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A new algorithm for automatic photopeak searches
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Abstract

A new, "quantum mechanical" algorithm is proposed for automatic photopeak lo-

cation in gamma-ray spectra from semiconductor and scintillator detectors.

1 Introduction

A great variety of programs can be found in the literature for automatic

gamma-ray spectrum analysis with computers [1]. An important ingredient

of every such program is some peak �nding procedure. Usually the following

two characteristics of a local maximum of continuous function are used in

peak searching algorithms:

1) Near the maximum the curve is convex and so its second derivative becomes

negative, having a minimum value around the maximum of the peak.

2) While passing a peak the �rst derivative changes sign.

The use of the second derivative for automatic photopeak location was

proposed by Mariscotti [2]. The real spectra, however, can have signi�cant


uctuations because of the discrete and statistical nature of the data. So a

discrete analog of the second derivative (the second di�erence) ddi = Ni+1 �
2Ni + Ni�1 should be used, Ni being the pulse heights of the spectrum in

channel i.

To reduce further the in
uence of the statistical 
uctuations, this second

di�erence can be averaged and after n iterations replaced by the generalized

second di�erence

ddi(n;m) =

i+mX
jn=i�m

jn+mX
jn�1=jn�m

� � �
j2+mX

j1=j2�m
=

X
CjNj

Its standard statistical deviation is sdi(n;m) =

qP
C2
jNj and therefore not

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25181187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


only ddi(n;m) < 0 condition is demanded for the peak area location but also

a big enough value of

����ddi(n;m)
sdi(n;m)

����.
In [3] some modi�cation of this method was used. Instead of smoothed

second di�erence one can consider the sum ddi(k) =
Pi+k
j=i�k CjNj where the

Cj coe�cients are chosen in such a way that ddi(k) < 0 near the peak. For

example in [3] they take

Cj =
j2 � p2

p4
exp

0
@� j2

2p2

1
A =

d2

dx2
exp

0
@� x2

2p2

1
A
������
x=j

;

p being some parameter to be optimized. Note that near the peak

X
CjNj �

Z 1
�1

d2

dx2

2
4exp

0
@� x2

2p2

1
A
3
5N(x) dx =

Z 1
�1

exp

0
@� x2

2p2

1
Ad2N(x)

dx2
< 0 :

In [4] the smoothed �rst derivative was used for photopeak searches. The

peak is identi�ed at the point where the �rst derivative changes sign from

positive to negative.

One can smooth not the �rst or second derivatives but the original data

and establish the sign of the �rst derivative by simply comparing consecutive

channels. To increase statistical reliability, one demands not only Ni > Ni�1,

but also Ni+1 > Ni [5]. As is claimed in [6], for low statistics the best result

is given by the following smoothing

�Ni =
1

9
(Ni+2 + 2Ni�1 + 3Ni + 2Ni+1 +Ni+2) :

One more method for photopeak position �nding, although somewhat

complex, is �tting the whole spectrum or its part by appropriate analytic

function. A lot of various functions were suggested for this purpose, some of

them modeling even Compton continuum [7]. If resolution is very good, as it

is usually for semiconductor detectors, so that one has almost ideal gaussian

peaks and the background in the peak area is nearly constant, it is possible to

�t successive small sections of the data by Gaussian function and identify the

peak position where the amplitude of the �tted Gaussian becomes signi�cant

[8].

In this note a new and simple enough algorithm is proposed for photopeak

searches, which is completely di�erent from the above described methods.
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2 The idea

The proposed method is based on a very simple but nice idea, which can

be explained as follows. Suppose we place a small ball on the edge of the

irregular potential wall:

Classical ball will stop in front of the �rst obstacle. But if it is a quantum one

and can penetrate through narrow barriers it still goes down to the potential

wall bottom and oscillates there.

For automatic photopeak �nding this idea can be realized, for example, in

such a way. Let us take a point somewhere on the right slope of the peak and

let this point can jump left or right by one channel, or remain on its position,

so that the probability to jump left is proportional to exp

"
Ni�1�Nip
Ni�1+Ni

#
and to

jump right exp

"
Ni+1�Nip
Ni+1+Ni

#
. This point will climb up quickly enough to the

photopeak and will oscillate on the top. If now we follow up some amount

of jumps and calculate the mean position, this just gives us the photopeak

location.

To smear the "quantum ball" even more, one can take for the probability

to jump from channel i to channel i-1 :

Pi;i�1 �
mX
k=1

exp

2
4Ak

Ni�k �Nip
Ni�k +Ni

3
5 ;

where Ak are some numerical constants. Changing them and the number m,

one can govern the penetrating ability of the ball.

3 Realization via discrete Markov chain

In fact the above described set of channels and transition probabilities can

be treated as a �nite Markov chain [9, 10].
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For simplicity let us assume that from any state (channel) in this Markov

chain only the closest left and right neighbour states can be reached with

nonzero probabilities in one step, and that the probability for any state to

remain unchanged is zero. Thus the transition probability matrix for this

chain looks like

P =

0
BBBBBBBBB@

0 1 0 0 0 � � �
P21 0 P23 0 0 � � �
0 P32 0 P34 0 � � �
� � � � � � � �
0 � � � � 0 1 0

1
CCCCCCCCCA
: (1)

Where we shall take

Pi;i�1 = Ai

mX
k=1

exp

2
4 Ni�k �Nip

Ni�k +Ni

3
5 ; (2)

Ai normalization constant is de�ned from the Pi;i�1 + Pi;i+1 = 1 condition.

This Markov chain has a very simple invariant distribution [10]:

u2 =
P12

P21
u1 ; u3 =

P12P23

P32P21
u1 ; � � � ; un =

P12P23 � � �Pn�1;n

Pn;n�1Pn�1;n�2 � � �P21
u1 ; (3)

u1 being de�ned from the normalization condition

nX
i=1

ui = 1 : (4)

Now this invariant distribution has very sharp peaks which correspond

to a local maximums in the original spectrum. This is illustrated by Fig.1.

It is much simpler to identify peaks by some computer program in the un
distribution than in the original data. Fig.2 gives a clear example of this

(note the logarithmic scale on the vertical axis).

In fact this method of photopeak �nding can work even for very low statis-

tics, as Fig.3 shows.

4 Photopeak �tting

After the photopeak is located by the above described algorithm, one can �t

it by gaussian function and extract its other characteristics. Fig.2 and Fig.3

show that our "quantum"algorithm not only gives the peak position, but can

also provide useful limits in which it is worthwhile to �t it by Gaussian.
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For good enough gaussian peaks one can use a non-iterative method for

the fast �tting [11]. Suppose we want to �t a Gaussian to the spectrum

region from channelm1 to channelm2. Let us form an array S(i) = ln
Ni

Ni+m
�

ln
Ni�1

Ni+m�1
, where m is some integer number. If we have a pure Gaussian

Ni = A exp

2
4�(i� p)2

2�2

3
5 ;

then S(i) = m
�2

doesn't depend on i. In fact this will not be the case because

of statistical 
uctuations and we should �nd a constant C which minimizes

the sum

m2�mX
i=m1+1

[S(i) � C]2

D2
(i)

; D2
(i) =

1

Ni

+
1

Ni+m
+

1

Ni�1
+

1

Ni+m�1
;

where D(i) is a standard deviation for the casual quantity S(i). The solution

of this linear minimization problem is well known

C =

2
4 m2�mX
i=m1+1

S(i)

D2
(i)

3
5�

2
4 m2�mX
i=m1+1

1

D2
(i)

3
5 : (5)

If we disregard statistical 
uctuations of D(i), the statistical error in deter-

mination of C is

�C =

2
4 m2�mX
i=m1+1

1

D2
(i)

3
5�1=2 :

So we get

� =

s
m

C
; �� =

�3

2m
�C (6)

The parameter m can be determined from the condition �� to be minimal.

Let us take as an estimation D(i) = 2p
Ni

. Then �� � 1
m
p
m2�m1�m

, which is

minimal for

m =
2

3
(m2 �m1) : (7)

Analogously one can �nd the position and amplitude of the �tted peak by

considering arrays P (i) = ln
Ni

Ni+m
=

m(2i�2p+m)
2�2

and Q(i) = lnNi = lnA �
(i�p)2

2�2
. The results are

p =

2
64 m2�mX
i=m1+1

i � �2

m
P (i) + m

2

DP (i)2

3
75
� 2
4 m2�mX
i=m1+1

1

DP (i)2

3
5

DP (i)2 =
�2

m2

"
4(��)2P 2

(i) + �2
 
1

Ni

+
1

Ni+m

!#
; (8)
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and

lnA =

2
64 m2X
i=m1

lnNi +
(i�p)2

2�2

DN(i)2

3
75�

2
4 m2X
i=m1

1

DN(i)2

3
5

DN(i)2 =
1

Ni

+

 
��

�

!2  i� p

�

!4
: (9)

where m is de�ned by eq.7 and
�p
p
� ��

�
relation was assumed while deriving

the last equation.

The degree of �t between the calculated and observed spectra can be

further analyzed by means of some quantitative criteria, suggested in the

literature [12].

5 Conclusions

It seems to us that the proposed algorithm is simple and e�ective enough to

be recommended for practical applications.

An earlier version of it was used with excellent results for uniformity stud-

ies of about 1650 NaJ crystals for SND detector [13], and also for vacuum

phototriodes testing [14].
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Figure captures

Fig.1 | Invariant probability distribution u(i) for single gaussian peak, m=3.

Fig.2 | Invariant probability distribution for peak + background, m=3.

Fig.3 | The same as on Fig.2 for low statistics.
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