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Abstract

A phenomenological model for the nucleon structure functions is presented.

Visualising the nucleon as a cavity �lled with parton gas in thermal equi-

librium and parametrizing the e�ects due to the �niteness of the nucleon

volume, we obtain a good �t to the data on the unpolarized nucleon structure

functions.
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Recent experiments have revealed some remarkable features of the nucleon structure

functions F p;n
2

. Data on deep inelastic scattering of muons o� proton and deuteron targets

[1] show that the quark sea in the nucleon is not avor-symmetric, �u(x) 6= �d(x); the Gottfried

sum [2] SG �
R
(F p

2
� F n

2
) (dx=x), at Q2 = 4 GeV2, has the value 0:235 � 0:026 compared

to the usual quark model prediction of 1/3. This result has been con�rmed by the observed

asymmetry in Drell-Yan production of dileptons in pp and pn collisions [3]. Most notably,

the HERA electron-proton scattering data [4] reveal a rapid rise of the proton structure

function F
p
2
(x) as x decreases. Indeed over a wide range of small x, data from the various

groups [4,5], for �xed Q2, are all well described by a single inverse power of x. Figure 1 is a

log-log plot of the data on F
p
2
(x)=x (the combination that enters SG) versus x. We see that,

for �xed Q2, the data fall on straight lines de�ned by

F p
2
(x)

x
=

c

xm
; (0:0004 <� x <� 0:2): (1)

For instance, at Q2 = 15 GeV2, the best-�t parameters are c = 0:229 � 0:005 and m =

1:22 � 0:01 [6].

Global �ts to the nucleon structure data involve parametrizing the various parton densi-

ties at some low Q2 and evolving them to higher values of Q2 relevant to observations. The

�ts so obtained [7] have very high precision but contain several (typically �15-20) arbitrary

parameters and provide little physical insight into the structure of the nucleon. On the

other hand, phenomenological models could give us some valuable clues into the physics of

parton distributions in the nucleon. From this point of view the statistical models of the

nucleon structure functions [8] have been quite interesting due to their intuitive appeal and

simplicity.

We present here a phenomenological model for the unpolarized nucleon structure func-

tions by regarding the nucleonic contents as constituting a gas of noninteracting partons in

thermal equilibrium. An attractive feature of this general framework is the natural expla-

nation of the violation of the Gottfried sum rule: the excess of u-quarks over d-quarks in

the proton implies unequal chemical potentials, hence unequal u�u and d �d seas, which leads
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to SG 6= 1=3. However, the ensuing structure function F2(x) vanishes like x
2 as x ! 0, in

violent conict with the data. To remedy this we invoke corrections arising from the �nite-

ness of the nucleon volume, by multiplying the parton density of states by a factor having

inverse powers of the radial dimension, [1 + O(1=R�)]. We �nd that the small-x rise and

other features of the nucleon structure functions are reproduced quite well.

The Model

We picture the nucleon (mass M) to consist of a gas of massless partons (quarks, anti-

quarks and gluons) in thermal equilibrium at temperature T in a spherical volume V with

radius R. We consider two frames, the proton rest frame and the in�nite-momentum frame

(IMF) moving with velocity �v(' �1) along the common z axis. Our interest lies in the

limit when the Lorentz factor  � (1� v2)�1=2 !1. The invariant parton number density

in phase space [9] is given by (quantities in the IMF are denoted by the index i)

dni

d3pi d3ri
=

dn

d3p d3r
=

g

(2�)3

"
1

exp[�(E � �)]� 1

#

� f(E); (2)

where � � T�1, g is the degeneracy (g = 16 for gluons and g = 6 for q or �q of a given

avor), (E; p) is the parton four-momentum in the proton rest frame and f(E) is the usual

distribution for noninteracting fermions or bosons. In terms of the Bjorken scaling variable

x = piz=(Mv), the phase space element can be expressed as

d3pi d3ri= 2�piTdp
i
T (Mvdx)

d3r



= 2�[Mxv3 +
Ev

2
]dE Mdx d3r;

where for  ! 1 the expression in square brackets becomes Mx. For �xed x the parton

energy E varies between the kinematic limits Mx=2 < E < M=2, where the lower limit is

attained when piT = 0. Consequently the parton number distribution dni=dx in the IMF is

simply proportional to an integral of the rest-frame distribution f(E):

dni=dx = 2�VM2x

Z M=2

xM=2
dE f(E); (3)
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where the factor V results from d3r integration. The structure function F2(x) is given by

F2(x) = x
X
q

e2q

"
dniq

dx
+
dni

�q

dx

#
:

The number distribution vanishes linearly as x ! 0 (and also as x ! 1) and leads to

the behavior of the structure function F2(x) � x2 at small x, which disagrees with the

observations noted in Eq. (1).

In order to obtain the rise of F
p
2
(x) at small x, we shall modify the model to reect e�ects

arising from the �niteness of the nucleon volume V . Various studies of �nite-size corrections

(FSC) show that they are sensitive to the precise shape and size of the enclosure, the type of

boundary conditions imposed on the wave function, and to the details such as whether the

particles are strictly massless, whether chemical potentials are nonzero, etc. [10]. Moreover,

these studies invariably involve some simplifying assumptions and thus their use is di�cult

to justify in the present context.

In keeping with the phenomenological nature of the model, we have chosen to parametrize

the correction due to the �niteness of the nucleon volume. This is implemented through the

use of the dimensionless combination 1=(ER). We have chosen two alternative forms of

parametrization, a form prompted by the empirical observation in Eq. (1):

�1 = 1 +
B

(ER)�
; (4)

and a general power series expansion in the variable 1=(ER):

�2 = 1 +
a

ER
+

b

(ER)2
+ ::: ; (5)

where B; �(> 0); a; b; ::: are arbitrary constants. We multiply the integrand in Eq. (3) by

the function � (= �1 or �2) in order to incorporate the �nite-volume e�ects in our model.

The model described above is assumed to hold at a certain input momentum scale Q2

0
,

and if necessary can be evolved to higher Q2 by means of the standard techniques in quan-

tum chromodynamics (QCD). To complete the statement of the model, we demand the

thermal parton distributions to obey the following three constraints at the input scale. The

constraints on the net quark numbers in the proton are nu � n�u = 2 and nd � n �d = 1, i.e.,
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VM2

(2�)2

Z
1

0

dx x

Z M=2

xM=2
dE

(
6

exp [�(E � ��)] + 1
�

6

exp [�(E + ��)] + 1

)
�(ER)

= n� � n��: (� = u; d) (6)

Obviously, chemical potentials for heavy avors are necessarily zero. As regards the third

constraint, we assume that the longitudinal momentum fractions in the u; d avors and the

gluons add up to unity:

V M2

(2�)2

Z
1

0

dx x2
Z M=2

xM=2
dE

�
6

exp [�(E � �u)] + 1
+

6

exp [�(E + �u)] + 1
+

6

exp [�(E � �d)] + 1
+

6

exp [�(E + �d)] + 1
+

16

exp(�E)� 1

�
�(ER) = 1 : (7)

The quark avors s; c; ::: which are not introduced in Eq. (7) show up at higher Q2 as a

result of QCD evolution.

By interchanging the order of x and E integrations in Eqs. (6-7) and performing the

x-integration analytically, we see that in order to keep the integrals �nite, large powers of

1=E are not allowed in the integrand. This requires that while using �1 the exponent should

be bounded, � < 3, and while using �2 only the �rst three terms can be present. Thus the

model e�ectively has only two free parameters.

To determine �u, �d and T , we solved the three coupled nonlinear equations (6-7) by

the Davidenko-Broyden method [11]. The resulting values of �u, �d and T are such that

the left and right hand sides of these equations agree with each other to typically one part

in 106. The parton densities were evolved by means of the Gribov-Lipatov-Altarelli-Parisi

equations [12] in leading order (LO), taking the input scale Q2

0
= M2 and �QCD = 0:3

GeV. Finally, the root-mean-square (rms) radius of the parton distribution was taken to be

the same as the charge rms radius (�) of the proton; since � ' 0:862 fm [13], this yields

R =
q
5=3 � = 1:11 fm.

Results and Discussion

Since the two arbitrary constants B and �, or a and b in Eq. (4) or (5) are not known, we

have determined them by �tting the deep inelastic scattering data on F p
2 (x) at Q

2 = 15 GeV2

[4,5]. The results of our �t incorporating the �nite-size corrections and QCD evolution are
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shown by the solid curve in Fig. 2. (Results presented here are based on �2; the alternative

form �1 gives an equally good �t.) Also shown for comparison in Fig. 2 are: (a) the (dot-

dashed) curve labeled `GAS' giving the prediction of the parton gas model which has no free

parameters by virtue of the constraints, (b) the (dashed) curve labeled `QCD' showing the

e�ect of QCD evolution on the gas model, and (c) the (dotted) curve labeled `FSC' showing

a �t to the data when only the �nite-size corrections are introduced in the gas model. If �1

is used in order to incorporate FSC, the �tted values of the two parameters are

B = 0:269 and � = 2:14;

and the corresponding temperature and chemical potentials are T = 63 MeV, �u = 124 MeV

and �d = 64 MeV. If, on the other hand, �2 is used, the �tted values of the two parameters

are [14]

a = �1:88 and b = 2:24;

and the corresponding temperature and chemical potentials are T = 72 MeV, �u = 162 MeV

and �d = 81 MeV.

To comment on the relative importance of the inputs, we focus on the curves in Fig. 2 at,

say, x = 10�3: a �t with FSC gives a very small value of F p
2
� 0:02, reecting the restrictive

nature of the constraints. Leading-order QCD evolution does result in a value of F2 which is

signi�cantly large but not large enough, F p
2
� 0:23. However, when the e�ects due to both

FSC and QCD are included in the model, we obtain F
p
2
� 1:1, which is consistent with the

data. The presence of inverse powers of (ER) in � is thus partially responsible for increase

in F
p
2
at small x.

As a test of the model, we show in Fig. 3 the prediction (solid curve) for the di�erence

[F p
2
(x) � F n

2
(x)]. Also shown for comparison is the result (dashed curve) based on the

parametrization of Gl�uck et al. [7]. The agreement with the NMC data is reasonable.
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As for the Gottfried sum SG, we have

SG =
1

3
�

2

3

Z
1

0

( �d� �u)dx

=
1

3
�

2

3

VM2

(2�)2

Z
1

0

dx x

Z M=2

xM=2
dE

�
6

exp [�(E + �d)] + 1
�

6

exp [�(E + �u)] + 1

�
�(ER):

(8)

The inequality SG < 1

3
is thus a result of having in the proton, more valence u quarks than

valence d quarks, (nu�n�u) > (nd�n �d), implying that �u > �d and hence the integral in Eq.

(8) is positive. Our model predicts at Q2 = 4 GeV2, the value SG = 0:22 which is consistent

with the experimental value SG = 0:235 � 0:026.

The rapidity dependence of the W charge asymmetry in the reactions �pp!W� + ::: is

now known to a very high precision [15]. It is a sensitive function of the quark avor ratio

d(x)=u(x) in the proton, in the range 0:007 < x < 0:24 at Q2 = M2

W . The ratio �u(x)= �d(x)

at < x >= 0:18 has been deduced to be about 0:51 by the NA51 collaboration [3]. These

and other predictions of the model, on the ratio (F n
2
(x)=F p

2 (x)), the quark and antiquark

distributions q(x), �q(x), qv(x) = q(x)� �q(x) for various avors, the gluon distribution g(x),

the longitudinal momentum fraction carried by the charged partons, etc. will be given

elsewhere [16].

Now we briey describe the salient features of some of the recent calculations of the

nucleon structure functions, which use ideas from statistical mechanics. Mac and Ugaz [8a]

calculated �rst-order QCD corrections to the statistical distributions and obtained a crude

but reasonable agreement with F
p
2
(x) data for x >� 0:2. The momentum constraint was not

imposed and the �tted value of the proton radius (R) was 2.6 fm. Cleymans et al. [8b]

used the framework of the �nite temperature quantum �eld theory. They considered O(�s)

corrections to the statistical distributions and obtained a good �t to the F
p
2
(x) data for

x � 0:25. They also calculated the ratio �L=�T in this region; it was a factor of 6 above

the experimental value. Bourrely et al. [8c] considered polarized as well as unpolarized

structure functions and presented a statistical parametrization (with eight parameters) of

parton distributions in the IMF. Their framework allowed chemical potential for quarks as
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well as for gluons. The number constraints were not satis�ed very accurately. QCD e�ects

were not considered. x�q(x) vanished as x! 0 and so it was not possible to reproduce the

fast increase of the antiquark distributions for x < 0:1. Bourrely and So�er's [8d] approach

was similar to that in [8c]. By incorporating QCD evolution of parton distributions and

allowing the antiquark chemical potential to depend on x, they were able to reproduce the

HERA data on F
p
2 .

In conclusion, it is noteworthy that the application of ideas of statistical mechanics to

the point constituents of the nucleon can provide a simple description of all the observed

features of the (unpolarized) nucleon structure functions down to the lowest x values so far

explored. The model presented here has two free parameters which arise from our treatment

of the �nite-size corrections.
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FIGURES

FIG. 1. Log-log plot of the proton structure function data. Experimental data are from Refs.

[4,5]; the error bars show statistical and systematic errors combined in quadrature. The straight

lines are our �ts described in Eq. (1), and are labeled by Q2 = 15, 35, and 120 GeV2. Numbers

have been scaled by the factors shown in parentheses for convenience in plotting.

FIG. 2. Proton structure function F
p

2 (x) at Q2 = 15 GeV2. Data points are as in Fig. 1.

Solid curve is our best �t to the data. Also shown for comparison are: the (dot-dashed) curve

labeled `GAS' giving the gas model prediction, the (dashed) curve labeled `QCD' showing the

QCD-evolved gas model, and the (dotted) curve labeled `FSC' which is a �t to the data when

�nite-size corrections are included in the gas model (without QCD).

FIG. 3. Di�erence (F p

2 � F
n

2
) versus x, at Q2 = 4 GeV2. Experimental data are from Ref. [1];

errors are statistical only. Solid curve is the prediction of our model. Dashed curve is based on the

parametrization of Gl�uck et al. [7].
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