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ABSTRACT

Nonperturbative QCD is studied with the dual Ginzburg-Landau theory, where

color con�nement is realized through the dual Higgs mechanism by QCD-monopole

condensation. We obtain a general analytic formula for the string tension. A

compact formula is derived for the screened inter-quark potential in the presence of

light dynamical quarks. The QCD phase transition at �nite temperature is studied

using the e�ective potential formalism. The string tension and the QCD-monopole

mass are largely reduced near the critical temperature, Tc. The surface tension is

estimated from the e�ective potential at Tc. We propose also a new scenario of

the quark-gluon-plasma creation through the color-electric ux-tube annihilation.

Finally, we discuss a close relation between instantons and QCD-monopoles.
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1. Dual Higgs Mechanism for Color Con�nement

Color con�nement and dynamical chiral-symmetrybreaking are quite outstand-

ing features in the nonperturbative QCD.1;2 In particular, color con�nement is

extremely unique, and is characterized by the formation of the color-electric ux

tube 2 with the string tension about 1GeV/fm. To understand the con�nement

mechanism, much attention has been paid for the analogy between the supercon-

ductor and the QCD vacuum.3 Similar to the superconductivity,4 the color-electric

ux seems to be excluded in the QCD vacuum, which leads the formation of the

squeezed color-ux tube between color sources.

In this analogy, color con�nement is brought by the dual Meissner e�ect origi-

nated from color-magnetic monopole condensation, which corresponds to Cooper-

pair condensation in the superconductivity. As for the appearance of color-magnetic

monopoles in QCD, 't Hooft5 proposed an interesting idea of the abelian gauge �x-

ing, which is de�ned by the diagonalization of a gauge-dependent variable. In

this gauge, QCD is reduced into an abelian gauge theory with QCD-monopoles,

which appear from the hedgehog-like con�guration corresponding to the nontrivial

homotopy class on the nonabelian manifold, �2(SU(Nc)=U(1)
Nc�1) = ZNc�1

1
.

We briey compare the dual Higgs mechanism in the nonperturbative QCD

vacuum with the ordinary Higgs mechanism. Like the Cooper pair in the super-

conductivity or the Higgs �eld in the standard theory, the charged-matter �eld

to be condensed is the essential degrees of freedom for the Higgs mechanism. On

the other hand, there is only the gauge �eld in the pure gauge QCD, and hence

it seems di�cult to �nd any similarity with the Higgs mechanism. In the abelian

gauge, however, only the diagonal gluon remains as the gauge �eld, and the o�-

diagonal gluon behaves as the charged-matter �eld, which leads QCD-monopoles

as the relevant degrees of freedom for color con�nement. Condensation of QCD-

monopoles leads to mass generation of the dual gauge �eld through the dual Higgs

mechanism,6;7 which is the dual version of the Higgs mechanism. Thus, the QCD

vacuum can be regarded as the dual superconductor after the abelian gauge �xing.
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In this framework, the nonperturbative QCD is mainly described by the abelian

gauge theory with QCD-monopoles, which is called as the abelian dominance.

Many recent studies based on the lattice gauge theory have supported QCD-

monopole condensation and the abelian dominance in the maximal abelian gauge.8

The dual Higgs scheme predicts the existence of the dual gauge �eld and the QCD-

monopole as the relevant degrees of freedom related to color con�nement.3;6;7 It

can be proved that these particles are color-singlet, so that they can be observed as

physical states. The dual gauge �eld and the QCD-monopole appear as a massive

axial-vector glueball and a massive scalar glueball,6;7;9 corresponding to the weak

vector boson and the Higgs particle in the electro-weak standard theory.

2. Dual Ginzburg-Landau Theory and Inter-Quark Potential

We study the nonperturbative QCD using the dual Ginzburg-Landau (DGL)

theory,6;7;10 which is an infrared e�ective theory of QCD based on the dual Higgs

mechanism by QCD-monopole condensation.6;9 The DGL Lagrangian is described

by the diagonal gluon ~A� � (A
�
3 ; A

�
8), the dual gauge �eld

~B� � (B
�
3 ; B

�
8 ) and the

QCD-monopole �eld ��(� = 1; 2; 3),6;7

LDGL = � 1

n2
[n � (@ ^ ~A)]�[n �� (@ ^ ~B)]� �

1

2n2
([n � (@ ^ ~A)]2 + [n � (@ ^ ~B)]2)

+ �q(i 6 @ � e ~H� 6 ~A�m)q +

3X
�=1

[j(i@� � g~�� � ~B�)��j2 � �(j��j2 � v2)2]

(2:1)

in the Zwanziger form,11 where the duality of the gauge theory becomes manifest.

Here, n� corresponds to the direction of the Dirac string, e is the gauge coupling

constant, g is the unit magnetic charge obeying the Dirac condition eg = 4�, and

~�� denotes the relative magnetic charge of the QCD-monopole �eld ��.
6;7 The

magnetic charge g~�� is pseudoscalar because of the extended Maxwell equation,

r �H = �m. Hence, the dual gauge �eld ~B� is axial-vector. In the absence of

matter �elds, one �nds an exact dual relation between ~A� and ~B� in the �eld

equation, @ ^ ~B =� (@ ^ ~A).
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In the DGL theory, the self-interaction of the QCD-monopole �eld �� is in-

troduced to realize QCD-monopole condensation. When QCD-monopoles are con-

densed, the dual Higgs mechanism occurs, and the dual gauge �eld ~B� becomes

massive,mB =
p
3gv. The color-electric �eld is then excluded in the QCD vacuum

through the dual Meissner e�ect, and is squeezed between color sources to form

the hadron ux tube. The QCD-monopole also becomes massive as m� = 2
p
�v.

As for the symmetry of the DGL theory, there is the dual gauge symmetry

[U(1)3�U(1)8]m corresponding to the local phase invariance of the QCD-monopole

�eld ��
6;7 as well as the residual gauge symmetry [U(1)3�U(1)8]e embedded

in SU(3)c. The dual gauge symmetry leads to the conservation of the color-

magnetic ux. In the QCD-monopole condensed vacuum, the dual gauge symmetry

[U(1)3�U(1)8]m is spontaneously broken, and therefore the color-magnetic ux is

not conserved. On the other hand, the residual gauge symmetry [U(1)3�U(1)8]e
is never broken in this process.6

We investigate the inter-quark potential in the quenched level using the DGL

theory.6 By integrating over A� and B� in the partition functional, the current-

current correlation 6;7 is obtained as Lj = �1
2
~j�D

��~j� with the nonperturbative

gluon propagator,

D�� = � 1

p2

�
g�� + (�e � 1)

p�p�

p2

�
� 1

p2
m2

B

p2 �m2
B

1

(n � p)2 �
�
�������n

�np�p�

(2:2)

in the Lorentz gauge. Putting a static quark with color charge 1;6 ~Q at x = r and

a static antiquark with color charge �~Q at x = 0, the quark current is written as

~j�(x) = ~Qg�0f�3(x� r)� �3(x�0)g: Because of the axial symmetry of the system

and the energy minimum condition.6, one should take n==r, which is also used

in a similar context of the dual string theory.3 Then, one obtains the inter-quark

potential including the Yukawa and the linear parts,6;7 V (r) = � ~Q2

4� � e
�mBr

r + kr:

To derive the expression for the string tension k, we consider an idealized

long ux-tube system, where the �eld variables can be described by the cylindrical
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coordinate rT � (x2+y2)1=2. Like the Abrikosov vortex in the superconductivity,4,

one should consider the \core" of the hadron ux tubes, where the QCD-monopole

condensate �� almost vanishes. The analysis of the �eld equation shows ��(rT ) '
m�vrT inside the core (rT <� m�1

� ), and ��(rT ) ' v outside the core (rT >� m�1
� ).

Hence, we adopt the Lorentzian-type ansatz for the QCD-monopole �eld,

��2(r2T ) ' v2
m2

�r
2
T

1 +m2
�r

2
T

or ��2(p2T ) ' v2
m2

�

p2T +m2
�

(2:3)

with pT � (p2x + p2y)
1=2 ' r�1T . In this case, we obtain an analytical expression for

the string tension,

k =

~Q2

8�m
2
Bm�q

m2
� � 4m2

B

ln

0
@m� +

q
m2

� � 4m2
B

m� �
q
m2

� � 4m2
B

1
A =

~Q2

4�m
2
Bm�q

4m2
B �m2

�

arccos
m�

2mB
: (2:4)

For the type-II limit (mB � m�), one �nds k '
~Q2m2

B

8� ln(
m2

�

m2

B

),6 corresponding to

the well-known formula for the energy per unit length of the Abrikosov vortex in

the type-II superconductor.4

As for the parameter set, the recent lattice QCD studies12 suggest mB ' m�,

which means the QCD vacuum corresponds to the dual-superconductor of the

type between type I and type II. We show in Fig.1 the inter-quark potential with

the choice of e = 2:0, m� = mB = 1:67GeV corresponding to � = 29:4 and

v = 0:154GeV, which provide k ' 0:9GeV/fm for the string tension and the radius

of the hadron ux as R ' 0:12fm. Here, we have included the correction coming

from o�-diagonal gluons in the short-range part.
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3. Infrared Screening E�ect by Dynamical Light Quarks

We study the infrared screening e�ect on the con�nement potential due to light

quarks.6 For instance, a long hadron string can be cut through the light q-�q pair

creation, and therefore the inter-quark potential is saturated in the infrared region.

Such a tendency is observed in the lattice QCD with dynamical quarks.2;13

We estimate the q-�q pair creation rate w in the color-electric �eld inside the

hadron ux tube, which is formed between valence quarks. Using the Schwinger

formula6;14 in QCD, we estimate the expectation value of the energy of the created

q-�q pair as hEq�qi ' 0:85GeV. Since the energy hEq�qi is supplied by the missing

length of the hadronic string, the infrared screening length Rsc can be estimated

from kRsc � hEq�qi. Thus, one obtains Rsc � 1fm, which corresponds to a typical

value of the hadron size.6

The hadronic string becomes unstable against the q-�q pair creation when the

distance between the valence quarks becomes larger than Rsc. This means the

vanishing of the strong correlation between the valence quarks in the infrared

region, so that the corresponding infrared cuto�, a ' R�1sc � 200MeV, should

appear in the system.6 Taking account of the infrared screening e�ect, we introduce

the infrared cuto� a to the nonperturbative gluon propagator (2.2) by replacing

1
(n�p)2

! 1
(n�p)2+a2

,6 because the non-local factor hxj 1
(n�p)2

jyi provides the strong

and long-range correlation as the origin of the con�nement potential.6 Here, this

gluon propagator keeps the residual gauge symmetry. Such a disappearance of the

infrared double pole in the gluon propagator in the DGL theory can be qualitatively

shown by considering the polarization diagram of quarks.

Using the above gluon propagator, we obtain a compact formula6 for the quark

potential including the infrared screening e�ect by the q-�q pair creation,

Vsc(r) = �
~Q2

4�
� e

�mBr

r
+ k � 1� e�ar

a
; (3:1)

which exhibits the saturation for the longer distance than a�1 ' 1fm. This formula

for the screened quark potential has been used not only for the lattice QCD results
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with light dynamical quarks2, but also for the phenomenological analysis of the

hadron decay.15

4. QCD Phase Transition at Finite Temperature

We study the QCD vacuum at �nite temperature16 using the DGL theory17;18

at the quenched level, where the quark degrees of freedom are frozen. In this case,

the quark term can be dropped in the DGL Lagrangian, and therefore one obtains

a simple partition functional17;18 after the integration over the gauge �eld A�,

Z[J ] =

Z
D��D ~B� exp

 
i

Z
d4xfLquench

DGL � J

3X
�=1

j��j2g
!
;

Lquench
DGL � �1

4
(@� ~B� � @� ~B�)

2 +

3X
�=1

[j(i@� � g ~�� � ~B�)��j2 � �(j��j2 � v2)2]:

(4:1)

Here, we have introduced the quadratic source term.17;18 The thermodynamical

potential is then obtained as

Ve� (��;T ) = 3�(��2 � v2)2 + 3
T

�2

1Z
0

dkk2 ln
�
1� e�

p
k2+m2

B=T
�

+
3

2

T

�2

1Z
0

dkk2 ln
�
1� e�

p
k2+m2

�=T
�
:

(4:2)

The glueball masses m� and mB depend on the QCD-monopole condensate ��,

m2
�(��) = 2�(3��2 � v2) + J(��) = 4���2; m2

B(��) = 3g2 ��2; (4:3)

which are always non-negative for the whole region of ��. Owing to the introduction

of the quadratic source term in Eq.(4.1), we can formulate the e�ective action for

the whole region of the order parameter without any di�culty of the imaginary

scalar-mass problem 16;17;18 in the �4-type theory.
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Like the Ginzburg-Landau theory in the superconductivity,4 one should con-

sider the possibility of the T -dependence on the parameters (�,v) in the DGL

theory. In particular, the self-interaction of �� is introduced phenomenologically,

and it should be reduced at high T according to the asymptotic freedom behav-

ior of QCD. Hence, we adopt a simple ansatz for the T -dependence on �,17;18

�(T ) � �(1 � �T=Tc): (We take �(T ) = 0 for T > Tc=�.) We take � ' 0:97 to

reproduce the thermodynamical critical temperature Tc ' 0:2GeV, which means

a large reduction of the self-interaction among QCD monopoles near Tc. Our re-

sults to be shown below do not depend largely on the value of Tc, which may

takes a larger value, e.g. Tc ' 0:26GeV, suggested from the recent lattice QCD

simulations19.

We �nd a �rst-order phase transition at Tc=0.2GeV. The lower and upper

critical temperatures are Tlow = 0:163GeV and Tup = 0:205GeV, respectively.

We show in Fig.2 the glueball masses mB(T ) and m�(T ) at �nite temperature.

A large reduction of the glueball mass is suggested near Tc. In particular, the

QCD-monopole mass m�(T ) largely drop down to m� � Tc (' 0.2GeV) near Tc.

The decon�nement phase transition occurs at the temperature satisfying m� '
T , which seems quite natural because only low-lying modes with !n <� T can

contribute signi�cantly due to the thermodynamical factor 1=(e!n=T � 1). Similar

glueball-mass reduction is also suggested by the thermodynamical studies based

on the lattice QCD data.20

We show in Fig.3 the string tension k(T ) at �nite temperature, calculated by

using Eq.(2.4). The string tension k(T ) decreases rapidly with temperature, and

drops down to zero around Tc = 0.2 GeV. Hence, one expects a rapid change

of the masses and the sizes of the quarkonia according to the large reduction of

k(T ) near Tc. Our result agrees with the lattice QCD data in the pure gauge21:

k(T ) ' k(0)(1 � T=Tc)
0:42.

We estimate the surface tension � between the con�nement and decon�nement

phases using the e�ective potential at Tc in the DGL theory. There are two minima
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at �� = 0 and �� = ��c in Ve� (��;Tc). The mixed phase includes both the con�nement

phase (�� = ��c) and the decon�nement phase (�� = 0). When the boundary surface

in the mixed phase is taken on the xy-plane (z = 0), the system depends only on

the z-coordinate, and the boundary condition is given as ��(z = �1) = 0; ��(z =

1) = ��c: The surface tension � in the DGL theory is estimated as

� '
1Z

�1

dz

(
3

�
d��(z)

dz

�2

+ Ve� [ ��(z);Tc]

)
: (4:4)

We approximate the �gure of Ve� (��;Tc) (0 � �� � ��c) as a sine curve,

Ve� (��;Tc) ' h
2f1 � cos(2� ��=��c)g; where h and ��c corresponds to \height" and

\width" of the \potential barrier" between the two stable states at Tc. The �eld

equation of ��(z) is then solved analytically like the sine-Gordon equation,22

��(z) ' 2
p
6

3
tan�1 ez=�; � �

p
3

�
��c=
p
h; � ' 4

p
3

�

p
h��c; (4:5)

where � denotes the thickness of the boundary between the two phases. In terms

of the e�ective potential, the smallness of � corresponds to the weakness of the

�rst-order phase transition, because � takes smaller value for smaller \height" h

or \width" ��c of the \potential barrier" in Ve� (��;Tc).

One �nds ��c ' 0:75fm�1 and h ' 0:33fm�4 from Ve� (��;Tc). Hence, the surface

tension is estimated as �1=3 ' 196MeV, and the thickness of the border between

the two phases is � ' 0:7fm. Since the above estimation has been done in the

quenched level, the obtained results are to be compared with the lattice QCD data

in the quenched level, e.g. �1=3 � 80MeV.23 Therefore, our estimation for �1=3

seems rather good in spite of the rough treatment.
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5. Application to Quark-Gluon-Plasma Physics

We apply the DGL theory to the quark-gluon-plasma (QGP) physics in ul-

trarelativistic heavy-ion collisions. In a standard picture of the QGP formation,

many color-electric ux tubes are formed between heavy ions immediately after the

collision.14;24 In this pre-equilibrium stage, there occurs q-�q pair creation violently

inside tubes.14;24, and the energy of the color-electric �eld turns into that of the

stochastic kinetic motion of quarks (and gluons). The energy deposition and the

thermalization thus occur.

We here examine the interaction between the color-electric ux tubes in the

DGL theory to study the QGP formation in terms of the ux-tube dynamics,

because many ux tubes would overlap in the central region between heavy ions

just after collisions. There are several kinds of ux tubes in the QCD system. Each

ux tube is characterized by the color charge 1;6 ~Q at its end.

We study the interaction between two color-electric ux tubes with the color-

electric charge ~Q1 and ~Q2 at their ends. The system is idealized as two su�ciently

long ux tubes, where the separation distance between them is denoted by d. For

d � m�1
� , the interaction energy per unit length in this system is estimated as17

Eint '
~Q1�

~Q2

2� m2
BK0(mBd) using the similar calculation for the Abrikosov vortex in

the superconductor.4

There are two interesting cases on the interaction between two color-electric

ux tubes.

(a) For the same ux tubes with opposite ux direction (e.g. R- �R and �R-R), one

�nds ~Q1 = �~Q2 i.e. ~Q1 � ~Q2 = �e2=3, so that these ux tubes are attracted

each other, and would be annihilated into dynamical gluons.

(b) For the di�erent ux tubes satisfying ~Q1 � ~Q2 < 0 (e.g. R- �R and B- �B), one

�nds ~Q1 � ~Q2 = �e2=6, so that these ux tubes are attractive, and would be

uni�ed into a single ux tube (similar to �G-G ux tube).
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Based on the above calculation, we propose a new scenario of the QGP for-

mation via the annihilation of the color-electric ux tubes.17 When the ux tubes

are su�ciently dense in the central region after the collisions, many ux tubes are

annihilated or uni�ed. During their annihilation process, lots of dynamical gluons

(and quarks) would be created, and the energy of the ux tubes turns into that of

the randam kinetic motion of gluons (and quarks). The thermalization is achieved

through the stochastic gluon collisions, and �nally a hot QGP would be created.

Here, the gluon self-interaction in QCD plays an essential role to the thermalization

process, which is quite di�erent from the photon system in QED.

In more realistic case, both the quark-pair creation and the ux-tube annihila-

tion would take place at the same time. For instance, the ux tube breaking 14;24

would occur before the ux tube annihilation for the dilute ux tube system. On

the other hand, in case of extremely high energy collisions, these would be lots of

ux tubes overlapping in the central region between heavy ions, and therefore the

ux tube annihilation should play the dominant role in the QGP formation. In

any case, the DGL theory would provide a calculable method for the dynamics of

the color-electric ux tubes in the QGP formation.

6. Relation between Instanton and QCD-monopole Trajectory

Finally, we study the relation between the QCD-monopole and the instanton22,

which is another important topological object in nonabelian gauge theories. There

is an ambiguity on the gauge-dependent variable X(x) to be diagonalized in the

abelian gauge �xing, and therefore we choose a suitable X(x) to describe the

instanton con�guration. The Polyakov gauge, where A4(x) is to be diagonalized,

is very interesting, because A4(x) takes the hedgehog-like con�guration near the

well-localized instanton, and the QCD-monopole trajectory should pass through

its center inevitably. Here, we show this relation in the Euclidean SU(2)-gauge

theory.
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The gauge con�guration near the well-localized instanton is given by

A�(x) ' �i�a���a
(x� x0)

�

j(x� x0)j2 + a20
(6:1)

in the non-singular gauge.22 Here, �a�� is the 't Hooft symbol; x
�
0 � (x0; t0) and

a0 denote the center coordinate and the size of the instanton, respectively. In

particular, one �nds

A4(x) ' i
�a(x� x0)

a

j(x� x0)j2 + a20
; (6:2)

so that there inevitably appears a QCD-monopole trajectory with temporal direc-

tion penetrating the center of the instanton in the Polyakov gauge. For instance,

the QCD-monopole trajectory x� � (x; t) is exactly found as

x = x0; �1 < t <1 (6:3)

for the one-instanton solution at the classical level. Thus, the QCD-monopole

trajectory is expected to have a close relation to the instanton con�guration.25

We �nd an interesting feature of the QCD-monopole trajectory in the Polyakov

gauge in the multi-instanton solution22,

A�(x) = �i��a���a
0
@X

j

a2j(x� xj)
�

jx� xjj4

1
A =

 
1 +

X
k

a2k
jx� xkj2

!
: (6:4)

For instance, there appear two junctions and a loop in the QCD-monopole tra-

jectory in the two-instanton system as shown in Fig.4. Here, we consider the two

instantons with the same size locating at (�x0; 0; 0; 0) for simplicity. In this case,

the QCD-monopole trajectory is found to be (x; 0; 0; t) with

x = 0 or t2 = (x20 � x2) + 2jx0j
q
(x20 � x2): (6:5)

The QCD-monopole trajectories tend to be highly folded by connecting their loops

in the multi-instanton con�guration. Hence, the presence of instantons is expected
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to promote QCD-monopole condensation, which is characterized by a folded long

monopole-loop8. This conjecture can be checked by the lattice QCD.
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FIGURE CAPTIONS

1) The inter-quark potential V (r) in the dual Ginzburg-Landau theory. The

dashed curve denotes the Cornell potential.

2) The glueball masses mB(T ) and m�(T ) at �nite temperature. A large

glueball-mass reduction is found near Tc. The phase transition occurs at

the temperature satisfying m� ' T , which is denoted by the dotted line.

3) The string tension k(T ) at �nite temperature T . The lattice QCD result in

the pure gauge in Ref.[21] is shown by the dashed curve.

4) in the two-instanton system in the Polyakov gauge. The two instantons with

the same size are located at (�x0; 0; 0; 0) shown by small circles. There

appear two junctions and a loop in the QCD-monopole trajectory.
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