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Abstract

It is shown that topologically stable cosmic strings can, in fact, appear to end or to

break, even in theories without monopoles. This can occur whenever the spatial topology

of the universe is nontrivial. For the case of Abelian-Higgs strings, we describe the gauge

and scalar �eld con�gurations necessary for a string to end on a black hole. We give a

lower bound for the rate at which a cosmic string will break via black hole pair production,

using an instanton calculation based on the Euclidean C-metric.
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1. Introduction

In the absence of singularities or monopoles, local cosmic strings cannot end, and

hence, must either be in�nite in extent or form closed loops. It is the purpose of this

letter, however, to point out that, if the topology of space is nontrivial, then local cosmic

strings may appear to end. In particular, a cosmic string may disappear down the throat

of a black hole. Moreover, when topology changing processes are included (as suggested

by quantum gravity) a cosmic string can appear to break.

In a functional integral approach to quantum gravity, the leading approximation to

such a topology changing process is given by an instanton, or solution to the Euclidean �eld

equations, which interpolates between the initial and �nal spacetimes. The semiclassical

approximation to the rate is then simply related to the Euclidean action for the instanton.

One such process, in which a cosmic string splits, with black holes appearing at the two

ends, can be described approximately by a gravitational instanton based on the charged

C-metric1.

The Lorentzian charged C-metric describes a pair of charged black holes accelerating

away from one another along a symmetry axis [2], say the z-axis. The C-metric then has

conical singularities on the z-axis characterized by a de�cit angle �in on the inner part

of the axis, between the two black holes, and de�cit angle �out on the outer parts of the

axis, extending from each black hole out to z = �1. These conical singularities may be

removed by introducing a background magnetic �eld [3] of the appropriate strength to

provide the force necessary to accelerate the black holes. The resulting metric, known as

the Ernst metric, has served as the starting point for calculations of the pair creation rate

for magnetically charged black holes in a background magnetic �eld [1],[4],[5].

In this paper, however, we will work with the C-metric directly, interpreting the conical

singularities as a model for a thin cosmic string along the z-axis. It has recently been shown

that the conical singularity may indeed be �lled in with stress energy corresponding to a

real cosmic string [6]. For positive black hole mass, one has �in < �out, implying that the

mass per unit length of the string is greater on the outer axis than on the inner axis. The

corresponding di�erence in string tension between the inner and outer axis provides the

force which accelerates the black holes. The parameters of the C-metric may be chosen

so that �in = 0, corresponding to a string which breaks completely.2 More generally the

string can `fray'. In a real cosmic string, the magnetic 
ux is quantized. If the string

carries only a single unit of 
ux, then it must `break' entirely. If it carries multiple units of


ux, than it can fray by discrete amounts, corresponding to a given number of 
ux quanta.

The Euclidean action for the C-metric is in�nite, but the physical quantity determining

the rate of pair creation is the di�erence between this action and that of an appropriate

background geometry. As for the Ernst instanton, we �nd that this di�erence is given

1 This has been previously noted by Gibbons [1], though not the argument which follows below

about how the gauge �eld behaves.
2 The (nonextreme) black holes which are produced have their horizons identi�ed to form a

wormhole in space. If �in = 0, the cosmic string does not actually break, but simply passes

through the wormhole.
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by a simple geometrical expression [7], �I = � 1
4
(Abh +�Aacc), where Abh is the area of

the black hole horizon and �Aacc is the area of the acceleration horizon relative to the

background. For small mass per unit length � of the string, the relative action determining

the rate is given by

�I ' �m2

�out � �in
: (1:1)

The semiclassical approximation to the rate is then e��I .

2. Cosmic Strings and Black Holes

We begin by describing how a cosmic string can appear to end on a black hole. For

de�niteness, consider the Abelian-Higgs model coupled to gravity. The matter �elds are a

U(1) gauge �eld A� and a charged scalar �eld � with a Mexican hat potential. The cosmic

string is the familiar Nielsen-Olsen vortex. In the simplest case, one unit of magnetic 
ux

runs along the center of the vortex. The scalar �eld far from the string is � � v exp(i�),

where v is the vev and 0 � � � 2� is an angular coordinate around the string. So the

phase of � has unit winding number going around a large loop linking the string.

Now suppose the cosmic string enters a black hole. On a constant time slice, the

horizon is topologically a 2-sphere. For simplicity, the natural thickness of the string will

be taken much smaller than the radius of the black hole. The string pierces the horizon at

some point S (\south pole"). Take a loop on the horizon around S much larger than the

string thickness but smaller than the black hole. Around this loop, � winds once in phase.

Deform the loop, and attempt to shrink it to the antipodal point N (\north pole").

It seems as if there will be trouble because of the winding number of � in phase. But

phase is gauge dependent, and this winding number can be unwound by a suitable gauge

transformation

�0 = U�; eA0

� = eA� + iU�1@�U (2:1)

which merely implies that we need a nontrivial U(1) bundle.

To be explicit, take a slightly-larger-than-hemispherical gauge patch on the event

horizon, about S. Take a similar patch about N . The two patches are to overlap along a

closed (\equatorial") strip. To de�ne a bundle we give a gauge transformation U on the

overlap, to take us from the S patch to the N patch; a nontrivial bundle is de�ned by a

topologically nontrivial U . To unwind the phase, it su�ces to take U = exp(�i�) where
0 � � � 2� is an angular coordinate (\longitude") on the horizon that runs around the

strip. The vector potential can be taken as A� = 0 in the N patch, which will gauge-

transform in the overlap region into the required vector potential in the S patch. This

completes the construction.

We have constructed here a �eld con�guration topologically equivalent to the Wu-

Yang monopole [8]. In the Wu-Yang monopole the magnetic 
ux is spread uniformly over

the 2-sphere, whereas here the magnetic 
ux is all gathered up and concentrated into a

narrow 
ux tube at S. The U(1) bundle we have constructed is precisely the well-known

bundle that arises from the Hopf �bration of the 3-sphere.
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Now consider possible time dependence. The magnetic 
ux crossing any closed 2-

surface is absolutely conserved, according to a topological conservation law. Thus the 
ux

entering each separate black hole is absolutely conserved, and if a black hole terminates

a string at one time, that black hole must always terminate a string. The only way of

circumventing this restriction in classical gravity is to allow the black holes themselves to

merge, with the total 
ux remaining conserved. In quantum gravity, black holes them-

selves can be be created or destroyed in pairs, and the topological conservation law simply

constrains the the total magnetic 
ux of both holes to be zero, while individually the 
uxes

may be nonzero. Thus, through the creation by quantum tunneling of a black hole pair

along a cosmic string, the string can break.

The same process can occur in any gauge theory that admits local cosmic strings, i.e.,

in which the vacuum manifold has a nontrivial �1. Some such theories will also admit

monopoles on which cosmic strings can end, and in such theories cosmic strings can also

break through creation of monopole pairs [9]. However, string breaking by black hole pairs

is always possible, even if the theory admits no such monopoles.

3. Splitting Strings

As described in the introduction, the instanton describing the pair creation of black

holes along a cosmic string is given by the Euclidean C-metric. This metric and gauge

potential V� are given by

ds2 = r2

 
�G(y)

�
�

2�

�2

d�2 � dy2

G(y)
+ �2G(x)d�2 +

dx2

G(x)

!

V� = �q(x � �4)

r =
1

A(x � y)
; G(x) = 1� x2 � 2mAx3 � q2A2x4

(3:1)

where 0 � � � 2� and 0 � � � 2�. The function G(�) has four roots which we shall label

�1 � �2 < �3 < �4. Hence the coordinate ranges are �2 � y � �3; �3 � x � �4. The black

hole horizon is at y = �2 and the acceleration horizon is at y = �3. The inner strut is at

x = �4 and the outer strut at x = �3. Spatial in�nity is at the point where x = y = �3,

and so r ! 1. The black holes carry magnetic charge q under the unbroken U(1) gauge

�eld V�. The reader should note that this gauge �eld is distinct from the broken gauge

�eld A� from which the cosmic string is constructed. The presence of this second gauge

�eld is required below in order to construct a smooth instanton.

In the model of a cosmic string by 
at space minus a wedge, the mass per unit length of

the string is equal to �=8�, where � is the de�cit angle. In terms of the metric coe�cients,

the de�cit angle on the outer axis is given by

�out = 2�
�
1� �

2
jG0(�3)j

�
(3:2)

and the de�cit angle on the inner axis is

�in = 2�
�
1� �

2
jG0(�4)j

�
: (3:3)
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Clearly, from the symmetrical form of the metric, there are also nodes in the � � y plane

for generic choices of parameters. Unlike the conical singularities along the axis, these

nodes cannot be interpreted as approximations to a smooth cosmic string. Instead, they

represent points where the �eld equations are no longer satis�ed. In the usual instanton

approximation, one requires that the equations hold everywhere, and so these singularities

must be avoided. There are two ways to achieve this. First, one can set

G0(�2) = �G0(�3); � = 4�=G0(�3): (3:4)

This requires that q = m in the de�nition of G(x) and implies that �3 � �1 = �4 � �2:

Geometrically, this corresponds to pair creating nonextreme black holes with their horizons

identi�ed to form a wormhole [4]. The surface gravities, or temperatures, of the black hole

and acceleration horizons are equal. Alternatively, one can consider extremal black holes

where �1 = �2 [5]. In this case, the black hole horizon is in�nitely far away. The conical

singularity on the acceleration horizon will be absent provided we again set � = 4�=G0(�3).

Consider a cosmic string of a given �out, or equivalently, a given �out. We want to

compute the rate at which extreme and nonextreme black holes are pair produced with

a string of de�cit angle �in < �out between them. So we need to evaluate the Euclidean

action for the C-metric with these parameters. The metric (3.1) contains �ve parameters:

m; q;A; �; �. Two of these are �xed by (3.4) (or the analogous conditions for extreme

black holes). Two are �xed by our choice of �out and �in. The remaining parameter can

be thought of as the charge of the created black holes and remains arbitrary.

The Euclidean action for the Einstein-Maxwell theory is given by

I =
1

16�

Z
M

[�R+ F 2]� 1

8�

Z
@M

K (3:5)

This is in�nite for (3.1), but the physically meaningful quantity is the di�erence between

the action for the C-metric, and a reference background. The appropriate background here

is 
at space minus a wedge with de�cit angle �out. As discussed earlier, we are viewing

the conical singularity in the C-metric and the background as an approximation to a thin

smooth string composed of gauge and scalar �elds, which satisfy their �eld equations every-

where. Thus, in evaluating the action, there is no need to introduce additional boundaries

around the conical singularity. As discussed in [10], [11], [12], the action is conveniently

evaluated on a solution by rewriting it in Hamiltonian form. The surfaces of constant

� intersect on the horizons, and these points of intersection must be treated separately.

Evaluating the action in a neighborhood of the horizon yields a contribution �A=4, where
A is the horizon area, so one obtains [12]

�I = �H � 1

4
�Aacc � 1

4
ABH (3:6)

where H is the total energy of the C-metric relative to the background, and �Aacc is

the di�erence between the area of the acceleration horizons in the C-metric and the back-

ground. H is the sum of a term which is pure constraint and, hence, vanishes on a solution,

plus an extrinsic curvature boundary term given below. For the extremal black hole of
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metric (3.1), the horizon is in�nitely far away, and so the surfaces of constant � do not

intersect there. As as result, there is no term 1
4
ABH in the action.

To evaluate the �rst two terms in (3.6), we need to match the C-metric and the

background metric on a large sphere near in�nity. The sphere is de�ned by x� y = �, and

we are interested in the limit � ! 0. As in [7], we change to new coordinates �; � with

x = �3 + ��; y = �3 + �(� � 1) , where 0 � � � 1. Then the induced metric on the two

surface d� = d� = 0 is

2ds2 =
1

�A2G0(�3)

�
4(1� 1

2�
�out)

2�

�
1 +

�

2

G00(�3)

G0(�3)
�

�
d�2 � d�2

�(� � 1)

�
(3:7)

The background metric can be described by (3.1) with m = q = 0. We now require that

the metric (3.7) agree with the metric induced on the surface x� y = �� in the background

where �G(x) = 1� x2 and ��3 = �1. This will be the case provided

G0(�3)A
2� = 2 �A2��; and � �

G00(�3)

G0(�3)
= �� (3:8)

where �A is the parameter appearing in the background metric.

On a solution, the Hamiltonian in (3.6) is given by H =
R
N((2)K� (2) �K), where (2)K

is the extrinsic curvature of the boundary in the � = constant surface. The components

of the normal to this surface are given by nx = � G(x)

r
p
G(x)�G(y)

; ny = � G(y)

r
p
G(x)�G(y)

and

one �nds
(2)K = Din

i = A
p
�G0(�3)

�
1 + �

G00(�3)

G0(�3)
(� � 3

4
)

�
: (3:9)

Subtracting the analogous expression for the extrinsic curvature in the background, and

using the matching conditions (3.8), one �nds that (2)K � (2) �K = 0(�2). From (3.7), we

see that
p

(2)g goes like ��1. The lapse behaves like N = O(��1=2). Therefore the energy

term in the action vanishes as �! 0.

We now compute �Aacc. Since the area of each acceleration horizon is in�nite, we

integrate out to the surface x = �3 + �, subtract, and then take � to zero:

Aacc =

Z 2�

0

�d�

Z �4

�3+�

dx

A2(x � �3)2
=

2(2� � �out)

�A2G0(�3)

�
1� �

�4 � �3

�
(3:10)

Subtracting the similar expression for �Aacc and using (3.8) gives

�Aacc = Aacc � �Aacc = �2(2� � �out)

A2G0(�3)

�
1

�3 � �1
+

1

�3 � �2

�
(3:11)

The area of the black hole horizon is

ABH =
2(2� � �out)

A2G0(�3)

�
1

�3 � �2
� 1

�4 � �2

�
(3:12)
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Combining these and using (3.4), gives the total physical action,

�I =
2� � �out

A2G0(�3)(�3 � �1)
(3:13)

This formula is also valid for the extremal instanton since in this case �I = � 1
4
�Aacc and

�2 = �1.

For smallmA we can �nd a simple expression for this action. If we �x �out, the de�cit

angle of the string at in�nity, and �in, the de�cit angle of the string connecting the black

holes, then we can expand G0(�3) and G0(�4) to �rst order in mA and use (3.2) and (3.3)

to solve for mA. The result is

mA =
1

8�
(�out � �in) = �out � �in (3:14)

This says that the black holes satisfy Newton's law. The acceleration is determined by the

net tension in the strings connecting the black holes. Expanding the terms in the action

(3.13) in powers of mA and using this result we obtain

�I ' �m2

�out � �in
(3:15)

The rate, e��I, is largest for the string breaking �in = 0. This makes sense because

roughly the mass of the black holes must come from the missing mass of the string, so

�in = 0 corresponds to the black holes tunneling out at the smallest separation, which

one expects for a quantum event. The rate increases for a more massive external string,

and the rate vanishes when �out = �in, which says that one cannot pair create black holes

without taking some energy away from the cosmic string.

4. Real Strings

The process we have discussed could have cosmological signi�cance. It is well known

that any process that turns cosmic strings into black holes (or other massive remnants)

might seriously disrupt cosmic string cosmology. Note that black holes are always left

behind; in a closed loop of strings, a nucleated black hole pair will race around the string,

consume it entirely, and collide to leave behind one (or perhaps more) black holes. If

multiple nucleations happen, multiple collisions will occur.

One can, however, substitute numbers corresponding to grand uni�ed strings into

(3.15) and �nd that the rate for breaking cosmic strings by this mechanism is far too small

to be of cosmological signi�cance. For a Higgs vacuum expectation value v � 1016GeV

and self coupling � � 1, we must take the black hole to have mass m >> 103 mpl in

order for the thin string limit implicit in the use of the C-metric to be valid. This implies

� � v2 � 10�6m2
pl: We then have �I >> 1012, yielding an in�nitesimally small rate.

However, this estimate of the rate is only a lower limit. The most likely tunneling

event actually falls outside the class described by the C-metric. This would be to pair
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create the smallest possible black holes which can swallow the 
ux from the string. One

can estimate the size of such a black hole as having mass equal to a single quanta of

magnetic charge, making it extremal. For the parameters assumed above, such a black

hole would be small on the scale of a 
ux tube, so we would need another method for

estimating the rate of production.

It is interesting to speculate about the production rate for black holes with mass not

equal to charge. For a general choice of q and m in (3.1), there is a nodal singularity

at the Euclidean black hole horizon. However, this singularity is integrable{it is only

a two dimensional delta-function in the curvature. Evaluating the action (3.5) in the

neighborhood of a horizon, one still �nds that the contribution is 1
4
AH , using the Gauss-

Bonnet theorem [11]. Therefore, the action evaluated on any of the C-metrics is given by

the basic formulae (3.6). Further, combining (3.11) and (3.12), one �nds that for any of

the C-metrics except the extremal black hole case, the action is given by

�I =
(2� � �out)

2A2G0(�3)

�
1

�3 � �1
+

1

�4 � �2

�
(4:1)

Finally, one �nds that the value of �I for small mA given in (3.15) is the same for all

values of q;m.

These nonsmooth C-metrics are not solutions everywhere, and so they do not have

the usual instanton interpretation. However, since they fail to be a solution in a very mild

way, and the \answer" they give for the rates is of exactly the same form as the smooth

case, it is tempting to speculate that they do give the leading contribution to the pair

production rate for general q;m. This is an issue for further consideration.

NOTE ADDED: After this work was completed, two papers appeared which discuss

black hole pair creation and cosmic strings. The �rst [13] considers the case �in = 0,

and asserts that the calculation does not apply to topologically stable strings. We clearly

disagree with this statement. The second [14] adds a background magnetic �eld and sets

�out = 0 (leaving �in 6= 0), but does not discuss the applicability to real cosmic strings.
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