  
0 0

0 m2

H�

! 
�H1 y

2 sin� +H2

1
cos�

H
1 y
2 cos � +H2

1
sin�

!

=
�
G+ H+

� 0 0
0 m2

H�

! 
G�

H�

!
:

Here

G� = H2

1
cos � �H1 y

2 sin�; (3.31)

H� = H2

1
sin� +H

1 y
2 cos �; (3.32)

and

G+ =
�
G�

�y
;

H+ =
�
H�

�y
;

where G� are the charged Goldstone bosons while H� are the charged Higgs bosons.

This completes this subsection.

3.2.2 The Neutral Higgs Sector; Indices 2 and 8.

In the previous subsection we saw that the charged Higgs sector decouples into a real and

an imaginary part. This is also the case for the neutral Higgs sector as the reader may easily

verify by showing that M2

ij = 0 for i = 1; 7 and j = 2; 8. This owing to the fact that our
theory is CP-invariant. We start the discussion with the imaginary (CP-odd) sector, and

consider the real (CP-even) part in the next subsection10.

Proceeding as in the previous subsection the mass-square matrix becomes

m2

3

v1v2

 
v2
1

v1v2
v1v2 v2

2

!

10The various CP-assignments can be obtained by e.g. studying the interactions of (neutral) Higgs- and

gauge-bosons.
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in the basis (h8; h2). By diagonalizing this matrix, which is identical to that for the charged

sector, the physical mass eigenstates are obtained as follows

m2

3

v1v2

�
h8 h2

� v2
1

v1v2
v1v2 v2

2

! 
h8
h2

!

=

 
�h8 sin � + h2 cos �

h8 cos � + h2 sin �

!T  
0 0

0 m2

H0

3

! 
�h8 sin� + h2 cos�

h8 cos� + h2 sin�

!

=
�

G0p
2

H0

3p
2

� 0 0

0 m2

H0

3

!0@ G0

p
2

H0

3p
2

1
A :

Here

G0 =
p
2 (h2 cos� � h8 sin � )

=
p
2
�
ImH1

1
cos � � ImH2

2
sin �

�
; (3.33)

H0

3
=

p
2 (h2 sin� + h8 cos � )

=
p
2
�
ImH1

1
sin� + ImH2

2
cos �

�
; (3.34)

where G0 is a Goldstone boson (in this case neutral), and H0

3
is a neutral Higgs boson. The

mass of the Higgs boson is11

m2

H0

3

=
m2

3

v1v2

�
v2
1
+ v2

2

�
= m2

H� �m2

w: (3.35)

The factors of
p
2 are inserted in order for these �elds to have the conventional kinetic

energy terms.

3.2.3 The Neutral Higgs Sector; Indices 1 and 7.

After completing the diagonalizing of the neutral imaginary sector, we will now consider the

corresponding real sector. For this sector the mass-square matrix reads

M2

0
=

 
A B

B C

!

relative to the basis (h1; h7). Here we have introduced the abbreviations

A =
1

2

�
g2 + g02

�
v2
1
+m2

3

v2

v1
;

B = �1

2

�
g2 + g02

�
v1v2 �m2

3
;

C =
1

2

�
g2 + g02

�
v2
2
+m2

3

v1

v2
;

11In sect. 3.3 we will show that the W- and Z-mass are respectively given by m2
w = 1

2
g2
�
v21 + v22

�
and

m2
z =

1
2

�
g2 + g02

� �
v21 + v22

�
.
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and we notice that A;C � 0 and B � 0. Also here eqs. (3:15) and (3:16) have been used to

eliminating the mass parameters m2

1
and m2

2
.

The orthogonal diagonalization scheme for this sector is not as straightforward as above.

Accordingly some more details will be given. The eigenvalues of M2

0
read11

m2

H0

1
; H0

2

=
1

2

�
A+ C �

q
(A� C)

2
+ 4B2

�

=
1

2

"
m2

H0

3

+m2

z �
r�

m2

H0

3

+m2
z
�2
� 4m2

zm
2

H0

3

cos2 2�

#
; (3.36)

where the positive (negative) sign is associated with m2

H0

1

(m2

H0

2

). The corresponding eigen-

vectors are12

v1;2 = N1;2

0
@ 1

�(A�C)�
p

(A�C)2+4B2

2B

1
A : (3.37)

Here N1;2 are normalization constants.

As will become clear soon, it is useful to introduce the mixing angel � (not to be confused
with the �ne structure constant) de�ned by

sin 2� =
2Bq

(A� C)2 + 4B2

= � sin 2�

0
@m2

H0

1

+m2

H0

2

m2

H0

1

�m2

H0

2

1
A

cos 2� =
A� Cq

(A� C)2 + 4B2

= � cos 2�

0
@ m2

H0

3

�m2

z

m2

H0

1

�m2

H0

2

1
A :

From the mathematical identities sin 2� = 2 sin� cos� and cos 2� = cos2 � � sin2 �, one
easily obtains the second order equation

x2 + 2 cot (2�) x� 1 = 0;

where x = tan�. This equation generally has two distinct solutions. However, earlier we

have chosen v1; v2 � 0 or equivalently 0 � � � �

2
, something which according to ref. 53

implies that ��

2
� � � 0. With this constraint in mind, one can uniquely solve for x, and

the result is (remember that B � 0)

tan� =
� (A� C) +

q
(A� C)2 + 4B2

2B
; (3.38)

12Here v1 and v2 correspond to the eigenvalues m2
H0

1

and m2
H0

2

respectively.
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and by inversion (and some algebra)

cot� =
(A� C) +

q
(A� C)

2
+ 4B2

2B
: (3.39)

By comparing eqs. (3:38) and (3:39) with eq. (3:37), we see that the second component of

v1 (v2) can up to a sign be identi�ed with tan� (cot�). The mixing angle, �, was de�ned

in order to obtain this.

Thus we choose N1 = cos� and N2 = � sin� in order to obtain an orthonormal eigenvector

set, and the mass-square matrix of the real neutral sector takes on the form

M2

0
=

 
cos� � sin�

sin� cos�

!0@ m2

H0

1

0

0 m2

H0

2

1
A cos� � sin�

sin� cos�

!�1
: (3.40)

The corresponding mass terms of the Lagrangian now become

�
h1 h7

�
M2

0

 
h1
h7

!

=

 
h1 cos�+ h7 sin�

�h1 sin� + h7 cos�

!T 0@ m2

H0

1

0

0 m2

H0

2

1
A h1 cos� + h7 sin�

�h1 sin�+ h7 cos�

!
: (3.41)

When we now proceed by identifying the physical Higgs states H0

1
and H0

2
, we have to be

careful. The reason is that these states, as any physical states, have to have zero vacuum
expectation values. Hence we make the following identi�cations

H0

1p
2
+ v1 cos�+ v2 sin� = h1 cos�+ h7 sin�;

H0

2p
2
� v1 sin� + v2 cos� = �h1 sin� + h7 cos�;

or equivalently

H0

1
=

p
2
h �
ReH1

1
� v1

�
cos�+

�
ReH2

2
� v2

�
sin�

i
; (3.42)

H0

2
=

p
2
h
�
�
ReH1

1
� v1

�
sin� +

�
ReH2

2
� v2

�
cos�

i
: (3.43)

This concludes this section.

3.2.4 Conclusion and Comments.

In the three previous subsections the physical content of the Higgs sector of the MSSM was

obtained. It is the charged Higgs bosons (H�), the neutral Higgs bosons13 (H0

i , i = 1; 2; 3)
and �nally the charged (G�) and neutral Goldstone bosons (G0).

13Some authors use the notation H0, h0 and A0 instead of our H0
1 , H

0
2 and H0

3 .
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The new �elds in terms of the \old" are given in eqs. (3:31), (3:32), (3:33), (3:34), (3:42) and

(3:43). However, in order to give the Lagrangian in terms of the physical �elds, we have to

invert the above relations. The results, obtained by straightforward calculations, are

H1 =

 
v1 +

1p
2
[H0

1
cos��H0

2
sin� + iH0

3
sin� + iG0 cos � ]

H� sin� +G� cos �

!
; (3.44)

H2 =

 
H+ cos � �G+ sin�

v2 +
1p
2
[H0

1
sin� +H0

2
cos� + iH0

3
cos� � iG0 sin� ]

!
: (3.45)

By inserting these expressions into the Lagrangian (2:64) the interactions (and Feynman

rules) of the physical Higgs bosons can be obtained.

From the formulae for the Higgs-masses obtained earlier, eqs. (3:28), (3:35) and (3:36), it

is interesting to note that in the limit mH0

3

!1 (�xed tan�), H�, H0

1
(and H0

3
) decouple

from the theory, and thus the Higgs-sector contains only H0

2
. In this limit, it is possible to

show that H0

2
is identical to the Higgs of the (minimal) Standard Model.

It should be noticed that the Higgs-masses obtained in the previous subsections are tree-level
formulae. They ful�l the following relations

mH� � Mw;

mH0

2

� mz � mH0

1

;

mH0

3
� mH0

2
:

Since mH0

2
� mz (at tree-level) it is believed, due to the interaction picture of H0

2
, that H0

2

could be produced and hopefully detected at LEP. No Higgs has ever been seen and this
may seem like a problem. Thus it came like a relief to many physicists when it recently was
reported [52] (see subsect. 3.1.1) that the MSSM Higgses could get radiative corrections as

large as O (100) GeV. This at once may push the mass of H0

2
far above that of the Z-boson

(and outside the LEP 1 discovery range). These large radiative corrections also have the
implications [54], due to the unsuccessful Higgs searches at LEP 1, that14

tan� � 1; (3.46)

in the context of the MSSM.

3.3 The W-, Z- and Lepton Mass.

In this section we will give an illustrative demonstration (and a control for the sceptic one)
of the fact that our gauge symmetry breaking scheme is capable of \producing" masses of
the W- and Z-bosons and the (charged) leptons.

As for the SM case, we will make use of the gauge freedom of the theory and transform to

the unitary gauge. This consists of setting the Goldstone �elds of eqs. (3:44) and (3:45) to
zero, but it will have no practical implication for our discussion.

14It is usual to let tan � varies in the range 1 � tan � � 50.
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3.3.1 The W- and Z-Mass.

From the Lagrangian (2:64) (after symmetry breaking) we pick the following terms

(D�v1)
y
(D�v1) + (D�v2)

y
(D�v2)

=

0
@ ig

2 cos �w
v1Z

�

igp
2
v1W

��

1
A
y0
@ ig

2 cos �w
v1Z�

igp
2
v1W

�
�

1
A

+

0
@ igp

2
v2W

+�

� ig

2 cos �w
v2Z

�

1
A
y0
@ igp

2
v2W

+

�

� ig

2 cos �w
v2Z�

1
A

=
g2

4 cos2 �w

�
v2
1
+ v2

2

�
Z�Z�

+
g2

4

�
v2
1
+ v2

2

�
W+�W�

� +
g2

4

�
v2
1
+ v2

2

�
W��W+

� :

where v1 =
�
v1 0

�T
and v2 =

�
0 v2

�T
.

Hence the Z- and W-mass can be identi�ed as

m2

w =
g2

2

�
v2
1
+ v2

2

�
; (3.47)

m2

z =
1

2

g2

cos2 �w

�
v2
1
+ v2

2

�
=

1

2

�
g2 + g02

� �
v2
1
+ v2

2

�
; (3.48)

which is consistent with the results from the SM.

Note that with the above results v2
1
+ v2

2
is �xed by the W-mass.

3.3.2 The Lepton Mass.

Now the lepton mass will be paid attention. The piece f"ij �RLiHj
1 + h:c:, stemming from

the Yukawa piece of the superpotential, gives raise to the lepton mass as we now will see.

With H1 given by eq. (3:44), f"ij �RLiHj
1 + h:c: contains the following terms

�f �RL2v1 + h:c: = �fv1
�
�lRlL + �lLlR

�
= �fv1

�
�l PL l + �l PR l

�
= �fv1 �ll:

Hence, we can make the identi�cation

ml = fv1;

and as in the SM, we notice that the lepton mass is undetermined by the theory.
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For later use we observe that the Yukawa coupling f can be written as

f =
ml

v1
=

gmlp
2mw cos�

: (3.49)

3.4 The Physical Slepton States.

The Lagrangian (2:64) contains o�-diagonal mass terms for the sleptons in the basis (~lL; ~lR).

So, also here we have to perform a diagonalizing procedure to obtain the physical mass

eigenstates, and hence we have

Lmass
slept: = ��fv2 ~lyL~lR � �fv2 ~l

y
R
~lL � f2v2

1

�
~l
y
L
~lL + ~l

y
R
~lR
�

�m2

L
~lyL
~lL �m2

R
~lyR
~lR

= �
�
~lyL

~lyR

�  m2

L + f2v2
1

�fv2
�fv2 m2

R + f2v2
1

! 
~lL
~lR

!
:

By diagonalizing, one obtains the mass eigenstates (in the usual way)

~l1 = ~lL cos � + ~lR sin �;
~l2 = ~lL sin � � ~lR cos �;

with15

tan 2� =
2�fv2

(m2

L �m2

R)
=

2�ml tan�

(m2

L �m2

R)
;

and masses respectively given by

M2

~l1;~l2
= f2v2

1
+
1

2

��
m2

L +m2

R

�
�
q
(m2

L �m2

R)
2
+ 4�2f2v22

�

= m2

l +
1

2

��
m2

L +m2

R

�
�
q
(m2

L �m2

R)
2
+ 4�2m2

l tan
2 �

�
: (3.50)

Unfortunately, there do not exist much information about the parameters contained in the

slepton mass matrix. All the same, we will assume maximal mixing, i.e. � = �=4 or

m2

L = m2

R = ~m2: (3.51)

A motivation for this choice can be taken from supersymmetric QED where this choice is
made in order to keep parity unbroken.

15Notice from eqs. (3:20) and (3:49) that fv2 = fv1
v2
v1

= ml tan �.
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Hence

~l1 =
~lL + ~lRp

2
; (3.52)

~l2 =
~lL � ~lRp

2
; (3.53)

and

M2

~l1;~l2
= ~m2 +m2

l � j�jml tan �: (3.54)

This concludes this section.

3.5 Chargino and Neutralino Mixing.

The gaugino-higgsino sector of the theory also contains o�-diagonal mass terms, as easily
seen from the Lagrangian (2:64). To obtain mass-eigenstates the now familiar diagonaliza-
tion procedure has to be performed, and the resulting mass-eigenstates are called charginos,

~��, and neutralinos, ~�0. The discussion of these states will be the aim of the present section.

3.5.1 Chargino Mixing.

Charginos ~�+i (i = 1; 2), which arise due to mixing of Winos, ~W�, and charged Higgsinos,
~H�, are four component Dirac spinors. Since there in principle are two independent mixings,
i.e. ( ~W�; ~H�) and ( ~W+; ~H+), we will need two unitary matrices in order to diagonalize the
resulting mass-matrix [55].

From the Lagrangian (2:64) we pick the terms

Lmass
~�� = �gv1 �~WPR ~H � gv1

�~HPL ~W � gv2
�~HPR ~W � gv2

�~WPL ~H

+ �
�~H ~H +M ~W

�~W ~W;

which in two-component form reads

Lmass
~�� = ig

h
v1 

2

H1
�+ + v2�

� 1

H2

i
+ �  2

H1
 1

H2
�M ���+ + h:c: (3.55)

By introducing the notation

 + =

 
�i�+
 1

H2

!
;  � =

 
�i��
 2

H1

!
;

and

	� =

 
 +

 �

!
;
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eq. (3:55) takes on the form

Lmass
~�� =

1

2

�
	�

�T
Y �	� + h:c:

Here

Y � =

 
0 XT

X 0

!
; (3.56)

with

X =

 
M �

p
2mw sin�

�
p
2mw cos� �

!
: (3.57)

Now, two-component mass-eigenstates can be de�ned by (i; j = 1; 2)

�+i = Vij 
+

j ; (3.58)

��i = Uij 
�
j ; (3.59)

where U and V are unitary matrices, chosen in such a way that

U�XV y = M�
D : (3.60)

HereM�
D is the chargino mass-matrix. Since we have assumed CP-invariance of our theory,

this in particular holds for the chargino sector. Thus the chargino-masses will be real and
non-negative16. Furthermore, the two-component spinors of eqs. (3:58) and (3:59) can be

arranged in (four-component) Dirac-spinors as follows17:

~�i =

 
�+i
���i

!
; i = 1; 2: (3.61)

The Lagrangian (2:64) is given in terms of the non mass-eigenstates ~W and ~H, because
it leads to simpler expressions for the interaction terms. In converting to the (physical)

16It is possible to show that the masses read

M2
~�1

= A+
p
B;

M2
~�2

= A�
p
B;

where

A =
1

2

�
M2 + �2

�
+m2

w;

B =
1

4

�
M2 � �2

�2
+m4

w cos2 (2�) +m2
w
�
M2 + �2 + 2�M sin (2�)

�
:

17In what follows, we will use the abbreviation ~� � ~�+. Hence ~�c � (~�+)c = ~�� is a negatively charged

chargino.
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charginos, the following relations are useful

PL ~W = PLV
�
i1 ~�i; (3.62)

PR ~W = PRUi1~�i; (3.63)

PL ~H = PLV
�
i2 ~�i; (3.64)

PR ~H = PRUi2~�i: (3.65)

Here, repeated indices are summed from 1 to 2, and, as usual, PL and PR are (projection)

operators projecting out the top two and bottom two components of a Dirac-spinor. These

relations are easy to prove with eqs. (3:58), (3:59), (3:61) and the unitarity of the matrices

U and V. We will now demonstrate it for eq. (3:62).

Proof : With eq. (2:46), the left-hand side of eq. (3:62) reads

PL ~W = PL

 
�i�+

i���

!
=

 
�i�+

0

!
: (3.66)

By pre-multiplying eq. (3:58) with V �

ik (i; k = 1; 2), and using the unitarity of V, we

obtain

V �

ik�
+
i = V �

ikVij 
+
j = �kj 

+
j =  +

k :

Hence  
�i�+

0

!
=

 
 +
1

0

!
= V �

i1

 
�+i
0

!
= PLV

�

i1~�i;

and by comparing this result with eq. (3:66) the proof of eq. (3:62) is competed.

In the same way the following relations for the charge-conjugated �elds are obtained

PL ~W c = PLU
�
i1 ~�

c
i ; (3.67)

PR ~W c = PRVi1 ~�
c
i ; (3.68)

PL ~H
c = PLU

�
i2 ~�

c
i ; (3.69)

PR ~Hc = PRVi2 ~�
c
i : (3.70)

Observe that by hermitian conjugation, two corresponding sets of equations, like for instance
�~WPR = Vi1�~�i PR, can be obtained.

By this observation we conclude this subsection, and instead consider neutralino mixing.
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3.5.2 Neutralino Mixing.

Neutralinos (~�0i ; i = 1; : : : ; 4) are Majorana-spinors arising due to mixing of photino, zino

and neutral higgsinos.

The appropriate mass-terms are

Lmass
~�0 = � gp

2 cos �w

h n
v1

�~ZPR ~H1 � v2
�~H2PR ~Z

o
+ h:c:

i
� �

2
�~H1

~H2 �
�

2
�~H2

~H1

+
1

2
M ~A

�~A ~A+
1

2
M ~Z

�~Z ~Z +
1

2
(M ~Z �M ~A) tan 2�w

�~A ~Z;

and in two-component form they read

Lmass
~�0 =

igp
2 cos �w

n
v1 �Z 

1

H1
� v2 �Z 

2

H2

o
� � 1

H1
 2

H2

� 1

2
M ~A �A�A �

1

2
M ~Z �Z�Z �

1

2
(M ~Z �M ~A) tan 2�w �A�Z : (3.71)

In the basis

 0 =
�
�i�A �i�Z  1

H1
 2

H2

�T
; (3.72)

eq. (3:71) can be written in the form

Lmass
~�0 =

1

2

�
 0
�T
Y 0 0 + h:c:; (3.73)

where Y 0 reads

Y 0 =

0
BBB@

M ~A
1

2
(M ~Z �M ~A) tan 2�w 0 0

1

2
(M ~Z �M ~A) tan 2�w M ~Z �mz cos � mz sin�

0 �mz cos � 0 ��
0 mz sin� �� 0

1
CCCA :

(3.74)

Note that Y 0 is symmetric, something which has to do with the Majorana nature of the
neutralinos. In consequence, only one unitary matrix N is required in order to diagonalize
Y 0:

N�Y 0Ny = M0

D: (3.75)

Here M0

D is the diagonal neutralino mass matrix18.

As in the previous subsection we de�ne two-component mass-eigenstates by

�0i = Nij 
0

j ; i; j = 1; : : : ; 4; (3.76)

18Also here the matrix N may be chosen in such a way that the elements ofM0
D are real and non-negative.
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but in this case we arrange them in (four-component) Majorana spinors de�ned by

~�0i =

 
�0i
��0i

!
; i = 1; : : : ; 4: (3.77)

The relations corresponding to eqs. (3:62){(3:65) read

PL ~A = PLN
�
i1 ~�

0

i ; (3.78)

PR ~A = PRNi1 ~�
0

i ; (3.79)

PL ~Z = PLN
�
i2 ~�

0

i ; (3.80)

PR ~Z = PRNi2 ~�
0

i (3.81)

PL ~Hj = PLN
�
i;j+2 ~�

0

i ; j = 1; 2; (3.82)

PR ~Hj = PRNi;j+2 ~�
0

i ; (3.83)

and they are obtained in the same fashion. Here repeated indices are assumed to be summed
from 1 to 4.

3.6 Concluding Remarks.

In the previous chapter the full four-component Lagrangian for our supersymmetric elec-
troweak theory was established. Furthermore, we in this chapter introduced the physical

states and described the gauge symmetry breaking which gives masses to the gauge bosons
and the charged leptons.

With these elements at hand, one can in principle calculate any process contained within
this minimal electro-weak theory.
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Appendix A

Notation and Conventions.

A.1 Relativistic Notation.

In this report we will adopt standard relativistic units, i.e.

�h = c = 1: (A.1)

A general contravariant and covariant four-vector will be denoted by

A� = (A0;A1; A2; A3) = (A0;A)
A� = (A0;A1; A2; A3) = (A0;�A)

)
: (A.2)

The compact \Feynman slash" notation

A= = 
�A�; (A.3)

will be used. The metric tensor, g�� , which connects A� and A�, is de�ned by

g�� = diag (1;�1;�1;�1): (A.4)

Moreover, we will use the (relativistic) summation convention which states that repeated
Greek indices, �; �; �; �; �; are summed from 0 to 3 and latin indices run from 1 to 3 unless

speci�cally indicated to the contrary.

The Minkowski product (the four-product) will be denoted by AB and de�ned as

AB � A�B� = A0B0 �AB (A.5)

Practical notation for the four-gradients, @� and @�, will be used

@� � @

@x�
= (

@

@t
;�r); (A.6)

@� � @

@x�
= (

@

@t
;r): (A.7)
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The totally antisymmetric Levi-Civita tensors in three and four dimensions are respectively

de�ned by

"ijk =

8>><
>>:

+1 , for even permutations of 123

�1 , for odd permutations

0 , otherwise,

(A.8)

"���� =

8>><
>>:

+1 , for even permutations of 0123

�1 , for odd permutations

0 , otherwise,

(A.9)

where

"ijk = "ijk ; (A.10)

"���� = �"���� : (A.11)

A.2 Pauli Matrices.

The well known Pauli matrices are de�ned by

�1 =

 
0 1

1 0

!
; �2 =

 
0 �i
i 0

!
; �3 =

 
1 0

0 �1

!
; (A.12)

and satisfy the commutator relation

[�i; �j] = 2i"ijk�k; i; j; k = 1; 2; 3:

From this de�nition it is evident that

(�i)y = �i; i = 1; 2; 3; (A.13)

(�i)2 = 1; (A.14)

Tr(�i) = 0: (A.15)

For later use, we also introduce1

�0 =

 
1 0

0 1

!
; (A.16)

and a useful arrangement of these matrices is

�� = (�0 ; ��) = (�0 ; �1; �2; �3):

1Note that di�erent signs are used in the literature for the de�nition of this quantity.
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The index structure of the �-matrices is given by

�� = [�
�
� _�]: (A.17)

We now introduce some \Pauli related" matrices de�ned by

��� _�� � �� � _� = " _�
_�"���

�

� _�
; (A.18)

where the \metrics" " and �" have been used. By direct computations one can establish the

following relations

��0 = �0 (A.19)

��i = ��i; i = 1; 2; 3: (A.20)

Moreover, the following relations are true

�
�
� _���

_��
� = 2 � �

� �
_�
_� (A.21)

Tr(�����) = 2g�� (A.22)

(����� + �����) �� = 2 g��� �� (A.23)

(����� + �����) _�_� = 2 g��� _�_� (A.24)

(������� + �������) = 2 (g���� + g���� � g����) (A.25)

(�������� + ��������) = 2 (g�� ��� + g����� � g�����) (A.26)

Tr(����������) = 2 (g��g�� + g��g�� � g��g�� � i"����): (A.27)

Most of the above relations are easily proved by direct computations. Besides, M�uller-

Kirsten and Wiedemann [33, subsec. 1.3.5], have proved most of them, and in particular
eq. (A:27) which is the most di�cult one.

Anti-symmetric matrices ��� and ���� are de�ned by

��� =
i

4
(����� � �����); (A.28)

���� =
i

4
(����� � �����): (A.29)

By utilizing the index structure of the �-matrices, it is easily seen that ��� and ���� must

have the index structure ��� = [(���) �� ] and ���� = [(����)
_�
_�]. In fact are ��� and ���� the

generators of SL(2; C) in the spinor representations (1
2
; 0) and (0; 1

2
) respectively. The proofs

together with the establishment of the below formulae can be found in ref. 33:

��� y = ����; (A.30)

��� =
1

2i
"�������; (A.31)
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���� = � 1

2i
"��������; (A.32)

Tr(���) = Tr(����) = 0 (A.33)

Tr(������) =
1

2
(g��g�� � g��g��) +

i

2
"����; (A.34)

Tr(��������) =
1

2
(g��g�� � g��g��)� i

2
"���� : (A.35)

A.3 Dirac Matrices.

The Dirac 
-matices are de�ned by the anticommutation (Cli�ord) relations

f
�; 
�g = 2g�� : (A.36)

From the four 
-matrices above, it is possible to de�ne a \�fth 
-matrix" by


5 � 
5 � i
0
1
2
3 (A.37)

It possesses the following properties which follows easily from the de�nitions (A:36) and
(A:37)

f
5; 
�g = 0; (A.38)

(
5)2 = 1: (A.39)

We will now state three explicit representations of the 
-matrices, namely the so-called
Dirac representation, the Majorana representation, and �nally the Chiral representation.

A.3.1 Representations

The lowest non-trivial representation of these matrices is of dimension four. and we will

concentrate on this represntation. From now on, we will assume that a four dimensional

representation is used.

The Dirac Representation or Canonical Basis.

In this particular representation the 
-matrices read


0 =

 
1 0

0 �1

!
; (A.40)


i =

 
0 �i

��i 0

!
; i = 1; 2; 3; (A.41)
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5 =

 
0 �0

��0 0

!
; (A.42)

where 1 denotes the 2 � 2 identity matrix and �� and ��� are the Pauli matrices de�ned in

the previous section.

The Majorana Representation.

In this representation all 
-matricrs are pure imaginary and have the explicit form:


0 =

 
0 �2

���2 0

!
; (A.43)


1 =

 
i�3 0

0 i�3

!
; (A.44)


2 =

 
0 ��2

���2 0

!
; (A.45)


3 =

 
�i�1 0

0 i�1

!
; (A.46)

and �nally


5 =

 
�2 0

0 ��2

!
: (A.47)

The Chiral representation or Weyl Basis.

This basis is of particular interest to persons doing SUSY. In this representation the 
-
matrices take on the explicite form


� =

 
0 ��

��� 0

!
; (A.48)


5 =

 
�1 0

0 1

!
: (A.49)

A.4 Spinor Relations.

In two-component notation we have the anti-symmetric "-metric. The tensor oby the fol-
lowing relations, which are proven by stright forward calculations

"�� "
� = ��� �
�

 � ��
 �

�
�; (A.50)
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"
_� _� "

_
 _� = �
_�

_� �
_

_�
� �

_

_� �

_�
_�
; (A.51)

"�� "�
 = ��
; (A.52)

"
_� _� "

_� _
 = �
_


_� : (A.53)

We start by postulating that the spinor components are Grassmann numbers, i.e.

f �;  �g = f �;  �g = f �;  �g = 0

f�� _�; �� _�g = f�� _�; ��
_�g = f�� _�; ��

_�g = 0

)
; (A.54)

and also anti-commute with other Grassmann numbers (e.g. fermion �elds, spinor charges

etc.).

With this postulate an expression like  ��� =  2�1� 1�2 do not vanish
2, and in particular

 ��� = ��� �

� _���
_� = ��� _� � _�

)
: (A.55)

Because of the signs in eq. (A:55), it is not well-de�ned what we mean by  � or � ��. To tackle
this problem, we introduce the summation convention that states that suppressed undotted
spinor indices are summed from upper left to downer right, while suppressed dotted indices

are summed from lower left to upper right. In particular this means, for instance, that

 � �  ��� (A.56)
� �� � � _���

_� (A.57)

 ���� �  ���� _���
_� (A.58)

etc:

We are now in position to establish some useful relations involving spinors which will fre-
quently be use in calculations.

Let  , � and � be two-comonent (Weyl) spinors. Then the following relations hold:

 � = � ; (A.59)

� �� = �� � ; (A.60)

( �)
y

= �� � ; (A.61)

 ���� = ������ ; (A.62)

( ����)y = ��� � ; (A.63)

 ���� = ����� ; (A.64)

��� _�
�� _� ��� �� = ����

�
1

2
� �
� g

�� � i (���) �

�

�
��; (A.65)

 ������ =  [ �2i ��� + g�� ]�; (A.66)

2This observation can be taken as a motivation of the above postulate.
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� ����� �� = � [ �2i ���� + g�� ] ��; (A.67)

�� �� = �1

2
"�� ��; (A.68)

���� =
1

2
"�� ��; (A.69)

�� _���
_� =

1

2
" _�

_� ����; (A.70)

�� _�
�� _� = �1

2
"
_� _�

����: (A.71)

The �nal results are only stated here. Most of the explicite proofs are given in detail in in

ref. 33.

A.4.1 Fierz Rearrangemant Formulae.

Some other relations have proven useful. They go under the name of Fierz Rearrangement
formulae and read:

� �� = �1

2
��  �; (A.72)

�� � ���� = �1

2
���� � ��; (A.73)

� �� _� =
1

2
��� ��  ��� � _�; (A.74)

�� � �� =
1

2
������ � _���

_��
� ; (A.75)

 1�
� ��1  2�

� ��2 =
1

2
g��  1 2 ��1��2; (A.76)

�� ��� � = �1

2
�� ��� � ; (A.77)

���� ����� = �1

2
���� ����� ; (A.78)

 ������ = ������ : (A.79)

Neither these formulae we will prove explicitly. The proofs can be found from the same

source as above.

A.5 Four Component notation.

A.5.1 The Projections Operators.

We start by de�ning the projection operators, well known from SM,

PL =
1

2
(1� 
5) ; (A.80)
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PR =
1

2
(1 + 
5) : (A.81)

With the properties of the 
-matrices from sect. A.3, it is straightforward to establish the

relations

PL + PR = 1; (A.82)

PLPL = PL; (A.83)

PLPR = PRPL = 0; (A.84)

P
y
L = PL; (A.85)

PL

� = 
�PR; (A.86)

and corresponding equations for PR.

A.5.2 Connection Between the Two- and Four-Component Spinors.

Let us introduce the two two-component Weyl spinors �� and �� _�

�� 2 F;

�� _� 2 _F �:

The vector-spaces F and _F � are inequivalent representation spaces of SL(2,C). Now we
construct the direct sum space

D = F � _F �: (A.87)

This space is a four-dimensional representation space of SL(2,C). The elements of D, are
just the well-known four-component Dirac-spinors.

Thus a Dirac-spinor, 	, can be constructed from these Weyl spinors according to

	 =

 
��
�� _�

!
: (A.88)

Strictly speaking this is a Dirac-spinor in the Weyl-representation. Thus we see that if we

work in the Weyl representation (subsect. A.3.1) we have a direct relation between two-

and four-component spinors. Throughout this subsection we will thus assume the Weyl-

representation.

A Majorana spinor, �, is a (four-component) Dirac-spinor with the additional condition

� = �c = C��T : (A.89)
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Here C is the charge conjugation matrix3 while �� means, as usual, the the Dirac adjoint

spinor �� = �y
0 (independent of represnetation). In the Dirac-represntation C reads CD =

i
2
0, and in the Weyl-representation (with the correct index structure) [33, p. 135]

Cw =

 
(i�2��0)

�

� 0

0 (i��2�0)
_�
_�

!
: (A.90)

Thus it is possible to show that [33, p. 140]

	c = C �	T =

 
��
�� _�

!
; (A.91)

i.e. the charge conjugation (in the Weyl representation) 
ips � and �.

Hence, we may conclude that a Majorana-spinor,�, de�ned in eq. (A:89), can be written

� =

 
��
�� _�

!
: (A.92)

Furthermore, in the Weyl representation we have

PL =

 
1 0
0 0

!
;

PR =

 
0 0
0 1

!
;

and thus

	L = PL	 =

 
��
0

!
;

	R = PR	 =

 
0
�� _�

!
:

The Dirac-adjoint spinor of 	, is

�	 = 	y
0 =
�
�� �� _�

�
; (A.93)

as can be showed by straightforward calculations.

Useful Relations Between Two- and Four-Component Spinors.

Now we shall establish some relations, making the transitions between two- and four-

component spinors more explicite and easy later on. Let the Dirac- and Majorana-spinor,

	(x) and �(x), be de�ned as in eqs. (A:88) and (A:92).

3For more information on this matrix consider e.g. ref. 56.
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Hence we have (in the Weyl representation):

�	1	2 = �1�2 + ��1��2; (A.94)

�	1

�	2 = ��1��

��2 � ��2��
��1; (A.95)

�	1
5	2 = ��1�2 + ��2��1; (A.96)

�	1

�
5	2 = ���1��

��2 � ��2��
��1; (A.97)

�	1

�@�	2 = �1�

�@���2 + ��1��
�@��2

= ��2��
�@��1 + ��1��

�@��2 � @� (��2��
��1) ; (A.98)

�	1PL	2 = �1�2; (A.99)

�	1PR	2 = ��1��2; (A.100)

�	1

�PL	2 = ��1��

��2; (A.101)

�	1

�PR	2 = ���2����1; (A.102)

�	1

�PL@�	2 = ��1��

�@��2; (A.103)

�	1

�PR@�	2 = �1�

�@���2;

= ��2��
�@��1 � @� (��2��

��1) : (A.104)

A.6 Grassmann Variables.

In this appendix a di�erentiation and integration calculus for Grassmann variables will be
established. The obtained results will be extensively used in the text.

A.6.1 Di�erentiation with respect to Grassmann Variables.

In supersymmetry the Grassmann variables, which parametrize superspace, are important.

Because of their anticommuting properties, they can not be continuos varying variables.
However, they have to be discrete objects. Hence, de�ning di�erentiation with respect to
Grassmann variables in the normal sense, as the ratio of two in�nitesimal increments, has

no meaning. However, formally we can de�ne di�erentiation, following common practice, as

@��

@��
= ���; (A.105)

@ ��

@ ��
= � �

� ; (A.106)

@�� _�

@�� _�

= �
_�
_�; (A.107)

@�� _�

@�� _�
= � _�

_�
: (A.108)
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The "-metric can be used to raise and lower indices of derivatives according to4

"��
@

@ ��
= � @

@��
(A.109)

"��
@

@��
= � @

@ ��
(A.110)

and

" _�
_� @

@�� _�
= � @

@�� _�

(A.111)

"
_� _�

@

@�� _�

= � @

@�� _�
(A.112)

Proof : Let the eq. (A:109) operates (from the left) on �
 :

"��
@

@ ��
�
 = �

@

@��
�
 :

Then by comparing each side of this equation we have

"��
@

@ ��
�
 = "�� �




�

= "�
 ;

�

@

@��
�
 = �"
�

@

@��
��

= �"
� ���

= �"
�

= "�
 :

Hence we can conclude eq. (A:109) is ful�lled. The other relations in eqs. (A:110){

(A:112) are showed in a similar fashion.

Due to the anticommuting character of � and ��, we shall demand that

(
@

@ ��
;
@

@ ��

)
=

(
@

@�� _�
;
@

@�� _�

)
=

(
@

@ ��
;
@

@�� _�

)
= 0; (A.113)

(
@

@��
; ��

)
= ���; (A.114)

(
@

@�� _�
; ��

_�

)
= �

_�
_�; (A.115)

4Take particular notice in the sign on the right-hand side of these equations.
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and, since � and �� are concidered to be independent,

(
@

@ ��
; ��

_�

)
=

(
@

@�� _�
; ��

)
= 0: (A.116)

These equations yield directly that

@ ��

@�� _�
=
@��

_�

@ ��
= 0;

and also an \unusual" product rule (with a minus sign) like e.g.

@

@ ��
(���
) =

 
@

@ ��
��

!
�
 � ��

@

@ ��
�
 = ����
 � ���

�

: (A.117)

With the conventions for the di�erential operators established so far, the following relations
are true5

@

@ ��
�� = 2 ��; (A.118)

@

@�� _�
���� = �2 �� _�; (A.119)

@

@��

@

@ ��
�� = 4; (A.120)

@

@�� _�

@

@�� _�

���� = 4: (A.121)

Proof : We start by proving eqs. (A:118) and (A:120)

@

@ ��
�� =

@

@ ��
����

= � �
� �� � ��"�
�



�

= �� + �
�



�

= 2 ��;

and

@

@��

@

@ ��
�� =

@

@��

@

@ ��
����

5When spinor indices are suppressed on the di�erentiation symbols, we will follow the convention

@

@�

@

@�
=

@

@��

@

@ ��
;

@

@��

@

@��
=

@

@�� _�

@

@�� _�

:
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=
@

@��

�
@

@ ��
����

�

= 2
@

@��
��

= 2 ���

= 4:

Eqs. (A:119) and (A:121) are proven in a similar way.

A.6.2 The Berezin Integral.

In ordinary �eld theories, a translation invariant action is constructed (assuming surface

terms to vanish), by integrating a Lagrangian density L(x) over d4x. In a similar fashion,

SUSY invariant actions in superspace can be obtained by an integration over the whole of
superspace.

The aim of this section will be to de�ne what we understand by integration with respect to
Grassmann variables, i.e. to de�ne the so-called Berezin integral [57].

We will start by considering the simplest situation with only one Grassmann variable �.
Since �n = 0; n � 2, due to the anticommuting property of �, any function of �, f(�), has
always the form

f(�) = f(0) + �f (1): (A.122)

Hence it is su�cient to de�ne
R
d� and

R
d� � in order to let

R
d� f(�) be well-de�ned. Following

F.A. Berezin [57] we de�ne Z
d� = 0; (A.123)Z

d� � = 1: (A.124)

Thus Z
d� f(�) =

Z
d�
�
f(0) + �f (1)

�
= f (1); (A.125)

and formally di�erentiation and integration are the same, i.e.Z
d�f(�) =

@

@�
f(�): (A.126)

Two important properties, follow as a consequence of the de�nitions (A:123), (A:124) and

use of eq. (A:122), should be notedZ
d� f(� + �) =

Z
d� f(�); (A.127)Z

d� (a f(�) + b h(�)) = a

Z
d� f(�) + b

Z
d� h(�); a; b 2 C; (A.128)
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i.e. translation invariance and complex linearity respectively.

Superspace is not parametrized in terms of only one Grassmann variable. However, it

\contains" the Grassmann algebras G2 = f�1; �2g and �G2 = f��1; ��2g. To de�ne integration
on these algebras, we have to generalize the above results. By demanding

fd ��; d ��g = fd ��; ��g = 0; (A.129)n
d �� _�; d �� _�

o
=
n
d �� _�; �� _�

o
= 0; (A.130)

and using the de�nitions (A:123) and (A:124) we haveZ
d �1d �2 = 0; (A.131)Z

d �1d �2 �1 =
Z
d �1d �2 �2 = 0; (A.132)Z

d �1d �2 �1�2 = �1: (A.133)

Similar formulae hold for the algebra �G2. Now the integral of any function on G2 and/or
�G2 can be obtained by Taylor expansion and linearity.

We now de�ne \volume elements" of the anti-commuting part of superspace

d2� = �1

4
d�� d�� = �"��

4
d�� d��; (A.134)

d2�� = �1

4
d�� _� d��

_� = �
"
_a _�

4
d�� _� d�� _�; (A.135)

d4�� = d2� d2��: (A.136)

With these de�nitions the following relations are trueZ
d2� =

Z
d2�� = 0; (A.137)Z

d2� �� =
Z
d2�� �� _� = 0; (A.138)Z

d2� �� = 1; (A.139)Z
d2�� ���� = 1; (A.140)Z

d4� �� ���� = 1: (A.141)

Proof : Eq. (A:137) and (A:138) follow immediately from eq. (A:131) and (A:132)

and the corresponding equations for �G2.

By using the de�nition (A:133), (A:134) and the fact that �� = "�� �
��� = �2 �1�2,

we have Z
d2� �� = �

"��

4

Z
d �� d ��

�
�2 �1 �2

�
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=
"12

2

Z
d �1 d �2 �1 �2 +

"21

2

Z
d �2 d �1 �1 �2

= "12

Z
d �1 d �2 �1 �2

= 1;

since "�� is antisymmetric and "12 = �1. Eq. (A:140) is proved in the same way. With

eqs. (A:139) and (A:140) established, it is rather straightforward to prove eq. (A:141)Z
d4� �� ���� =

Z
d2� d2�� ���� ��

=

Z
d2� ��

= 1:

With the formulae obtained so far, the integral
R
d4� �(x; �; ��) of a general super�eld can be

established. Hence we haveZ
d4� �(x; �; ��) =

Z
d4�

�
f(x) + ����(x) + �� _�

� _�(x) + ��m(x) + ���� n(x)

+����� V�(x) + �� �� _�
�� _�(x) + ���� �� �(x) + �� ���� d(x)

�
= d(x): (A.142)

Thus, by integration with respect to Grassmann supercoordinates, the �� ����-component
of any integrand is always outprodjected. This fact, as we will see, is rather useful when
supersymmetric Lagrangians are being constructed.

A.6.3 Delta Functions on Grassmann Algebras.

Delta functions on superspace simplify the constructions of SUSY-invariant actions. Let
such delta functions on G2 and �G2, both two and four dimensional, be de�ned implicitly byZ

d2� f(�) �2(�) = f(0); f(�) 2 G2; (A.143)Z
d2�� g(��) �2(��) = g(0); g(��) 2 �G2; (A.144)

and Z
d4� h(; �; ��) �4(�; ��) = h(0; 0); h(�; ��) 2 G2 � �G2: (A.145)

This implies that

�2(�) = ��; (A.146)

�2(��) = ����; (A.147)

and

�4(�; ��) = �2(�) �2(��) = �� ����; (A.148)

as we now shall show.
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Proof : By using the anticommuting properties of the elements of G2 and eq. (A:139)

we have Z
d2� f(�) �� =

Z
d2�

�
f(0) + ��f (1)� + �� f (2)

�
��

=

Z
d2� �� f(0)

= f(0):

Hence, with the identi�cation �2(�) = ��, eq. (A:143) is ful�lled, something which

shows that our identi�cation is correct.

In a similar way eq. (A:147) is seen to be consistent with eq. (A:144).

For the same reason as above we haveZ
d4� h(; �; ��)�4(�; ��) =

Z
d4�

�
h(0; 0)+ ��

@h

@ ��
+ �� _�

@h

@�� _�

+ : : :

�
�� ����

= h(0; 0): (A.149)

Thus, the identi�cation made in eq. (A:148) is correct.
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Appendix B

The Two-Component Form of the

O�-Shell Lagrangian LSUSY .

In this appendix the expansion of LSUSY , in the two-component formalism, will be performed
in detail.

However, before we address this problem, some general calculations will be performed. To
be more speci�c, we will in sect. B.1 calculate the component form of the non-Abelian

�eldstrength W�. In sect. B.2 this expansion will be used in obtaining the component
form of the kinetic term of vectorsuper�elds. Finally, in sect. B.3, which concludes our
general calculations of this appendix, we derive the expansion of the matter Lagrangian of
a G � U(1)- gauge theory, where G is some non-Abelian gauge group.

B.1 The Non-Abelian Fieldstrength.

In this section we will calculate the component expansion of the non-Abelian �eldstrengths,

as de�ned1 by

W� = � 1

8g
�D �De�2gVD�e

2gV ; (B.1)

�W _� = � 1

8g
DDe�2gV �D _�e

2gV : (B.2)

We start byW� and for simplicity we will work in the WZ-gauge. By hermitian conjugation

the corresponding expression for �W _� is obtained. It is practical to work in the basis (y =

x+ i����; �; ��), since then the SUSY covariant derivatives take on a somewhat simpler form

D�(y; �; ��) =
@

@ ��
+ 2i��� _�

�� _� @

@y�
; (B.3)

1Here we have made the substitution g ! 2g.
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�D _�(y; �; ��) = � @

@�� _�
: (B.4)

Hence (ImA(x) = 0)2

V a(x; �; ��) = V a(y � i����; �; ��)

= ������ V a
� (y) + i �� ����a(y)� i ���� ��a(y)

+
1

2
�� ����

h
Da(y) + i @�V a

� (y)
i
; (B.5)

where eq. (A:76) has been used. From now on, the y-dependence of the component �elds

will be understood and suppressed.

Our program will be to �rst calculate e�2gVD�e
2gV and then the total (non-Abelian) �eld

strength. In these calculations, expressions for D�V
a, D�

�
V aV b

�
, and �nally V aD�V

b are
useful. Hence we start by determine these expressions.

Using the results from appendix A.6, and in particular eqs. (A:106) and (A:118), yields

D�V
a =

 
@

@ ��
+ 2i��� _�

�� _� @

@y�

!

�
�
������ V a

� + i �� ����a � i ���� ��a +
1

2
�� ����

h
Da + i @�V a

�

i�

= � �
�
� _�
�� _�V a

� + 2i �� ����a � i ���� �a� + �� ����
h
Da + i @�V a

�

i
� 2i ��� _�

�� _� ����� @�V
a
� � 2 ��� _�

�� _� �� �� _� @�
��
_� a

= � �
�
� _�
�� _�V a

� + 2i �� ����a � i ���� �a�

+ �� ����
h
Da + i @�V a

�

i

� 2i ����

�
1

2
� �
� g

�� � i (���)
�

�

�
�� @�V

a
�

+ �� ���� " _�
_���� _� @�

��a_�:

Here eq. (A:65) has been used. By utilizing the antisymmetry of ��� (cf. sect. A.3) and

eq. (A:68) (together with a rede�nition for the indices � and �) one obtains

D�V
a = � ��� _�

�� _�V a
� + 2i �� ����a � i ���� �a�

+ ����
n
��D

a � (���) �

�
��

h
@�V

a
� � @�V

a
�

i o
+ �� ���� ��� _� @�

�� _� a: (B.6)

2When we work in the basis (y; �; ��) the notation @� will mean @
@y�

if nothing else is said to indicate

otherwise.
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With eqs. (A:76) and (A:118) we have

D�

�
V aV b

�
= D�

�
1

2
�� ���� V a�V b

�

�

= ���� �� V
a �V b

� : (B.7)

Note that only the �rst term of D� contributes to D�

�
V aV b

�
due to the anticommuting

properties of the superspace parameters �.

Furthermore with eq. (A:118)

V aD�V
b =

�
������ V a

� + i �� ����a � i ���� ��a +
1

2
�� ���� Da

�

�
n
���� _�

�� _�V b
� + 2i �� ����

b � i ���� �b�

+����
h
��D

b � (���)
�

� ��
�
@�V

b
� � @�V

b
�

�i
+ �� ���� ��� _� @�

�� _� b
o

= ����� ��� _�
�� _� V a

� V
b
� � 2i ����� �� ����b V a

� � i �� ����a ��� _�
�� _�V b

� :

For later convenience, we rewrite this expression. The �rst term is rewritten by eq. (A:65),
while the two next terms are rewritten as follows:

�2i ����� �� ����b V a
� = 2i �� _
��

� _

�
 �� �� _�
�� _� b V a

�

= 2i (�1

2
" _
 _� ����) ��

� _

 (
1

2
"
� ��) ��

_� b V a
�

= � i

2
�� ���� ��� _�

�� _� b V a
� ;

and similarly

�i �� ����a ��� _�
�� _�V b

� = i �� �� _���
_� ��� _�

��a_�V
b
�

=
i

2
�� ���� ��� _�

�� _� aV b
� :

By collecting terms, eq. (B:8) reads

V aD�V
b = i ���� (���)

�

� ��V
a
� V

b
� +

1

2
���� �� V

a �V b
�

+
i

2
�� ���� ��� _�

h
�� _� aV b

� � �� _� bV a
�

i
: (B.8)

The reader should note that the �rst term of the above expression is antisymmetric under

the combined index transformation �$ � and a$ b, while the second and third terms are

symmetric and antisymmetric respectively under a$ b.

Hence, by taking advantage of the fact that all powers of three (or higher) of vector super-

�elds in the WZ-gauge always vanish, we have

e�2gVD�e
2gV =

�
1 � 2gT aV a + 2g2T aT bV aV b

�
D�

�
1 + 2gT cV c + 2g2T cT dV cV d

�
= 2gT aD�V

a + 2g2 T aT b
h
D�

�
V aV b

�
� 2 V aD�V

b
i
: (B.9)
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We now rewrite the term in the square brackets, and with eqs. (B:7) and (B:8) we obtain

T aT b
h
D�

�
V aV b

�
� 2 V aD�V

b
i

= T aT b ����
h
�2i (���) �

�
��V

a
� V

b
� � i �� �

�
� _�

�
�� _� aV b

� � �� _� bV a
�

� i
:

Since the terms in the square brackets are antisymmetric under the index transformation

�$ � and a$ b we have

T aT b
h
D�

�
V aV b

�
� 2 V aD�V

b
i

=
1

2
[T a; T b] ����

h
�2i (���) �

�
��V

a
� V

b
� � i �� �

�
� _�

�
�� _� aV b

� � �� _� bV a
�

� i

= fabcT c ����

�
(���)

�

�
��V

a
� V

b
� +

1

2
�� �

�
� _�

�
�� _� aV b

� � �� _� bV a
�

� �

= T a ����
h
fabc (���) �

� ��V
b
�V

c
� � fabc �� �

�
� _�V

b
�
�� _� c

i
: (B.10)

Here we have used the antisymmetry of fabc. With this result, eq. (B:9) becomes

e�2gVD�e
2gV = 2g T a

h
� �

�
� _�
�� _�V a

� + 2i �� ����a � i ���� �a�

+ ����
n
��D

a � (���) �

�
�� V

a
��

o
+ �� ���� ��� _�

n
@���

_� a � gfabcV b
�
�� _� c

oi
; (B.11)

where

V a
�� = @�V

a
� � @�V

a
� � g fabcV b

�V
c
� ; (B.12)

is the non-Abelian, conventional �eldstength3.

Hence, the total �eldstrength becomes with eq. (A:121)

W� = � 1

8g
�D �De�2gVD�e

2gV

= � 1

8g
2g T a

h
�4i �a� + 4

�
��D

a � (���) �

�
�� V

a
��

�

+4 ����� _�

�
@���

_� a � g fabcV b
�
�� _� c

�i
= T a

h
i �a� � ��D

a + (���) �

� �� V
a
�� � �� �

�
� _�

�
@���

_�a � g fabcV b
�
�� _� c

�i
: (B.13)

By hermitian conjugation the component expansion for �W _� is obtained, and it reads

�W _� = T a

�
�i ��a

_� � �� _�D
a + �� _� (��

��)
_�

_�
V a
�� � ���� ��� _�

�
@��

�a � g fabcV b
��

� c
��
: (B.14)

The �eldstrengths with upper spinor indices are obtained in the usual way by applying "��

and " _�
_� to the above expressions

W � = "��W�; (B.15)

�W _� = " _�
_� �W _�: (B.16)

3The factor of two in front of the coupling constant was inserted in order to make this identi�cation

possible.
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B.2 Calculation
R
d4� (1=4k) Tr (W �W�) �

2(��) + h:c:

Since W� is Lie-Algebra valued one has

Z
d4�

1

4k
Tr (W �W�) �

2(��)

=
Z
d4�

1

4k
Tr

�
T aT b

�
W �aW b

� �
2(��)

=
1

4
W a�W a

�j�� : (B.17)

Here we have used the normalization (in the adjoint representation)

Tr
�
T aT b

�
= k�ab: (B.18)

Furthermore, eqs. (B:13), (A:69), (A:52), (A:64) and (A:50) yield
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By rewriting the last term of eq. (B:19) with use of eqs. (A:34) and (A:34), one obtains
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where we in the last transition have used the antisymmetry of the conventional �eldstrength.

Thus one can concludeZ
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With eq. (A:62) the �rst term of the above equation can be rewritten as follows
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Here we have introduced the SU(2)� U(1)-covariant derivative

D� = @� + igT aV a
� + ig0

Y

2
V 0
�; a = 1; 2; 3;

and when it operates on e.g. the gaugino �a, which lay in the adjoint representation of the

gauge group, i.e. h
T c
adj

iab
= �if cab;

Yadj = 0;

we have
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This yields for eq. (B:21)
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Hence by hermitian conjugation (of eq. (B:21)), one has
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and by adding eqs. (B:24) and (B:25) we may conclude

1

4k

Z
d4�

n
Tr (W �W�) �

2(��) + Tr
�
�W _�

�W _�
�
�2(�)

o

= �i ��a���D��
a +

1

2
DaDa � 1

4
V a��V a

�� +
i

2
@�
�
��a����a

�
: (B.26)

B.3 Calculating
R
d4� �̂ye2gV̂+g

0V̂ 0�̂.

In this section we will derive the component form of
R
d4� �̂ye2gV̂+g

0V̂ 0

�̂. Here �̂(x; �; ��)
is a chiral super�eld and V̂ (x; �; ��) and V 0(x; �; ��) are gauge vector super�elds for some

non-Abelian group G and U(1) respectively.

As usual we work in the WZ-gauge with Lie-algebra valued gauge super�elds of the form

V̂ (x; �; ��) = T aV̂ a(x; �; ��); (B.27)

V̂ 0(x; �; ��) = Y v̂0(x; �; ��); (B.28)

and with the following component expansions for the super�elds

�̂(x; �; ��) = A(x) + i ����� @�A(x)�
1

4
�� ���� @�@�A(x)

+
p
2 � (x) +

ip
2
�� �����@� (x) + �� F (x); (B.29)

�̂y(x; �; ��) = Ay(x)� i ����� @�A
y(x)� 1

4
�� ���� @�@�A

y(x)
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+
p
2 �� � (x) +

ip
2
���� ���@� � (x) + ���� F y(x); (B.30)

V̂ a(x; �; ��) = � ����� V a
� (x) + i �� ����a(x)� i ���� ��a(x) +

1

2
�� ���� Da(x); (B.31)

v̂0(x; �; ��) = � ����� V 0
�(x) + i �� ����0(x)� i ���� ��0(x) +

1

2
�� ���� D0(x): (B.32)

Furthermore, �̂(x; �; ��) will be taken to lie in a representation of the gauge group G � U(1)

described by the matrix representation T a and the hypercharge quantum number Y. Hence

�̂(x; �; ��), and its component �elds, are generally matrix-valued. As our notation indicates,

we will work in the (x; �; ��)-basis, and from now on this dependence will be suppressed.

Since the two gauge super-multiplets are commuting, i.e. [V̂ ; V̂ 0] = 0, and we are working

in the WZ-gauge, we have
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Here in the last line we have used the fact that third powers of vector super�elds in the
WZ-gauge always vanish. Furtermore

V̂ aV̂ b =
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� ; (B.34)
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2
�� ���� V 0�V 0

�; (B.35)

V̂ av̂0 =
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2
�� ���� V a �V 0

�; (B.36)

and hence with eqs. (B:31), (B:32) and (B:34){(B:36) substituted into eq. (B:33) one
obtains
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Postmultiplying the above expression with �̂ yields

e2gV̂+g
0V̂ 0

�̂
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and thus
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Finally we can address the main purpose of this section. By premultiplying the above result

by �̂y and projecting out the �� ����-component, equivalent to a Grassmann integration, we

obtain:Z
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With eq. (A:76) and the following results

p
2 �� � �� �� _� =

p
2 ���� _�

�� _�
� 
_� = � 1p

2
�� ���� � _�;

i ���� ���@� � � = �i ���� �� �� ��� _� @�
� _�  � = � i

2
�� ����  ��@� � ;

eq. (B:40) becomesZ
d4� �̂ye2gV̂+g

0V̂ 0

�̂

= Ay
�
gT aDa +

1

2
g0Y D0 + g2 T aT bV a �V b

�

+
1

4
g02Y 2V 0�V 0

� + gg0Y T aV a �V 0
�

�
A

� i Ay
�
gT aV a

� +
1

2
g0Y V 0

�

�
@�A� 1

4
Ay@�@�A

+
p
2i Ay

�
gT a�a +

1

2
g0Y �0

�
 

+
1

2
@�Ay@�A+ i @�Ay

�
gT aV a

� +
1

2
g0Y V 0

�

�
A� 1

4
@�@�A

yA

�
p
2i � 

�
gT a��a +

1

2
g0Y ��0

�
A+ � 

�
gT aV a

� +
1

2
g0Y V 0

�

�
��� 

� i

2
� ���@� �

i

2
 ��@� � + F yF: (B.41)

With the following identities

 ��@� � = �@� �� � + @�
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;

the �nal expression for the matter Lagrangian readsZ
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0V̂ 0
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Here t.d. means a total derivative (t.d.), and it can be neglected if we like. This is so due

to the four dimensional Gauss-theorem4 which implies that the total derivative does not

contribute to the action.

B.3.1 Introducing the Covariant Derivative.

Eq. (B:42) can be simpli�ed even further if we introduce the G �U(1)-covariant derivative,
de�ned by

D� = @� + igT aV a
� + ig0

Y

2
V 0
�: (B.43)

Here T a and Y have the same meaning as in the previous section.

With this de�nition one has
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and substituting eqs. (B:43) and (B:44) into eq. (B:42) yieldsZ
d4� �̂ye2gV̂+g

0V̂ 0

�̂

4The four dimensional Gauss theorem states thatZ
V

d4xF (x) =

Z
S

d3S� @�F (x);

where S is a 3-dimmentional surface enclosing the 4-dimensional volume V. In our case, V denotes the total

4-space, and hence S is an surface at in�nity. Since the �elds are assumed to vanish at in�nity, the right

hand side vanish because F(x) is some function of quantum �elds.
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This concludes this section.

B.4 Component Expansion of LSUSY .

Now we will leave the general situation, and instead consider, what is the purpose of this
thesis, the electroweak SU(2) � U(1)-theory. From chapter 1 we recall that the unbroken
theory is described by the Lagrangian

LSUSY = LLepton + LGauge + LHiggs; (B.46)

where
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Here the superpotential W is given by

W = WH +WY

= � "ijĤ i
1
Ĥ

j
2 + f "ijĤ i

1
L̂jR̂: (B.50)

From chapter 2 we recall the component expansions of the various super�elds of LSUSY .
They are
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and �nally
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The various component �elds are fully de�ned in the chapter mentioned above and the

quantum numbers are listed in table 1.1.

With the results from the previous sections of this appendix together with

�i(y; �)�j(y; �) = Ai(y)Aj(y) +
p
2� [Ai(y) j(y) +  i(y)Aj(y)]

+ �� [Ai(y)Fj(y) + Fi(y)Aj(y)�  i(y) j(y)] ; (B.55)

and

�i(y; �)�j(y; �)�k(y; �)

= Ai(y)Aj(y)Ak(y)

+
p
2� [ i(y)Aj(y)Ak(y) +  j(y)Ak(y)Ai(y) +  k(y)Ai(y)Aj(y)]

+ �� [Fi(y)Aj(y)Ak(y) + Fj(y)Ak(y)Ai(y) + Fk(y)Ai(y)Aj(y)

� i(y) j(y)Ak(y)�  j(y) k(y)Ai(y)�  k(y) i(y)Aj(y)] ; (B.56)

it is easy to calculate the expansion of LSUSY . Note that the ��-component of eqs. (B:55)

and (B:56) is independent of basis. We will now give the component expansions of the
di�erent terms of eq. (B:46).

B.4.1 The Component Form of LLepton.

With eqs. (B:45), (B:51), (B:52) and table 1.1 one has

LLepton =
Z
d4�
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+ F
y
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y
RFR + t:d: (B.57)

HereD� is the SU(2)�U(1)-covariant derivative given in complete agreement with eq. (B:43).

Furthermore T a = �a=2 (a = 1; : : : ; 3) and this will be understood from now on.
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B.4.2 The Component Form of LGauge.

LGauge contains both an SU(2)- and an U(1)-piece. The SU(2)-piece can be taken directly

from eq. (B:26), while the U(1)-piece is obtained by taking the non-Abelian limit of the

same equation. Hence we may conclude

LGauge =
1

4

Z
d4�

h
W a�W a

� + W
0 �W 0

�

i
�2(��) + h:c:

= �i ��a���
�
@��

a � gfabcV b
��

c
�
� i ��0���@��

0

� 1

4

�
V a ��V a

�� + V
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�
+
1

2
( DaDa +D0D0 ) + t:d: (B.58)

Here V a
�� and V 0

�� are the (non-SUSY) �eldstrengths for the SU(2)- and U(1)-gauge group
respectively.

B.4.3 The Component Form of LHiggs.

The expansion of the kinetic terms of Ĥ1 and Ĥ2 are obtained in a complete analogous way
to what we did in the subsect B.4.1.

However, in order to give the full expression for LHiggs, the component form of the super-

potential piece has to be obtained. This is done with eqs. (B:55) and (B:56) and reads
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d4� W �2(��) =

Z
d4�

n
� "ijĤ i
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The corresponding expression for W y is, of course, obtained by hermitian conjugation.

Thus the expression for LHiggs becomes
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B.4.4 Conclusion | The Two-Component Form of LSUSY .

By adding the results from the three previous subsections, the expansion of LSUSY is ob-
tained.

Hence
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and this appendix is concluded.
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Appendix C

The Four Component-Form of the

On-Shell Lagrangian LSUSY .

In this appendix the two component Lagrangian (2:26), i.e.
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will be transformed into four-component notation (i.e. to introduce four-component spinors).

Our strategy will be as follows. First the following well known gauge boson combinations

A�(x) = cos �w V
0
�(x) + sin �w V

3

� (x); (C.2)

Z�(x) = � sin �w V
0
�(x) + cos �w V

3

� (x); (C.3)

W�
� (x) =

V 1

� (x)� iV 2

� (x)p
2

; (C.4)

and corresponding relations for the spin-1=2 gauginos

�A(x) = cos �w �
0(x) + sin �w �

3(x); (C.5)

�Z(x) = � sin �w �
0(x) + cos �w �

3(x); (C.6)

��(x) =
�1(x)� i�2(x)p

2
; (C.7)

will be introduced. Next, the two component spinors will be arranged in various (four-
component) Majorana- and Dirac-spinors. As we will see, the S-QFD theory contains
Photino- ( ~A), Zino- ( ~Z) and two neutral Higgsino-states ( ~H1, ~H2) de�ned in terms of two-
component spinors as follows

~A(x) =

 
�i�A(x)
i��A(x)

!
; (C.8)

~Z(x) =

 
�i�Z(x)
i��Z(x)

!
; (C.9)

~H1 =

 
 1

H1

� 1

H1

!
; (C.10)

~H2 =

 
 2

H2

� 2

H2

!
: (C.11)

These spinors are all of the Majorana type.

For the Dirac-spinors, we have the Winos ( ~W ) and the charged Higgsinos ( ~H) given by

~W (x) =

 
�i�+(x)
i���(x)

!
; ~W c(x) =

 
�i��(x)
i��+(x)

!
; (C.12)

~H(x) =

 
 1

H2

� 2

H1

!
; ~Hc(x) =

 
 2

H1

� 1

H2

!
: (C.13)

Here the upper \c" on ~W c and ~Hc means charge conjugation (cf. eq.(A:91)).

Finally we have the leptons which as usual are arranged in four-component Dirac-spinors

de�ned by

l =

 
l
(2)

L

�l
(2)

R

!
: (C.14)
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After introducing all necessary notation, one is in position to show attention to the main

purpose of this appendix | the four-component formulation of the Lagrangian LSUSY .

The coming calculations rely heavily on the results of subsect. A.5.2, and in order to avoid

clutter in our description, these results will be used without any further reference. Those

readers not familiar with the connection between two- and four-component spinors are

guided to study this subsection most carefully.

C.1 Rewriting Kinetic Terms.

C.1.1 Slepton and Higgs Kinetic Terms.

From eq. (C:1) we see that the transcription of the kinetic terms of sleptons and Higgses
is completed once the SU(2) � U(1)-covariant derivative is written in terms of the new
�eld-combinations eqs. (C:2){(C:4).

Hence
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i
Z�; (C.15)

where we have used the SM-relations

e = g sin �w = g0 cos �w; (C.16)

and introduced the operators

T� = T 1 � iT 2; (C.17)
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Q = T 3 +
Q

2
: (C.18)

Here the operator Q is the charge operator, with eigenvalues in units of the elementary

charge e.

C.1.2 Lepton and Higgsinos Kinetic Terms.

After completing the rewriting of the covariant derivative in the previous subsection, we

have for the kinetic term of left-handed leptons1

�i �L(2)���D�L
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Here L =
�
�l l

�T
L
is the SU(2)-doublet of four-component Dirac-spinors, well known from

the SM.

In a similar way, we can show that (R = lR)

�i �R(2)���D�R
(2) = �i �R���D�R; (C.20)

for the right-handed leptons.

Furthermore, one has for the kinetic term of the two-component Higgsino ~H
(2)
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1Keep in mind that the covariant derivative has SU (2)�U (1)-indices, and that the neutrinos are assumed

to be completely left-handed.
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Here the charge of the various (two-component) �elds, recapitulated in table 2.1, has been

taken advantage of.

In a complete analogous way, we obtain for the kinetic term of ~H
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By adding eqs. (C:21) and (C:22), and using eq. (A:82), one may conclude
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C.1.3 Gaugino Kinetic Terms.

With eqs. (2:13) and (2:14) we have

�i��a���D��
a � i��0���D��

0

= �i��a���@��a � i��0���@��
0 + ig fabc��a��V b

��
c: (C.24)

Using the inverse of the transformations (C:5){(C:7) yields for the two �rst terms of eq. (C:24)
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!
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For the last term of eq. (C:24) we have
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Here we have used that

f ij3 = "ij;

where "ij is the usual antisymmetric tensor de�ned by "12 = 1.

Now each term in square brackets of eq. (C:26) will be rewritten separately. The results are:
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and thus
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With eqs. (C:8), (C:9), (C:12) and (A:64), the four-component form of (C:28) is easily

obtained, and it reads
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C.1.4 Gauge-Boson Kinetic Terms.

By introducing the practical \scripted" quantities
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0
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3

�� ; (C.30)
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0
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�� ; (C.31)
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V 1

�� � iV 2

��p
2

; (C.32)

de�ned in complete analogy with the eqs. (C:2){(C:4), the kinetic terms of the gauge-bosons
can be rewritten in a compact form as we will see in a moment. However, �rst the explicit

form of these \scripted" �eldstrengths will be derived. Hence
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with
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where

W�
�� = @�W

�
� � @�W

�
� ; (C.36)

is the \normal" �eldstrength of the W-bosons.

Writing eq. (C:35) out in full yields (e = g sin �w)

W+

�� = W+

�� + i e
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and

W�
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Note that W�
�� contains neither W�

� nor W�
� (reversed signs) as we may have guessed in

advance.

With the above relations established, we have for the kinetic terms of gauge-bosons

�1
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�
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4
W+��W�

�� �
1

4
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1

4
Z��Z�� �

1

4
A��A��: (C.39)

This concludes this subsection.

C.2 Rewriting Interaction terms.

In this section the various interaction terms of eq. (C:1) will be rewritten.

C.2.1 Rewriting Interaction Terms Containing Gauginos.

Before proceeding, a useful general calculation will be performed. From the no-shall La-

grangian (2:26), or equivalently from eq. (B:45), we see that the transcription of the matter
�eld Lagrangian is completed once the expression (adopting the general notation of sect. B.3)

p
2i Ay

�
gT a�a +

1

2
g0Y �0

�
 �

p
2i � 

�
gT a��a +

1

2
g0Y ��0

�
A; (C.40)

is rewritten. The �rst term of eq. (C:40), in square brackets, can in analogy with the
covariant derivative, be written as
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g
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Here T 3 and Q are the representations of T 3 and Q respectively.

By hermitian conjugation, one obtains for eq. (C:40)
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Here T 3

i and Qi are the eigenvalues of T
3 and Q respectively.

To introducing the new two-component spinors (��; �A; �Z) in the various interaction terms

is thus straightforward in view of the general expression (C:42). Hence we have
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Here in the last line we have utilized that PLL = L.

The corresponding term for the right-handed leptons is rewritten as follows
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Here we have used that R̂ is a right-handed gauge-singlet (and thus also the component

�elds), and that g0 = g tan �w.

Hence, adding eqs. (C:43) and (C:44) yields
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With eq. (C:42) and the fact that QH1 =
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A corresponding calculation for the H2-term yields
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Here we have used that for Majorana spinors �	1	2 = �	2	1 and �	1
5	2 = �	2
5	1 (cf.

eqs. (A:94) and (A:96))

Adding eqs. (C:46) and (C:47) yields
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This completes this subsection.

C.2.2 Rewriting the Cubic Interaction Terms.

In the previous subsection, cubic interaction terms containing gauginos were transcripted.

The aim of the present subsection is to perform a paraphrase of the remaining cubic inter-
action terms of the Lagrangian (C:1). The calculations go like this
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C.2.3 Rewriting the Higgsino Mass Terms.

In order to complete the rewriting of the Lagrangian (C:1), one has to transform the terms

�"ij ~H
(2) i

1
~H
(2) j
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and �nally the rewriting procedure is completed.

C.3 Summation | The On-Shell Lagrangian.

In the two previous sections the transcription from two- to four-component notation of the
various terms of the Lagrangian (C:1) was completed. In this section we will collect the
results, and with eqs. (C:15), (C:19), (C:20), (C:23), (C:29), (C:39), (C:45), (C:48), (C:49)

and �nally eq. (C:50) we obtain
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Here ~W c is the charge conjugated (de�ned in eq. (A:91)) of the spinor (2:46) and PL and
PR are the left- and right-handed projection operators given by eqs. (A:80) and (A:81), i.e.

PL =
1

2
(1� 
5) ; (C.52)

PR =
1

2
(1 + 
5) : (C.53)
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Appendix D

The Two-Component Form of the

On-Shell Lagrangian LSUSY .

In this appendix, starting with the o�-shell Lagrangian (2:11), we will construct the cor-
responding (two-component) on-shell Lagrangian, i.e. we have to eliminate the auxiliary

�elds.

D.1 The Auxiliary Fields.

In sect. 2.2 we obtained, by using the Euler-Lagrange equations, the following relations for
the auxiliary �elds

F
j y
L = �f "ijH i

1
~R; (D.1)

F y
R = �f "ijH i

1
~Lj; (D.2)

F
iy
1 = �� "ijHj

2 � f "ij ~Lj ~R; (D.3)

F j y
2 = �� "ijH i

1
; (D.4)

and

Da = �g
h
~LyT a~L+Hy

1T
aH1 +Hy

2T
aH2

i
; (D.5)

D0 =
g0

2
~Ly~L � g0 ~Ry ~R+

g0

2
H
y
1H1 �

g0

2
H
y
2H2: (D.6)

In this appendix, the detailed calculations for the back-substitution of these relations into
LAux, given by eq. (2:16), will be performed, and we start by eliminating the auxiliary

F-�elds.
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D.1.1 Auxiliary F-�elds.

With eqs. (D:1){(D:4) we have
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y
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: (D.7)

Here in the last transition the following relations have been used:

"ij"kj = �ik;

"ij"kl = �ik�jl � �il�jk:

D.1.2 Auxiliary D-�elds.

When one is going to rewrite LAux�D , given by

LAux�D =
1

2
( DaDa +D0D0 )

+ ~Ly
�
gT aDa � 1

2
g0D0

�
~L+ ~Ryg0D0 ~R
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+H
y
1

�
gT aDa � 1

2
g0D0

�
H1 +H

y
2

�
gT aDa +

1

2
g0D0

�
H2; (D.8)

it is practical to introduce the following temporary abbreviations

A = ~LyT a~L;

B = H
y
1T

aH1;

C = H
y
2T

aH2;

D = ~Ly~L;

E = ~Ry ~R;

F = H
y
1H1;

G = H
y
2H2:

Here the SU(2)-index \a" has been suppressed for convenience.

With these abbreviations eqs. (D:5) and (D:6) take on the form
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�
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2
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We will now rewrite each term of eq. (D:8). Hence
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For LAux�D this implies
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or in terms of the S-QFD �elds
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D.1.3 Conclusion.

From the two previous subsections, we can conclude that the expression for the \auxiliary"
Lagrangian is

LAux = LAux�F + LAux�D
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This concludes this section.

D.2 The On-Shell Lagrangian.

The on-shell Lagrangian LSUSY is with the results of the previous section, easily obtained

from the corresponding o�-shell Lagrangian (2:11) by substituting for eq. (D:10).

The result is:
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Hence this appendix is concluded.
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Appendix E

Transcription of the Scalar Higgs

Potential.

The aim of this appendix is to eliminate the SU(2) representation matrices T a appearing in
the scalar Higgs potential given by eq. (3:5), i.e.
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Our starting point is the following general calculation
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With this result we have
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Here in the last transition we have used the identity
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which can be derived by straightforward calculations.

Hence the scalar Higgs potential (E:1) reads
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and this concludes this appendix.
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