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Abstract

Constrained KP and super-KP hierarchies of integrable equations (generalized NLS
hierarchies) are systematically produced through a Lie algebraic AKS-matrix framework
associated to the homogeneous grading. The role played by di�erent regular elements
to de�ne the corresponding hierarchies is analyzed as well as the symmetry properties

under the Weyl group transformations. The coset structure of higher order hamiltonian
densities is proven.

For a generic Lie algebra the hierarchies here considered are integrable and essentially
dependent on continuous free parameters. The bosonic hierarchies studied in [1, 2] are
obtained as special limit restrictions on hermitian symmetric-spaces.

In the supersymmetric case the homogeneous grading is introduced consistently by

using alternating sums of bosons and fermions in the spectral parameter power series.
The bosonic hierarchies obtained from ^sl(3) and the supersymmetric ones derived from

the N = 1 a�nization of sl(2), sl(3) and osp(1j2) are explicitly constructed.

An unexpected result is found: only a restricted subclass of the sl(3) bosonic hierar-
chies can be supersymmetrically extended while preserving integrability.
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1 Introduction.

Recently a lot of research has been devoted to the hierarchies of integrable di�erential

equations due to their connection with the discretized version (matrix-model formula-

tion) of the 2-dimensional gravity (see e.g. [3] for a review). It is in fact by now clear

that constrained KP ows [4, 5] de�ne the partition functions of single and multi-matrix

models.

Moreover it has been suggested [6] that supersymmetric hierarchies describe the 2-

dimensional supergravity, even if no matrix-model formulation is at present available in

this case.

The problem of classifying all possible (both bosonic and supersymmetric) hierarchies

is therefore quite a crucial one.

In the bosonic case a strategy, based on a generalized Drinfeld-Sokolov approach, has
been developed in many papers [7, 8, 9]. Basically to produce integrable hierarchies the
following ingredients are needed: a matrix-type Lax operator valued on a Lie algebra G; a
suitable Z-grading for G and the existence of constant non-zero graded regular elements

for the algebra (for details see [9]). The problem of classifying hierarchies is therefore
reduced to the Lie-algebraic problem of determining the acceptable gradings and the
corresponding regular elements. This problem has been solved for non-exceptional Lie
algebras as well as for (at least some of) the exceptional ones. Therefore in the bosonic
case the situation seems completely satisfactory apart perhaps some questions like e.g. do
di�erent Lie algebras and di�erent gradings always produce di�erent hierarchies? Which

is the role played by di�erent regular elements once chosen a given Lie algebra and a given
grading? This second question will be addressed in this paper for the special case of the
homogeneous grading and it will be shown that indeed di�erent regular elements induce
di�erent hierarchies; moreover, in the general case, the integrability is preserved even in
presence of an essential dependence on continuous free parameters.

In the supersymmetric case the situation is much less satisfactory: supersymmetric
versions of matrix super-KP hierarchies [10] have been constructed only for Lax operators
which take values on superalgebras and are associated to the principal grading (generalized
super-KdV hierarchies); moreover, since the Lax operator is in this case a fermionic

object, in its turn the constant regular element must be fermionic; as a consequence only

superalgebras which admit a presentation in terms of fermionic simple roots can produce
super-hierarchies [10].

On the other hand integrable super-hierarchies which do not �t in the above scheme
have actually been constructed (see [11, 12, 13]). The lack of a clear Lie algebraic un-

derstanding of such hierarchies makes di�cult to �nd their generalizations; moreover the

recognition of their integrability (i.e. the construction of their Lax operators) is left to an
ad hoc procedure. In [13, 14, 15] it has been recognized that (bosonic and supersymmetric)

Non-Linear Schr�odinger-type hierarchies can be obtained from coset algebra structures.
Here it will be shown a method to systematically produce such kind of hierarchies and

their Lax operators, in terms of the above mentioned AKS matrix (super)-KP framework

within the homogeneous grading. In particular the supersymmetric case allows producing
generalized super-NLS hierarchies from any given starting Lie or super-Lie algebra (the

Poisson brackets structure being expressed by the corresponding N = 1 a�nizations).
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Now the regular elements belong to the Cartan sector and are bosonic (while the full

Lax operators must be fermionic). The consistency of this procedure is guaranteed once

introduced the notion of \twisted" bosonic and fermionic power series in the spectral

parameter � as alternating sums of bosonic-even powers of � and fermionic odd powers

(and conversely); the derived equations of motion and hamiltonians are of course stan-

dard supersymmetric theories expressed in a manifestly supersymmetric formalism. At

�rst sight this construction looks strange, but it is algebraically perfectly well-de�ned:

it should be also noticed that constructions which present similar features have already

been encountered in supersymmetric theories, think for instance to the GSO projection

and to the supersymmetric Witten index [16].

This paper therefore contains the extension of the [10] method to the homogeneous

grading case.

It should be noticed that, even if a manifestly N = 1 super-formalism only has been

considered here, N = 2 supersymmetric hierarchies can be obtained from the above
picture by starting from algebras (and regular elements) which admit an anti-involution
J compatible with the supersymmetry (see [17, 18]); this is however a su�cient but not
necessary condition: it has been pointed out in [19, 15] that already the standard super-
NLS equation, obtained from the N = 1 a�nization of the sl(2) algebra, admits an N = 2
structure.

Besides the above construction, the following points will also be analyzed here:
i) the arising of possible symmetries under the �nite Weyl group or the outer Lie algebra
automorphisms transformations.
ii) The �eld reductions which can be consistently imposed once a �nite symmetry is
present (this is always the case for the positive versus negative root symmetry).

iii) The iterative prove of the coset structure for the higher order hamiltonian densities,
i.e. their vanishing Poisson brackets with respect to some a�ne Lie subalgebra.
iv) The already mentioned role played by di�erent regular elements to produce di�erent
integrable hierarchies. It is applied in particular to obtain more general hierarchies,
containing free parameters, than those studied in [1, 2] (this new situation appears already

from the sl(3) algebra); the integrable structure is preserved even in presence of these free
parameters. The generalization with respect to [1, 2] is due to the fact that the extra-

restriction that the diagonal-transformed Lax operator belongs to a symmetric space is

no longer imposed here (translated into a geometrical language, this implies not imposing
the vanishing of the torsion).

v) a heuristic derivation of the constrained KP-scalar Lax operators from the matrix ones
is also presented.

Besides the standard NLS and super-NLS hierarchies obtained from the a�ne (and
respectively N = 1 super-a�ne) sl(2) algebra, the bosonic hierarchies derived from the

a�ne sl(3) algebra, as well as the supersymmetric hierarchies obtained from the N = 1
a�nization of the sl(3) algebra and the osp(1j2) superalgebra are also explicitly presented.

A rather surprising result is found: in the sl(3) case, only the bosonic hierarchies

depending on a restrict class of values for the free continuous parameter can be super-
symmetrically extended in such a way to lead to an integrable supersymmetric hierarchy.

The scheme of this paper is the following:

the bosonic AKS approach to matrix-Lax operators is at �rst recalled. The coset-
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structure property of the homogeneous-grading hierarchies is derived. Then the symmetry

properties under Weyl group and outer automorphisms are analyzed. The sl(3)-algebra

case will be carried out completely and the whole set of associated hierarchies will be

written down. Next, the supersymmetric AKS approach for the homogeneous grading

will be introduced. In particular this scheme will be applied to explicitly compute the

supersymmetric hierarchies associated to sl(3) and osp(1j2).

2 Reviewing the AKS framework.

In this section I will shortly review the AKS-matrix Lax operator approach to bosonic

integrable hierarchies. For a more complete account see e.g. [9].

As a starting point a matrix-type Lax operator L is assumed, de�ned through

L = @

@x
+ J(x) + � (1)

Here x is a space coordinate (it can be assumed either x 2 R or x 2 S1).
J(x) denotes a set of currents valued in the semisimple �nite Lie algebra G:

J(x) =
X
i

Ji(x)gi

(2)

where gi's are the G-Lie algebra generators

[gi; gj] =
X
k

fkijgk

(3)

and fkij are the G-structure constants.

The Lie algebra G is naturally extended into a loop algebra ~G de�ned through

~G = G 
 C(�; ��1) (4)

The elements in ~G are Laurent expansions in the spectral parameter �. The brackets for
~G are given by

[gi � �
m; gj � �

n] =
X
k

fkijgk � �
m+n (5)

for any integers n;m.
The adjoint operator adY is de�ned through

adY (X) = [Y;X] (6)

where we can assume both X;Y 2 G or X;Y 2 ~G.
� in (1) is a constant (i.e. not depending on x) regular element of ~G.

The regularity has the following meaning: ~G is decomposed as a direct sum

~G = ~K � ~M (7)
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where

~K =def Ker(ad�)

~M =def Im(ad�) (8)

It is furthermore assumed ~K to be abelian; symbolically

[ ~K; ~K] = 0 (9)

In our case the following commutator is satis�ed, too:

[ ~K; ~M] � ~M (10)

If, moreover, the following condition is satis�ed

[ ~M; ~M] � ~K (11)

then
~G
~K
is a symmetric space.

This case has been studied in [1, 2], and a full classi�cation of symmetric spaces is
available (for an account see [20]).

In this paper the most general case, obtained by dropping the condition (11), will be
considered. As a consequence generalizations of the results in [1, 2] will be obtained.

To produce integrable hierarchies the concept of Z-grading for the Lie algebra ~G must

be introduced. A grading deg is a linear operator of the form

deg = N� d

d�
+ adZ (12)

(where N is a non-zero integer and Z is a suitable element in the Cartan subalgebra) such
that the elements in ~G are eigenvectors of deg having integer eigenvalues.

� in (1) must be an eigenvector of deg having non-zero eigenvalue.
I will leave to [9] the discussion about which are the admissible gradings for any given

Lie algebra. Here I will just remember that any Lie algebra always admits two extremal

gradings (plus, possibly, a series of intermediate ones): the principal grading and the

homogeneous one. The former associates grade-one to the simple roots of the algebra.
The integrable hierarchies produced from this grading are generalizations of the KdV

equation (the standard KdV is obtained from the sl(2) algebra, the Boussinesque from
sl(3) and so on).

The homogeneous grading is de�ned through

deg = � d

d�
(13)

(it counts the powers in �).

The grade-one regular elements � have in this case the form

� = �H (14)

where H is a given, generic element in the Cartan subalgebra of G (such that all its

eigenvalues in the adjoint representation of G are di�erent).
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For this particular grading the decomposition

G = K �M (15)

holds, where

K = Ker(adH)

M = Im(adH) (16)

We have now

~K = K 
 C(�; ��1)

~M = M
 C(�; ��1) (17)

The crucial feature of the AKS approach consists in the fact that the Lax operator L pro-

vides (1+1)-dimensional integrable hamiltonian systems through the following procedure:
at �rst it should be noticed that L can be diagonalized via a similarity transformation

L 7! L̂ (18)

de�ned by

L̂ = exp(adM ) � L =
1X
n=0

1
n!
(adM)n(L) (19)

whereM is a uniquely de�ned expansion of negative-graded elements of ~M which can be
iteratively computed.

It turns out that L̂ is expanded as a sum of negative-graded diagonal elements of the
Lie algebra G; they provide an in�nite series of mutually commuting (i.e. having vanishing
Poisson brackets), local in the Ji(x) �elds, hamiltonian densities.

At least two compatible Poisson brackets structures can be de�ned for such systems.
Throughout this paper we will be interested only in the second one, which is given by the

a�ne-Lie Poisson brackets algebra, de�ned as the central extension of the ~G-loop algebra.

Explicitly we have

fJi(x); Jj(y)g =
X
k

fkijJk(y)�(x� y) +Kij@y�(x� y) (20)

where in the above formula

Kij = Tr(gigj) (21)

in the adjoint representation for G.
In the speci�c case of the homogeneous grading the elementM in (19) is given by

M =
1X
k=1

��kMk (22)
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with

Mk 2 M = Im(adH) (23)

The transformed Lax operator L̂ is expanded in powers of � as

L̂ = �H + @x + J�h� +
1X
k=1

��kRk;�h� (24)

where H is given by (14) and h� denote the Cartan generators of G (the sum over � in

the above formula is understood).

J�; Rk;� for any k; � are mutually commuting hamiltonian densities which provide the

compatible ows associated to the given hierarchy.

3 The coset property of the homogeneous hierarchies.

In this section it will be proven the coset structure of the hierarchies associated to the
homogeneous grading. More precisely, the following property is satis�ed for the hierarchies
determined by a regular element

� = �
X
�

c�h� (25)

where h� are the Cartan generators of a given Lie algebra G (� = 1; 2; :::; r, with r the
rank of the algebra) and c� are generic constants.

It turns out that with respect to the second Poisson brackets structure (the a�ne-Lie

Poisson brackets given in (20)), the whole set of higher hamiltonian densities Rk;� of eq.
(24) have vanishing Poisson brackets with respect to the J�(x) currents associated to the
Cartan generators.

Since the J�'s generate independent ^U(1) Kac-Moody subalgebras, the above hamil-
tonian densities are elements of the Ĝ-enveloping algebra which belong to the
^U(1)

r

= ^U(1)
 :::
 ^U(1) (r times) coset subsector.
The above property is satis�ed for generic c� in (25). For some speci�c values of c� the

coset algebra can be bigger and coincide with some non-abelian Kac-Moody subalgebra

of Ĝ.

In order to prove the above theorem it is convenient to introduce in full generality
[21, 14, 13] the notion of charged �elds and covariant derivative with respect to the ^U(1)

Kac-Moody algebra de�ned by the brackets

fJ0(x); J0(y)g = @
@y
�(x� y) (26)

A q-charged �eld Vq is de�ned to satisfy

fJ0(x); Vq(y)g = qVq(y)�(x� y) (27)

while a covariant derivative D acting on Vq can be introduced through the position

DVq(x) =def (@ + qJ0(x))Vq(x) (28)
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Notice that the covariant derivative maps q-charged �elds into new �elds of de�nite charge

having the same value q.

The coset property of the Rk;� hamiltonian densities implies that they are chargeless

di�erential polynomials constructed with the subset of Ji(x)'s given by charged �elds and

covariant derivatives acting on them.

Such a theorem can be easily proven by using an iterative procedure. For simplicity it

will be given for the sl(2) case (which allows also to introduce the standard Non-Linear-

Schr�odinger equation), the generalization to generic Lie algebras G is straightforward.

The sl(2) algebra is generated by H;E�, satisfying the commutation relations:

[H;E�] = �2E�

[E+; E�] = H (29)

The associated second (a�ne-Lie) Poisson brackets structure is expressed by

fJ0(x); J0(y)g = @y�(x� y)

fJ0(x); J�(y)g = �2J�(y)�(x� y)

fJ+(x); J�(y)g = 2Dy�(x� y) = 2(@y�(x� y)� 2J0(y)�(x� y)) (30)

Here J�(x) have charge �2 with respect to the ^U(1) subalgebra generated by J0(x).

Any other Poisson bracket is vanishing.
The Lax operator L is given by

L = @ + Jo(x)H + J+(x)E+ + J�(x)E� + �H (31)

We can diagonalize, order by order in �, the above Lax operator into L̂ such that

L̂ = exp(adM)(L) = @ + J0(x)H +
1X
k=1

��kRkH (32)

where the diagonalizing matrix has the form

M =
1X
i=1

��i(Mi;+E+ +Mi;�E�) (33)

At the lowest orders we �nd

M1� = �J�

M2;� = �DJ�

M3;� = �(D2J� �
4
3
(J+J�)J� (34)

while the hamiltonian densities are given by

R1 = J+J�

R2 = 1
2
(J+DJ� � J�DJ+) (35)

At the lowest ordersMi;� are di�erential polynomials with de�nite charge �2 respectively,

while the hamiltonian densities are chargeless di�erential polynomials.
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It is immediately shown, due to the properties of the adjoint action exp(adM) acting

on L, that assuming Mi;� having charge �2 for i = 1; :::; N and Ri being chargeless for

i = 1; :::; N , necessarily follows thatMN+1;� have charges �2 and RN+1 is chargeless. The

theorem is therefore proven by induction. Its generalization to arbitrary Lie algebras is

straightforward.

The di�erent hamiltonian ows for integral values k = 1; 2; ::: are de�ned through the

following equation, for any given �eld �(x):

@

@tk
�(x) = 1

2
f�(x);

Z
dyRk(y)g (36)

(the factor 2 is introduced for normalization convenience).

Since J0(x) has vanishing Poisson brackets with respect to any Rk, we get for any ow

@
@tk
J0(x) = 0 (37)

It follows that it is consistent with the equations of motion to set

J0 � 0 (38)

In literature the above position is in general set as a Dirac constraint. In our approach
it is recovered as a consequence of the equations of motion, which implies a simpli�ed
analysis (in particular it avoids computing Dirac's brackets to obtain the ows, which is

of great help in many cases, see e.g. [15]).
The �rst two ows for the �elds J�(x) are respectively given by

@
@t1
J�(x) = �DJ�(x) (39)

and

@

@t2
J�(x) = �(D2J�(x) + 2(J+J�)J�(x)) (40)

The second ow is precisely the two-components Non-Linear-Schr�odinger equation.

The covariant derivative in the above formulas can be replaced by the standard deriva-

tive, once setting the (38) solution to the equations of motion.

4 From matrix to scalar Lax operators: a heuristic

derivation.

Before going ahead, let me just point out that a connection exists between matrix-

type Lax operators and consistent �eld-restrictions of the scalar KP operator. A detailed
analysis has been given in [2]. Here I wish just furnish a simple heuristic argument to

understand such a connection. For simplicity I will treat the sl(2) case in the homogeneous

grading; the extension to generic algebras can also be given along the same lines.
Let us consider as a starting point the equation

L �	 = 0 (41)
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(where L is the matrix Lax operator (31)) in some given representation of the sl(2)

algebra.

The � � 0 component of the above equation in the fundamental (spin1
2
) representation

for sl(2) gives us:

 
@ +

 
J0 J+
J� �J0

!! 
	+

	�

!
= 0 (42)

If we solve the above equation for, let's say, the 	� component and allow formally in-

verting the derivative operator, then we can plug the result into the equation for the 	+

component, obtaining:

(D + J�D
�1J+)	+ = 0 � L �	+ = 0 (43)

The scalar operator

L = D + J�D
�1J+ (44)

(It also turns out L � @ + J�@
�1J+ when inserting the constraint, compatible with the

equations of motion, J0 = 0) provides the consistent �eld reduction of the scalar KP
operator associated to the 2-component NLS equation (see [14]).

It should be noticed that to a given matrix-type Lax operator one can associate di�er-
ent but equivalent scalar KP restrictions, according to which representation of the algebra
has been chosen. For instance, if instead of starting with the fundamental representation

of sl(2) we proceed from the triplet representation (acting on the vector (	1;	0;	�1))
we are led, after solving the equations for the 	�1 components, to the following relation:

(D + J�D
�1J+ + J+D

�1J�)	0 = 0 (45)

The new scalar Lax operator L0

L0 = D + J�D
�1J+ + J+D

�1J� (46)

is equivalent to the L Lax operator (45) since their hamiltonian densities di�er by total
derivatives. L0 is basically the symmetrized form of L under the exchange J� $ J+.

5 Field reductions: the positive-negative roots ex-

change.

In the following sections the symmetries under Weyl group transformations and outer
automorphisms for generic Lie algebras will be analyzed. Here I will study the simplest

such kind of symmetries, already appearing for the sl(2) algebra: the algebra automor-

phism which exchanges positive and negative roots. Such Z2 symmetry is always present
for any Lie algebra; in general it will be provided by a combination of a Weyl transfor-

mation and an outer automorphism; for the sl(2) algebra, which does not admit outer

automorphisms, it coincides with the (unique) Weyl transformation.
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Explicitly we have

E+ $ E�; H 7! �H (47)

Such transformation can be extended to the a�ne-Lie automorphism

J+(x) $ J�(x); J0(x) 7! �J0(x) (48)

where J0(x); J�(x) generates the ^sl(2) algebra given in (30).

The L = @ + J0(x)H + J+(x)E+ + J�(x)E� + �H

Lax operator of (31) is invariant under the above transformation, provided that the spec-

tral parameter � being transformed according to

� 7! �� (49)

Moreover, it is easily realized that under the above transformation the diagonalizing
matrix M in (33) is left invariant. As a consequence the diagonalized Lax operator L̂
itself is invariant.

Due to the �-transformation property (49) the odd hamiltonian densities Rk (k odd)
are left invariant, while the even ones (Rk with k even) are transformed into their opposite:

Rk 7! (�1)k+1Rk (50)

Each time we have a symmetry we can perform a �eld reduction, identifying the �elds

which are related by the symmmetry transformation. Such a step can be performed for
our Z2-symmetry, which allows us passing from the 2-component NLS equation to the
standard-form single component Non-Linear-Schr�odinger equation. However it is worth
to notice the following point: the hamiltonian which generates the NLS equation is the
second one (R2) which is not invariant under the symmetry, but it is transformed into its
opposite. For that reason it is not possible to identify J+ with J�, instead we have to

assume the time t2 being imaginary (t2 = it) and

J+(x) = u(x) = J�
?(x) (51)

The situation here is parallel to what happens in quantum-mechanics when disposing of
a time reversal transformation which ips the sign of the hamiltonian: in that case the

symmetry is recovered in terms of an antiunitary transformation which involves complex
conjugation.

The �nal result for the single-component NLS equation is the following:

i _u = u00 + 2ujuj2 (52)

(here the standard convention of denoting time and spatial derivatives with respectively

a dot or a prime has been adopted).
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6 The dependence on the regular element and its

symmetry properties.

In this section I wish to analyze a new feature, not touched by our previous discussion,

that is the dependence of the integrable hierarchies from the choice of the regular element

and its symmetry properties. For the sl(2) algebra case this problem can not be posed

since the grade-one regular element with respect to the homogeneous grading (that is

�H of (14)) is essentially unique (apart an overall normalization factor which can be

reabsorbed by rescaling the spectral parameter).

For general Lie algebras the problem of determining which di�erent hierarchies are

produced from di�erent regular elements is a very interesting one. To be de�nite here

we analyze in full detail the sl(3) algebra case. This is indeed a very fundamental case
because it already contains all the features (namely a non-trivial Weyl group and the
presence of an outer automorphism) which are found in more complicated examples for
generic Lie algebras. The generalization of the approach here developed to such cases is
immediate, it is only technically more involved.

Before introducing my conventions concerning the sl(3) algebra let me just recall (see
[22] for a complete account) that the Weyl group associated to a given Lie algebra is
a �nite group of reections which leave invariant the root systems of the algebra. It
coincides with a subgroup of the inner automorphisms of the Lie algebra.

Besides the inner automorphisms a generic Lie algebra admits also a group of outer

automorphisms (i.e. they can not be obtained as an Adjoint action
x 7! x0 = exp(ady)(x), with x; y; x

0 2 G)
which coincides with the group of symmetries of its Dynkin diagram.

The sl(3) algebra admits 8 generators. 2 generators, denoted as H1 and H2, belong
to the Cartan sector (rank 2); the simple (positive and negative) roots will be denoted as

E�1, E�2 respectively. The extra (maximal) root will be represented as E�3.
It is convenient to introduce the 3� 3 matrices eij, for i; j = 1; 2; 3, de�ned as follows:

eij has all zero entries apart 1 in the i-th raw, j-th column position.

The fundamental 3� 3 representation of sl(3) is obtained by setting

H1 = e11 � e22; H2 = e22 � e33; (53)

for the Cartan generators,

E+1 = e12; E+2 = e23; E+3 = e13; (54)

for the positive roots and

E�1 = e21; E�2 = e32; E�3 = e31; (55)

for the negative ones.
The full commutation relations of the sl(3) algebra can be easily computed from the

above positions.

The Weyl group for sl(3) coincides with the S3 permutation group (of order 6) of three
elements denoted as e1; e2; e3.
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The positive roots can be associated to the following combinations of ei's (see [22]):

E+1 � e1 � e2; E+2 � e2 � e3; E+3 � e1 � e3 (56)

The Weyl group admits 3 distinct Z2 subsymmetries si, i = 1; 2; 3, given by the corre-

sponding reections along the ei element in S3, acting as:

s1 : E�1 $ E�3; E+2 $ E�2; H1 7! H1 +H2; H2 7! �H2:

s2 : E�1 $ E�2; E+3 $ E�3; H1 $�H2:

s3 : E+1 $ E�1; E�2 $ E�3; H1 7! �H1; H2 7! H1 +H2: (57)

The Z3 subsymmetry obtained by sending 1 7! 2 7! 3 7! 1 leads to

E�1 7! E�2 7! E�3 7! E�1;

H1 7! H2 7! �(H1 +H2): (58)

Besides the above Weyl transformation, an extra Z2 symmetry is present: it is realized
by the outer automorphism � which exchanges the two simple roots. It is explicitly given
by the following relations

� : E�1 $ E�2; E�3 7! �E�3; H1 $ H2: (59)

It should be noticed that the automorphism s� which exchanges positive and negative
roots is in this case given by the combination of the s2 Weyl transformation and the outer
automorphism �:

s� = s2 � � (60)

Explicitly we have

s� : E+1 $ E�1; E+2 $ E�2; E+3 $ �E�3; H1 $ �H1; H2 $ �H2:

(61)

Both the Weyl transformations and the � outer automorphism can be extended to be

automorphisms for the full a�ne ^sl(3) algebra, in precise analogy to what discussed in

the previous section.
The generic grade-one sl(3) regular element � for the homogeneous grading has the

following form

� = �H = �(cos2�H1 + sin2�H2) (62)

Therefore it will depend on an arbitrary angle � (as in the sl(2) case an overall normal-

ization factor can be reabsorbed in the de�nition of �).

It will be explained in the next section that the integrable hierarchies have an essential
dependence on �, that is � can not be rescaled at will.

As already recalled, the AKS framework works if the eigenvalues of the regular element
are all distinct. In the 3 � 3 fundamental representation the diagonal for H in (62) is

given by

(t; 1� 2t; t� 1) (63)
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(where for simplicity we have set t = cos2�, t 2 [0; 1]).

It follows that two values exist

t = 1
3
; t = 2

3
(64)

which must be excluded.

However it will be shown later that both the (64) conditions still produce admissible

integrable hierarchies (of degenerate type); they have been discussed in [2].

Let us discuss now the symmetry properties under Weyl transformations and outer

automorphism � for the matrix Lax operator L (and therefore of its associated hierarchies)

according to the choice of the regular element �.

We have for sl(3)

L = @ +
X
i

Ji(x)gi + �(tH1 + (1 � t)H2) (65)

The term
P

i Ji(x)gi (the sum is over the sl(3) generators) is invariant under both the

Weyl and the � transformations due to the combined transformation properties of gi; Ji(x);
obviously the derivative @ is invariant too.

For what concerns �, the transformations act as follows:
i) � maps L(t) into L(1 � t). As a consequence t and 1 � t produce the same set of
hamiltonian densities and therefore the same hierarchies. There is only one symmetric

point

t = 1
2

(66)

which leaves L invariant.
It corresponds to the choice

� � �(1
2
; 0;�1

2
) (67)

on the diagonal. This value of t allows the folding procedure (see [23]) which will be
discussed in more detail in the next section.

ii) the s2 transformation is a symmetry for L only for t = 1
2
and assuming � to be mapped

into its opposite (� 7! ��).

iii) The combined s� = s2 � � transformation (positive-negative roots exchange) is a
symmetry of L for any value of t, provided that � 7! �� under s�. As a consequence,

for any value of t (or of the �-angle), the reduction from the 2-component �elds hierarchy
to the single(complex)-component �elds hierarchy can be performed. The same remarks

concerning the alternate parity of the hamiltonian in the sl(2) case hold here as well.

iv) For what concerns the s1 transformation, it can act as a symmetry for L if one of the

two conditions below is satis�ed:

either � is unchanged (� 7! �) under s1; in this case t must assume the degenerate value
t = 2

3
so that

� � �(2
3
;�1

3
;�1

3
) (68)

on the diagonal,
or � is mapped into its opposite (� 7! ��) and t = 0; therefore

� � �(0; 1;�1) (69)
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on the diagonal.

v) The case concerning the s3 symmetry is specular to the previous one, to which it can

be reduced after performing a � transformation. L is symmetric under s3 if either

s3 : � 7! � and t = 1
3
, or

s3 : � 7! �� and t = 1.

It is not necessary to analyze the transformation properties for other elements of the

Weyl group since the latter, being a permutation group, is recovered from the application

of two generators (which can be assumed to be e.g. s1; s2).

7 The sl(3) hierarchies in the homogeneous grading.

In this section the results previously obtained will be applied to construct the whole
set of integrable hierarchies associated to the sl(3) algebra in the homogeneous grading.

At �rst it is convenient to explicitly introduce the a�ne ^sl(3) algebra which provides
the second Poisson brackets structure.

The two currents J0;1(x); J0;2(x) are associated with the two generators in the Cartan

subalgebra, while the positive (negative) roots correspond to the currents J�i, i = 1; 2; 3.
The Cartan subalgebra reads as follows

fJ0;1(x); J0;1(y)g = 2@y�(x� y)

fJ0;1(x); J0;2(y)g = �@y�(x� y)

fJ0;2(x); J0;2(y)g = 2@y�(x� y) (70)

The currents J�i(x) are charged �elds

fJ0;j(x); J�i(y)g = q�i;jJ�i(y)�(x� y) (71)

with charges q�i � (q�i;1; q�i;2) given by

q�1 = �(2;�1)

q�2 = �(�1; 2)

q�3 = �(1; 1) (72)

The covariant derivatives turn out to be

DJ�1 = @J�1 � J0;1J�1

DJ�2 = @J�2 � J0;2J�2

DJ�3 = @J�3 � (J0;1 + J0;2)J�3 (73)

The algebra is completed by the following relations

fJ+i(x); J�i(y)g = Dy�(x� y) for i = 1; 2; 3:

fJ+1(x); J�3(y)g = �J�2(y)�(x� y) fJ+2(x); J�3(y)g = J�1(y)�(x� y)

fJ+3(x); J�1(y)g = �J+2(y)�(x� y) fJ+3(x); J�2(y)g = J+1(y)�(x� y)

fJ�1(x); J�2(y)g = �J�3(y)�(x� y) (74)
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Any other Poisson bracket is vanishing.

We have now all the ingredients to compute the integrable hierarchies.

The Lax operator L is given in (65) and depends on the parameter t = cos2�. It is

diagonalized with a similarity transformation into L̂:

L̂ = exp(adM)(L =

= �(tH1 + (1� t)H2) + @ + J0;1(x)H1 + J0;2(x)H2 +
X
k;�

��kRk;�(x)H� (75)

where k = 1; 2; ::: denotes positive integers and � = 1; 2.

The diagonalizing matrix M can be expanded as

M =
1X
i=1

(��i �
X
j

Mi;�jE�j) (76)

for j = 1; 2; 3.
The compatible hamiltonian densities Rk;� can be computed with straightforward

techniques. We get at the lowest orders:

R1;1(x) = (J+3J�3 +
1

(3t�1)
J+1J�1)(x)

R1;2(x) = (J+3J�3 �
1

(3t�2)
J+2J�2)(x) (77)

and

R2;1(x) = 1
2
(DJ+3J�3 � J+3DJ�3) +

1
2(3t�1)2

(DJ+1J�1 � J�1DJ+1)

+ 1
(3t�1)

(J+3J�1J�2 + J�3J+1J+2)

R2;2(x) = 1
2
(DJ+3J�3 � J+3DJ�3) +

1
2(3t�2)2

(DJ+2J�2 � J+2DJ�2)

+ 1
(3t�2)

(J+3J�1J�2 + J�3J+1J+2) (78)

Notice that the hamiltonian densities Rk;2 are just obtained by applying a � transforma-

tion (59) to Rk;1 (and conversely); here

� : J�1 $ J�2; J�3 7! �J�3; t 7! (1 � t): (79)

The hamiltonians Hk;� are de�ned as the integrals

Hk;� =
Z
dyRk;�(y) (80)

and the corresponding ows, for a generic �eld �(x), are given by

@

@tk;�
�(x) = f�(x);Hk;�g (81)

where in the right hand side we have the a�ne Lie Poisson brackets (70,71,74).
In the above formulas (77,78) t can assume any value t 2 [0; 1] apart t = 1

3
; 2
3
.

Neverthless even in such degenerate cases we obtain integrable hierarchies. Indeed for

t = 1
3
the integrals Hk;1 are not de�ned. However, the subset of integrals Hk;2, k = 1; 2; :::,
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is well-de�ned; they provide the mutually commuting hamiltonians with respect to the

second Poisson brackets structure (70,71,74).

It can be easily shown that in this case it is consistent with the whole set of tk;2 ows

not only to put the constraint

J0;1(x) = J0;2(x) = 0 (82)

(see the discussion in section 3), but also to set

J�1(x) = 0 (83)

(the consistency of this position is due to the fact that, in the equations of motion for

J�1(x), the right hand side is proportional to J�1).

The hierarchy so derived will depend on the �elds J�2(x); J�3(x) only.

The hamiltonians Hk;2 belong to the symmetric coset space sl(3)

sl(2)�U(1)
(it should be

noticed however that the hamiltonian densities Rk;2 do not belong to the full a�ne coset

subspace ^sl(2)� ^U(1)).
Similar considerations hold for t = 2

3
, but now we have to replace 1 $ 2 in the

discussion above.
Another value of t which must be singled out is t = 1

2
; it corresponds to the symmetric

point which leaves L invariant under the outer automorphism �.
In this case it is convenient to reexpress the �elds in terms of the �-eigenvectors: we

have as eigenvectors corresponding to the (+1) eigenvalue:

J�up = J�1 + J�2 (84)

while the (�1) eigenvectors are

J�down = J�1 � J�2; J�3: (85)

A consistent reduction of the (t = 1
2
) symmetric hierarchy can be obtained by considering

the subset (for positive integers k) of

Hk;up =def Hk;1 +Hk;2 (86)

(+1) eigenvectors hamiltonians and setting all the �elds corresponding to the (�1) eigen-
value equal to zero:

J�down = J�3 = 0 (87)

The reduced hierarchy is just the NLS-hierarchy of section 3.
The above procedure is nothing else than a simple example of folding, that is the

reduction associated to a symmetry of the Lie algebra Dynkin diagram. For general

folding constructions see [23].

Let us come back now to the general case (corresponding to generic values of t).

The hierarchies will depend on the whole set of �elds J�i, i = 1; 2; 3 while, as before,
we can consistently set

J0;1 = J0;2 = 0 (88)
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at the level of the equations of motion (i.e. after computing the Poisson brackets).

From the hamiltonian H1;1 we obtain the ow

_J�1 = �J�3J�2 �
1

(3t�1)
J�1

0

_J�2 = �(1� 1
(3t�1)

)J�3J�1

_J�3 = � 1
(3t�1)

J�1J�2 � J�3
0 (89)

The ow associated to H1;2 is obtained from (89) by replacing t 7! (1� t) and 1$ 2 (for

any couple of k-th order hamiltonians Hk;1, Hk;2 such a replacement obviously holds).

From the second order hamiltonian H2;1 we get the ow

_J�1 = �J�3J
0

�2 � (1 + )J 0
�3J�2 � 2J 00

�1 +

�J�1[2
2J+1J�1 � J+2J�2 + (1 + )J+3J�3]

_J�2 = ( � 1)J�3J
0

�1 + (1 � )J 0
�3J�1 +

�J�2[(1� )J+1J�1 + (1� )J+3J�3]

_J�3 = �J 00
�3 � ( + 1)J 0

�1J�2 � J�1J
0

�2 +

�J�3[( + 1)J+1J�1 � J+2J�2 + 2J+3J�3] (90)

where, in order to simplify our notation, we have set

 =def

1

(3t� 1)
(91)

The above (90) relations provide the sl(3) generalization of the 2-component �elds NLS
equation.

Due to the results of the previous section concerning the � roots exchange symmetry
s�, the above relations can be consistently reduced to the equations of motion for single-
component complex �elds; for the �rst ow the identi�cation implies

�1(x) = J+1 = J�1

�2(x) = J+2 = J�2

�3(x) = J+3 = �J�3 (92)

We obtain as a consequence

_�1 = ��2�3 � �01
_�2 = (1 � )�1�3
_�3 = ��1�2 � �03 (93)

To get the second ow restriction we must let the time being imaginary and set:

�1(x) = J+1 = J?�1;

�2(x) = J+2 = J?
�2;

�3(x) = J+3 = �J
?
�3 (94)
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The second ow provides the generalization of the single-component NLS equation:

i _�1 = ��3�2
?0 � (1 + )�03�2

? � 2�001 +

+�1[2
2j�1j

2 � j�2j
2 � (1 + )j�3j

2]

i _�2 = ( � 1)�3�1
?0 + (1 � )�03�1

? +

+�2[(1� )j�1j
2 + ( � 1)j�3j

2]

i _�3 = ��003 � ( + 1)�01�2 � �1�
0

2 +

+�3[( + 1)j�1j
2 � j�2j

2 � 2j�3j
2] (95)

Since the s� symmetry commutes with the s1, s3 symmetries (see the previous section),

the reduction from 2-component �elds to single-component �elds can be performed also

in the case of \degenerate" hierarchies for t = 1
3
,2
3
.

Let us make now some comments about the (90) hierarchy. The parameter  can
assume the real values

 � 1
2

for 1
3
< t � 1 (96)

and

 � �1 for 0 � t < 1
3

(97)

Under the � transformation  is mapped into ~:

� :  7! ~ =


( � 1)
(98)

A fundamental domain for  is therefore given by

1
2
�  � 2 (99)

The special point  = 1 corresponds to the degenerate hierarchy obtained from t = 2
3
.

 = 2 corresponds to the symmetric point t = 1
2
, while  = 1

2
is obtained from the

extremal value t = 1.

Clearly di�erent values of  correspond to hamiltonians having di�erent symmetry
properties: for instance  = 2 corresponds to the �-symmetric hamiltonians, but such a

symmetry is broken for  6= 2.
Anyway the equations of motion may have a bigger symmetry property than the

corresponding hamiltonians and a natural question one can ask is the following: is  a

fake or a genuine parameter in our theory? Stated otherwise, is it possible to rede�ne the

variables in our theory in such a way that  could be rescaled to a given �xed value of

reference? A simple inspection shows that this is not the case: it is not possible, under
the combined action of linear transformations for time and space variables and linear

mappings of the �elds �i(x) 7! ~�i = Aij�j (with det(Aij 6= 0) to recast our equations (90)
in a way that  assumes a �xed, speci�ed value.

Therefore  is a genuine free parameter in our theory which labels a continuous class

of inequivalent integrable hierarchies. The integrability of (95) is guaranteed for any value
of  satisfying (96) or (97). The restricted (99) interval for  corresponds to the class of
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sl(3) fundamental hierarchies (the remaining hierarchies are obtained by �-transforming

this fundamental class).

sl(3) is the simplest algebra admitting such a structure. Applying the same consid-

erations here developed to the sl(n) algebra, we expect that in this case there exists a

continuous class of inequivalent integrable hierarchies speci�ed by n� 2 real parameters.

It will be shown later that only the hierarchies corresponding to the restricted class of

values for ,

 � 1

can be supersymmetrically extended while mantaining the integrability property.

8 The supersymmetric AKS framework for the ho-

mogeneous grading.

In the previous sections we have analyzed the matrix AKS framework with respect to
the homogeneous grading for bosonic hierarchies.

In this section I will de�ne and show the general procedure which allows to extend the
AKS construction to the supersymmetric hierarchies for the homogeneous grading.

This approach furnishes a method to systematically construct a vast class of super-

hierarchies and to automatically prove their integrability. A manifest N = 1 supersym-
metric formalism will be used; by no means this implies restriction to N = 1 super-
hierarchies only. It is indeed true (see [17, 18] for general considerations and [19, 15] for
an actual construction) that some of the hierarchies here considered admit an N = 2
supersymmetry.

Before introducing the basic ingredients of such a framework, let me recall what already
stated in the introduction: the matrix AKS framework for super-hierarchies has already
been considered in [10], but only for the principal grading case. The super-hierarchies
derived in such a case are of super-KdV type and form a rather restricted class (the
hierarchies are put in correspondence with the subclass of super-Lie algebras which admit

a presentation in terms of fermionic simple roots only). On the contrary, the super-

hierarchies derived within our homogeneous-grading procedure are those of super-NLS

type; apparently they form a \wider" class since any bosonic Lie algebra and any super-
Lie algebra can be used to produce their corresponding hierarchies. More comments on

that will be given later.
Let us �x at �rst our conventions concerning the superspace. We denote with capital

letters the N = 1 supercoordinate (X � x; �, with x and � real, respectively bosonic and
grassmann, variables).

The supersymmetric spinor derivative is given by

D � DX =
@

@�
+ �

@

@x
(100)

With the above de�nition DX
2 = @

@x
.

The supersymmetric delta-function �(X;Y ) is a fermionic object

�(X;Y ) = �(x� y)(� � �) (101)
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(here Y � y; �).

It satis�es the relations

�(X;Y ) = ��(Y;X) DX�(X;Y ) = �DY�(X;Y ) (102)

Our convention for the integration over the grassmann variable isZ
d� � � = �1 (103)

For any given super�eld F (X) we get then

Z
dY�(X;Y )F (Y ) = F (X) (104)

As in the bosonic case, the (super)-line integral over a total derivative gives a vanishing
result.

At this point it is quite natural to introduce L as the supersymmetrized version of the

matrix Lax operator through the following position:

L = DX +
X
i

	i(X)gi + � (105)

where in the above relation gi's denote either the generators of a semisimple Lie algebra
or the generators of a super-Lie algebra; in the latter case the gi's can be either bosonic
(even elements gi

(0)), or fermionic (odd elements gi
(1)), see [24] for an account on super-Lie

algebras.

	i denotes the set of N = 1 currents associated to the (super)-Lie algebra; they
have opposite parity with respect to that of gi, i.e. the current associated to a bosonic
generator gi

(0) is fermionic and conversely to a fermionic generator gi
(1) corresponds a

bosonic current. In particular the whole set of N = 1 currents of a standard Lie algebra
which admits bosonic generators only is given by purely fermionic super�elds.

With the above assumption the second term in the right hand side of (105) is fermionic,

just like the �rst term (the spinor derivative D).
In the following bosonic and fermionic super�elds will be distinguished by convention-

ally denoting as �j(X) the bosonic super�elds and 	j(X) the fermionic ones.

The N = 1 supercurrents are the generators of the N = 1 Ĝ a�nization of the G Lie

or super-Lie algebra (see [25] and [26] for the a�nization of respectively bosonic algebras
and superalgebras). This means they satisfy the following supersymmetric Kac-Moody

Poisson brackets algebra

f	i(X);	j(Y )g =
X
k

fkij	k(Y )�(X;Y ) +KijDY�(X;Y ) (106)

The above is the N = 1 extension of the (20) formula.
Here fkij are the (super)structure constants of G and Kij = Str(gigj) is the (su-

per)trace in the adjoint representation of G. The brackets are either symmetric or anti-

symmetric according to the grading of the supercurrents.
Just as in the bosonic case the above algebra will furnish the Poisson brackets structure

for the derived integrable hierarchies.
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We still need to specify what is � in (105). It must be a constant regular element

as in the previously studied case. Here however an extra-condition appears: due to the

fermionic character of D it seems unavoidable to assume � fermionic too in order to

keep a de�nite statistics for L; since in the principal grading case L is a sum over a

simple-roots set of the G (super)algebra, it follows that the above construction works

only if superalgebras are considered which, moreover, admits a presentation in terms of

fermionic simple roots only. This case has been analyzed in [10].

When the homogeneous grading is concerned, then � should assume the form

� � �H (107)

with � a bosonic spectral parameter and H a generic element in the Cartan sector of the

G (super)algebra.
Since the Cartan sector is always bosonic, even for super-Lie algebras, the above

consideration seems to rule out the possibility of introducing integrable hierarchies in
connection with the homogeneous grading. However, supersymmetric generalizations of
the NLS hierarchies have been produced ([11, 12, 13]) and furthermore it has been shown

that at least some of them satisfy a coset property [13, 15], which puts them on the same
foot as the corresponding bosonic hierarchies. It seems therefore rather puzzling that they
cannot be accomodated in an AKS framework.

There is however a key point which allows us to overcome the previous argument:
the presence of the � bosonic spectral parameter makes possible to introduce a sort of
\twisted" statistics for Laurent series in �. We can indeed assume that the Laurent

expansion B(�) is a \twisted" boson if it is given by an alternating sum of bosonic and
fermionic power series in �, such that

B(�) = b(�2) + � � f(�2) (108)

with b(�2), f(�2) respectively ordinary bosonic and fermionic Laurent expansions in �2.
Conversely F (�) is a \twisted" fermion if

F (�) = �(�2) + � � �(�2) (109)

where �(�2) (�(�2)) is an ordinary fermion (boson).

\Twisted" bosons and fermions are closed under multiplication with the same rules as
the ordinary bosons and fermions.

As already pointed out alternating sums of bosons and fermions already appeared in
the context of GSO projection and the supersymmetric Witten index.

In this respect L in (105) must be considered as a twisted fermion.
The crucial feature in the bosonic AKS picture is the existence of an uniquely de�ned

adjoint action which allows diagonalizing the Lax operator. The same property holds in

the supersymmetric case, but since now we must respect the twisted fermionic character

of L, the adjoint action should be de�ned with respect to a twisted boson.

For two generic twisted boson and fermion given by (108,109) respectively, we can
de�ne the adB(F ) adjoint action as follows

adB(F ) =def [b; �] + �2[f; �] + � � (ff 0; �g + [b; �]) (110)
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where the brackets denote the standard commutator and the curly braces the anticom-

mutator (in consistence with the statistics of the component �elds b; f; f 0; �; �). In the

above formula

f 0 � t(f) (111)

is fermionic and t is a linear transformation such that t2 = 1.

This transformation will be explicitly de�ned in the next section.

The map

F 7! ~F = ~� + � � ~� = adB(F ) (112)

sends F into a new twisted fermion since ~�; ~�

~� = [b; �] + �2[f; �]
~� = ff 0; �g + [b; �] (113)

are respectively bosonic and fermionic.

In the following we will need to introduce the AdB(F ) action through:

AdB(F ) =def exp(adB)(F ) =
1X
n=0

(adB)
n(F ) (114)

It turns out there exists an uniquely de�ned twisted boson M expanded in non-positive
powers in �, with the boundary condition M ! 0 for �!1,

M =
1X
k=1

��2k(bk + � � fk) (115)

(the bk's are bosons and the fk's fermions), which diagonalizes L under its AdM action:

L̂ = AdM (L) = �H +D +	�h� +
1X
k=1

��kRk;�h�

(116)

h� are the Cartan generators. For even (odd) values of k, Rk;� are fermions (bosons).

In particular the R2k;� fermionic quantities provide the in�nite set of hamiltonian

densities for a given hierarchy. We recall that the integration over the superspace is
fermionic, so that

Hk;� =
Z
dXR2k;�(X) (117)

are the bosonic hamiltonians, mutually in involution under the (106) Poisson brackets

structure.

The compatible ows are de�ned, for any given super�eld �(X), as

@�(X)
@tk;�

= f�(X);Hk;�g (118)
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9 The simplest example: the super-NLS hierarchy

from the N = 1 ^sl(2) algebra.

In the previous section the basic ingredients underlining the supersymmetric AKS

framework for the homogeneous grading have been introduced. Here a more detailed

analysis will be given by illustrating the simplest example of such a construction which

arises from the N = 1 a�nization of the sl(2) algebra. The associated hierarchy is the

super-NonLinear Schr�odinger hierarchy already discussed in [13]. With respect to that

paper the method here developed can be immediately extended to more complicated

hierarchies.

The sl(2) algebra has been introduced in (29). Its N = 1 a�nization [13] is generated

by the 3 fermionic super�elds 	�(X) (with � � 0;�) and is determined by the following
relations:

f	0(X);	0(Y )g = DY�(X;Y )

f	0(X);	�(Y )g = �2�(X;Y )	�(Y )

f	+(X);	�(Y )g = DY�(X;Y ) + 2�(X;Y )	0(Y ) � DY�(X;Y ) (119)

(any other Poisson bracket is vanishing).
The super�elds 	�(X) are decomposed in terms of their component �elds as

	�(X) =  �(x) + �J�(x) (120)

where  � (J�) are respectively fermionic (bosonic).
The Poisson brackets for the component �elds can be directly read from (119).

The upper line in (119) speci�es the N = 1 ^U(1) Kac-Moody subalgebra generated by
	0(X). In general, as in the bosonic case, we can introduce charged super�elds Vq(X)

(q is the charge), assumed to satisfy the following relation with respect to the N = 1 ^U(1)
Kac-Moody generator:

f	0(X); Vq(Y )g = q�(X;Y )Vq(Y ) (121)

In the above formula Vq(X) can either be a bosonic or a fermionic super�eld.

The notion of a (supersymmetric) covariant derivative D can be introduced as in the
bosonic case through the following position:

DVq(X) = DVq(X) + q	0(X)Vq(X) (122)

The covariant derivative is now fermionic and maps a q-charged super�eld Vq(X) into a
new q-charged super�eld (of opposite statistics).

It follows immediately from (119) that 	�(X) are super�elds of de�nite charge �2.

For that reason the right hand side of the last equation in (119) can also be reexpressed
by making use of the fermionic covariant derivative, as shown above.

It is worth to mention that the higher order fermionic hamiltonian densities R2k(X)

(k = 1; 2; :::) which will be introduced later, belong to the N = 1 ^U(1) coset, that is they
have vanishing brackets with respect to 	0(X) and the (119) Poisson structure:

f	0(X); R2k(Y )g = 0 (123)
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It follows that the whole set of R2k's hamiltonian densities is provided by chargeless

di�erential polinomials in the super�elds 	�(X) and fermionic covariant derivatives acting

on them. The actual demonstration of this property plainly follows the one already

discussed for the bosonic case and for that reason it will be omitted here.

At this point we are not yet entitled to plug the above formulas concerning the sl(2) al-

gebra in the the previous section construction and derive the associated hierarchy, because

we have still to de�ne the t linear transformation in (111) and explain its origin.

The discussion concerning the role of the t-transformation has been postponed until

now in order to introduce at �rst the needed algebraic setup, but it will be immediately

clear that no peculiar features of sl(2) appear in the following reasoning, which admits a

trivial generalizion to any given Lie and super-Lie algebra.

It has been already remarked that in the bosonic case, no matter which Lie algebra and

which regular element in its Cartan sector are chosen, the �-roots exchange symmetry

always allows to perform a reduction from a two-component �elds hierarchy into a single-
component hierarchy. The same feature we wish to preserve in the supersymmetric case
as well.

In the particular case of the sl(2) algebra, the s�-roots exchange provides the following
automorphisms:

E+ $ E� H 7! �H

	+(X)$ 	�(X) 	0(X) 7! �	0(X) (124)

The hamiltonian densities of the associated hierarchy turn out to have a well-de�ned

transformation property with respect to the above s� exchange (i.e. they are eigenfunc-
tions with eigenvalue �1), if the component super�elds �k; �k of the twisted fermionic
F (�) series:

F (�) =
+1X

k=�1

�2k(�k + � � �k) (125)

satisfy the following transformation properties:

s� : �k 7! (�1)k�k; �k 7! (�1)k+1�k: (126)

Notice in particular that the original Lax operator L given by

L = D +	0(X)H +	+(X)E+ +	�(X)E� + �H (127)

satis�es the above relations for k = 0.

The twisted boson M(�) which diagonalizes L can be decomposed as follows:

M(�) = M(�)> +M(�)< (128)

where the underscript ?> (?<) denotes the projection over the positive (and respectively

negative) roots sector of any given Lie or super-Lie algebra. In the sl(2) case this is just
the projection over E+ (E�). If the bosonic (fermionic) components bk (fk) inM(�) given

in (115) are mapped into

s� : bk 7! (�1)kbk; fk 7! (�1)kfk (129)
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then, the adjoint action adM(F ) as de�ned in (110), sends F (�) in (109) into a new

twisted fermion adM(F ) whose components satisfy the same s�-transformation properties

as (126), provided that in (110) the linear transformation

f(�2)0 = t(f(�2)) =def f(�
2)> � f(�2)< (130)

is taken into account.

Such a t-transformation is therefore necessary in order to mantain a well-de�ned trans-

formation property under the s� symmetry in the supersymmetric case too. As a result

the diagonalized L̂ Lax operator turns out to be expressed as

L̂ = AdM (L) = �H + (D +	0(X)H) +
1X
k=1

��k(Rk(X)H) (131)

and, under the s� transformation, the fermionic hamiltonian densities R2k(X) behave as
follows:

s� : R2k(X) 7! (�1)k+1R2k(X) (132)

Apparently it seems that a certain degree of arbitrariness is involved in choosing the

parity for the transformation properties of the �k, �k components of F (�) in (125); this
is however not true: the parity of �k; �k (and as a consequence, that of bk; fk) is uniquely
�xed by the following two requirements:
i) the supersymmetric fermionic hamiltonian densities are eigenfunctions under the s�
transformation and

ii) the set of �rst hamiltonian densities (in the general case denoted as R2k;� with k = 1,
just R2 in the speci�c case of sl(2)), should have parity +1 (so that R2 7! R2).

This second requirement is due to the fact that the �rst hamiltonian densities should
guarantee a non-trivial ow (in the sl(2) case R2 provides chiral equations of motion).
This requirement can be understood also as follows: it implies the supersymmetric �rst

ow to coincide with the bosonic �rst ow when all the fermionic �elds are set equal to

zero.
We already know indeed that the �rst hamiltonian density for the sl(2) hierarchy can

be expressed as

D	+ �	� +D	� �	+ (133)

and has s�-parity +1.
The corresponding term of same dimension

D	+ �	� �D	� �	+ (134)

which has �1 parity is a fermionic total derivative and gives trivial equations of motion.

Similarly in the osp(1j2) case we obtain non-trivial equations of motion if the �rst

hamiltonian density is given by

D�+ � �� �D�� � �+ (135)
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which has parity +1 (here �� are bosonic super�elds and s� : �� 7! �+ 7! ��� as it

will be discussed in the next section).

Here again the �1 s�-parity term

D�+�� +D���+ (136)

is a total derivative.

It can be explicitly checked with an iterative proof that at any order in the expansion

over the � spectral parameter, the bk; fk coe�cients of the diagonalizing operator M(�)

satisfy the (129) s�-transformation properties, which guarantees the consistency of our

procedure.

Therefore the whole set of algebraic rules is speci�ed to compute the in�nite tower of

hamiltonians, mutually in involution, for any given Lie or super-Lie algebra.

For the speci�c case of the sl(2) algebra we obtain as M(�) diagonalizing operator, at
the lowest orders:

f1 = 1
2
(	+E+ �	�E�)

b1 = 1
4
(D	+E+ �D	�E�) (137)

The diagonalized Lax operators L̂ reads

R1 = 1
2
	+	�

R2 = 1
8
(D	+ �	� +	+ � D	�) (138)

The second fermionic hamiltonian density R4 is proportional to

R4 / D3	+ �	� �	+D
3	� (139)

The following ows are obtained, in a convenient normalization:

@	�
@t1

= D2	� (140)

and

@	�
@t2

= �D4	� � 4	�D(	�D	�) (141)

while for any ow, due to the above speci�ed coset property of the hamiltonian densities,
we get

@	0

@tk
= 0 (142)

In particular the second ow coincides (apart a normalization factor) with the two-
component super-NLS equation of ref. [13] once set the constraint, compatible with

the equations of motion

	0 � 0

The single-component super�eld super-NLS equation is recovered by setting the time

being imaginary (t = �it2) and

	+ = 	�
? = 	

The �nal result is

i _	 = D4	� 4	D(	? �D	) (143)
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10 The integrable super-hierarchy associated to the

osp(1j2) superalgebra.

In this section it will be shown that the supersymmetric AKS framework for the

homogeneous grading can be worked out not only for bosonic Lie algebras (as it is the

case for the super-NLS equation), but also for super-Lie algebras. It will be analyzed in

detail the simplest example of such kind of construction, namely the hierarchy derived

from the osp(1j2) superalgebra.

This superalgebra admits H as a bosonic generator and F� as fermionic ones and is

given by the following relations:

[H;F�] = �2F�

fF+; F�g = H (144)

Its N = 1 a�nization is realized by the 3 super�elds 	0(X) (fermionic) and ��(X)
(bosonic). Formally it is given by the same relations as (119) with the replacement
	� 7! ��, but now we have to take into account that the last Poisson bracket in (119) is
antisymmetric due to the bosonic character of ��.

The s� algebra automorphism associated with the positive versus negative roots ex-

change is now a Z4 symmetry. In a chosen normalization we can de�ne it to be

s� : H 7! �H; F+ 7! �F�; F� 7! F+:

	0 7! �	0; �+ 7! ���; �� 7! �+: (145)

One can easily check that in this case the same transformation properties (126,129) under
s� for the twisted fermion F (�), the Lax operator L and its diagonalizing matrix M(�)
which hold for bosonic algebras are veri�ed too.

Moreover here again we �nd that the hamiltonian fermionic densities belong to the

N = 1 Û(1) subalgebra coset generated by 	0.

We �nd explicitly, at the lowest orders in the � expansion, for the diagonalizing matrix
M(�):

f1 = 1
2
(�+F+ � ��F�)

b1 = 1
4
(D�+F+ �D��F�) (146)

while the diagonalized L̂ Lax operator is given by

L̂ = �H + (D +	0H) + ��1 � 1
2
�+��H + ��2 � 1

8
(D�+ � �� �D�� � �+)H +O(��3)

(147)

Up to an overall normalization the �rst fermionic hamiltonian density is

R2 = D�+ � �� �D�� � �+ (148)

which has s�-parity +1.

Due to the considerations developed in the previous section, the second hamiltonian

density R4 has parity �1.
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In principle there exists two independent chargeless terms X1;2 having the right di-

mensions and parity �1 which can contribute to R4:

X1 = D3�+ � �� +D3�� � �+

X2 = �+��(D�+ � �� �D�� � �+) (149)

The integrability condition for the hierarchy requires precisely R4 / X2 (notice that

the corresponding term associated to the sl(2) algebra is vanishing due to the fermionic

character of 	�).

In a convenient normalization we obtain for the �rst ow

@��
@t1

= D2�� � 4��(�+ � ��) (150)

and for the second ow

@��
@t2

= D(D�� � �+��)� 2��(�+��)
2 (151)

Here again we can consistently set 	0 � 0.
The single-component super�elds hierarchies are recovered by setting

�+ = �i��
? = � (152)

We get for the �rst ow the equation

_� = �0 + 4i�j�j2 (153)

while the second ow, obtained by letting the time imaginary, is

_� = �0j�j2 � �D� �D�? + 2i�j�j4 (154)

(the prime denotes the ordinary spatial derivative).
In terms of the component �elds we have

�(X) = �(x) + � (x) (155)

with �(x) bosonic and  (x) fermionic.
We get respectively

_� = �0 + 4i�j�j2

_ =  0 + 8i j�j2 + 4i�2 ? (156)

for the �rst ow and

_� = �0j�j2 + 2i�j�j4 � �j j2

_ =  0j�j2 + �0( �? + 2 ?�)� �?
0
� +

2i j�j4+ 4i�(j�j2 +  �? + �? ) (157)

for the second one.
Notice in the right hand side of the equation of motion for the bosonic component the

presence of the fermionic �eld, which implies a non-trivial coupling.
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11 The N = 1 ^sl(3) hierarchies.

In this last section I will construct the N = 1 supersymmetric extensions of the ^sl(3)

hierarchies introduced in section (7).

It is a rather unexpected result that integrable supersymmetric extensions can be

produced only for the hierarchies labelled by the  real parameter belonging to the range

 � 1 (158)

The approach here followed has been already illustrated in detail in the previous sections,

so that here I will limit myself to furnish the results.

Since in order to reach the above conclusion it is su�cient to explicitly compute the
�rst ow only, just this case will be presented in this paper.

It should be noticed that the computations in the supersymmetric case are much more

involved than in the bosonic case basically because to get the k-th ordered ow we have to
perform a double number (equal to 2k) of diagonalizations. It soon appears that computer
is needed to explicitly obtain even the next simplest ows.

The N = 1 ^sl(3) algebra is generated by the fermionic super�elds 	0;1;	0;2 and 	�i
with i = 1; 2; 3.

The following Poisson brackets are veri�ed

f	0;1(X);	0;1(Y )g = �2DY�(X;Y )

f	0;1(X);	0;2(Y )g = DY�(X;Y )

f	0;2(X);	0;2(Y )g = �2DY�(X;Y ) (159)

and

f	+i; (X);	�i(Y )g = DY�(X;Y ) for i = 1; 2; 3:

f	+1(X);	�3(Y )g = ��(X;Y )	�2(Y ) f	+2(X);	�3(Y )g = �(X;Y )	�1(Y )

f	+3(X);	�1(Y )g = ��(X;Y )	+2(Y ) f	+3(X);	�2(Y )g = �(X;Y )	+1(Y )

f	�1(X);	�2(Y )g = ��(X;Y )	�3(Y )

(160)

The covariant derivative D acts as

D	�1 = D	�1 �	0;1	�1

D	�2 = D	�2 �	0;2	�2

D	�3 = D	�3 � (	0;1 +	0;2)	�3 (161)

As in section (7) the regular Cartan element is chosen to be

�H = �(tH1 + (1� t)H2) (162)

with 0 � t � 1.
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We will also make use of the variables

 = 1
3t�1

~ = 1
2�3t

(163)

The �rst (bosonic) densities for the diagonalized Lax operator are

R1;1 = 	+3	�3 + 	+1	�1

R1;2 = 	+3	�3 + ~	+2	�2 (164)

which are antisymmetric under the �-roots exchange

	+1 $ 	�1; 	+2 $ 	�2; 	+3 $ �	�3: (165)

and mutually transforms under the � outer automorphism (see section (7)).

The �rst hamiltonian density R2;1 is fermionic. It is given by

R2;1 = 1
2
2(D	+1 �	�1 +D	�1 �	+1)

+1
2
(D	+3 �	�3 +D	�3 �	+3)

+C(	+1	+2	�3 �	�1	�2	+3) (166)

with

C = 1
12
(4~ + 5 + 4~ + 3) (167)

R2;1 is invariant under the �-roots exchange; the hamiltonian density R2;2 is obtained
from the previous expression by replacing 1$ 2 and  $ ~.

Notice that, while the relative coe�cient of the �rst two terms in the right hand side
of (166) is �xed by requiring that the correct bosonic limit would be reproduced when
setting equal to zero all the fermionic �elds, the coe�cient Cof the third term cannot be
recovered from the bosonic limit. As far as the supersymmetrization only is concerned C
is a free parameter. However, when the integrability property is taken into account, C

must be restricted to be the particular value (167).

From the above hamiltonian, together with the (159,160) Poisson brackets structure,

the following set of equations of motion is derived:

_	�1 = 2D2	�1 � (CD	�2 �	�3 + (1 � C)	�2D	�3)

�	�1((1 + C)	+3	�3 � C	+2	�2)

_	�2 = �((1� C)	�1D	�3 � (2 � C)	�3D	�1)

�	�2((1 + C)	+3	�3 � 2	+1	�1)
_	�3 = �((C � 2)D	�1 �	�2 �C	�1D	�2)

�	�3((
2 + C)	+1	�1 + C	+2	�2) (168)

Pewrforming the single-component reduction

	+1 = 	�1 � 	1

	+2 = 	�2 � 	2

	+3 = �	�3 � 	3 (169)
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and setting 	0;1 � 	0;2 � 0, we obtain

_	1 = 2	1
0 � CD	2 �	3 � (1 � C)	2D	3

_	2 = (1 �C)	1D	3 � (2 �C)	3D	1

_	3 = 	3
0 + (C � 2)D	1 �	2 � C	1D	2 (170)

In terms of the component �elds

	i(X) =  i(x) + ��i(x) (171)

with  i(x) fermionic and �i(x) bosonic, we get the following set of equations

_ 1 = 2 1
0 � C�2 3 � (1 � C) 2�3

_ 2 = (1 �C) 1�3 � (2 �C) 3�1
_ 3 =  3

0 + (C � 2) 2�1 � C 1�2 (172)

for the fermionic components and

_�1 = 2�1
0 � �2�3 � C 2

0 3 + (1� C) 2 3
0

_�2 = (1� 2)�1�3 � (1� C) 1 3
0 + (2 � C) 3 1

0

_�3 = �3
0 � 2�1�2 + C 1 2

0 + (2 � C) 2 1
0 (173)

for the bosonic ones.
Notice in particular that, when setting equal to zero the fermionic  i �elds, we recover

precisely the (93) equations of motion with  replaced by 2 (and the spatial coordinate
x mapped to x 7! �x due to normalization conventions). Therefore only the bosonic
hierarchies associated to non-negative values of  can be supersymmetrically extended
while preserving integrability. More than that, since the � automorphism sends  7! ~
(see (98)), and the corresponding transformed hamiltonian all belong to the integrable

hierarchy, it turns out that only for

 � 1

we have a supersymmetric integrable extension, which is the result stated above.

Conclusions

In this paper an analysis of several aspects of the Lie algebraic approach towards
integrable hierarchies have been furnished. The �nal aim consists in arriving at a complete

classi�cation of the whole class of inequivalent hierarchies.

Two points have been raised: the role of the regular element in determining the
corresponding hierarchy and the possible relation between di�erent hierarchies associated

to di�erent gradings.
The �rst problem has been here addressed in the particular case of the homogeneous-

graded hierarchies. It has been shown that indeed inequivalent hierarchies have been
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obtained as a consequence and that, for a generic Lie algebra, they are labelled by con-

tinuous values of some real parameters.

Moreover their mutual transformations under Weyl group or outer automorphisms ac-

tions have been investigated, as well as their coset property. The possible �elds reductions

when a symmetry is present have also been considered.

For what concerns the supersymmetric integrable hierarchies, the \trick" of introduc-

ing alternating series of bosons and fermions in the spectral parameter expansion, consid-

erably allowed us to enlarge the class of Lie-algebraic-derived hierarchies, which until now

was rather restricted (associated to a very speci�c principal-graded construction). As a

simple byproduct of our method we were able to explicitly produce new supersymmetric

hierarchies, not yet investigated so far.

The investigation concerning supersymmetric hierarchies is rather important if we wish

to arrive at a consistent formulation of discretized 2-dimensional gravity. The fact that

until now no direct supersymmetric matrix model formulation is available, obliges us to
bypass this step and to directly formulate such models in terms of super-W constraints,
associated to some integrable hierarchy, on the partition function.

However there exists a large amount of arbitrariness in performing such supersym-
metrizations and a de�nite criterium should be found to extract the \meaningful" hierar-
chies. A very good example of that is one of the features discussed in this paper, namely

that there exists a class of bosonic integrable hierarchies which seem do not admit an
integrable supersymmetric extension. In the sl(3) case we proved that the standard pro-
cedure to obtain integrable supersymmetric hierarchies de�nes supersymmetric extensions
only for a restricted class of the bosonic hierarchies.

Another example is associated to KdV (see [27]): there exists a continuous class of

N = 2 super-KdV equations, but only for 3 speci�c values of the parameter we have
integrability. More than that, only one of these values corresponds to a nice Lie algebraic
setting and the associated hierarchy seems, in some sort, more fundamental than the
others.

It is surprising that such a hierarchy is obtained, through a non-local Darboux trans-

formation, from the super-NLS hierarchy we have here discussed. The existence of a
Darboux transformation in this very speci�c case naturally leads us to ask about the sec-

ond point mentioned in this conclusion, that is: which hierarchies, associated to di�erent

gradings, are truly independent and which, on the contrary, are related to each other
through a Darboux transformation. This point needs to be clari�ed in order to have a

complete understanding of the integrable hierarchy picture and deserves investigation.
Besides this major question, let us list some of the topics which can be easily addressed

in the future:
Is it possible to use the same \trick" of introducing twisted fermionic and bosonic

power series to de�ne supersymmetric integrable hierarchies for the intermediate grading
(i.e. di�erent from the principal and the homogeneous) case?

Next, a rather technical problem: how to formulate N = 2 hierarchies in terms of

a manifestly N = 2 formalism. This is not a fundamental problem because, as already
explained, our constructions accomodates N = 2 supersymmetric hierarchies in an N = 1

manifestly super�eld formalism.

Furthermore, there exists a certain degree of parallelism between the integrable hi-
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erarchy formulation on one side and the WZNW reductions (leading to Toda and coset

models) on the other. It is likely that at least some of the ideas here discussed can �nd

applications to investigate and generalize the Witten's black hole construction.

As a �nal point let me recall that the algebraic machinery here developed allows, with

the help of computer, to explicitly produce in a systematic way more general hierarchies

than those here presented, associated e.g. to the superalgebra sl(2j1) and so on.
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