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ABSTRACT

In the semiclassical analysis of black hole radiation in matter-coupled dilaton gravity, a
one-parameter \k"-family of measures for the path integral quantization of the matter �elds
is considered. The Weyl anomaly is proportional to the parameter k, but the black hole

radiation seen by minkowskian observers at future null in�nity is k-independent.
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1 Introduction

In the conventional semiclassical analysis[1] of black hole radiation[2] in matter-coupled
dilaton gravity (MCDG)

SD =
Z
d2x
p�ge�2�

h
R+ 4(r�)2 + 4�2

i
� 1

2

NX
n=1

Z
d2x
p�gg��@�fn@�fn ; (1)

where g, �, and fn are the metric, dilaton, and matter �elds respectively, a central role[1, 3]
is played by the Weyl anomaly. One starts by treating classically the gravitational collapse,
and then the matter degrees of freedom are quantized in the background of the resulting
black hole metric. The Weyl anomaly

g��T�� =
N

24�
R(g) ; (2)

where T�� is the matter energy-momentum tensor[4]

T�� �
NX
n=1

< @�fn@�fn � 1

2
g��g

��@�fn@�fn >g ; (3)

is a consequence of the di�eomorphism-invariant quantization of the matter �elds; for ex-
ample, in the path integral formulation, Eq.(2) follows from choosing the di�eomorphism-
invariant measure[5]

Z
D�fn exp

�
i

Z
d2x

p�g �fn �fn

�
= 1 ; (4)

which is not Weyl-invariant.
Eq.(2) and the covariant conservation of the matter energy-momentum tensor

r�(g
��T��) = 0 ; (5)

determine T�� , which has three independent components in 1+1 dimensions, and therefore
determine the black hole radiation.

The Weyl anomaly is usually considered[1, 3] to be a crucial ingredient of black hole
radiation because for a traceless matter energy-momentum tensor Eq.(5) would lead to no
radiation. In order to achieve a deeper understanding of the relation between Weyl anomaly
and black hole radiation, in this Letter we study how the conventional analysis of black
hole radiation in MCDG is a�ected by the modi�cations to Eqs.(2) and (5) that arise in
the alternative approaches to the quantization of the matter �elds which have been recently
considered in Refs.[5-9].

2 k-dependent Anomaly Relations

In the path integral formulation, the alternative approaches to the quantization of the matter
�elds considered in Refs.[6, 7] correspond to the choice of measure

Z
D�fn exp

�
i

Z
d2x (�g) k2 �fn �fn

�
= 1 ; (6)
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where k is a �xed real parameter.
We observe that this choice of measure is invariant under in�nitesimal variations of the form2

�x�=v� ; �g��=v�@�g��+g��@�v
�+g��@�v

�+
1� k

k
g��@�v

� : (7)

In order to render this formula valid for all k's, we prescribe that the singular limit k! 0,
which corresponds to the theory considered in Refs.[7-9], be formally taken so that @�v

�!kw
for k!0, where w is an arbitrary function. Following this limiting procedure, at k=0 the
variations (7) take the form

�x�=v� ; �g��=v�@�g��+g��@�v
�+g��@�v

�+wg�� ; with @�v
�=0 (8)

which indeed reproduce the invariance[7-9] of the measure (6), at k = 0, under di�eomor-
phisms of unit Jacobian (@�v

�=0) and Weyl transformations.
Note that (7) and (8) indicate that di�eomorphisms of unit Jacobian are a symmetry of

the measure (6) for every value of k.
As a result of the properties of the measure (6), the matter energy-momentum tensor

satis�es the following anomaly relations

g��T�� = k
N

24�
g
k�1

2 R(ĝ) ; (9)

r�(g
��T��) = (k � 1)

N

48�

1p�g@�[g
k

2R(ĝ)] ; (10)

where ĝ�� � (�g) k�12 g�� . Obviously for k=1 Eqs.(9) and (10) reproduce Eqs.(2) and (5), and
for k=0 they reproduce the corresponding relations encountered in Refs.[8, 9, 10]. For our
investigation of the relation between Weyl anomaly and black hole radiation, it is especially
important that (9) is directly proportional to k, which, in particular, implies that there is
no Weyl anomaly in the k=0 limit.

The invariance under the transformations (7) is encoded in the fact that

p�gr�(g
��T��) +

1� k

2k
@�[
p�gg��T�� ] = 0 ; (11)

which is consistent with (9) and (10).
Interestingly, the relations (9), (10), and (11) can all be rewritten rather elegantly in

terms of ĝ and r̂, the covariant derivative computed with the metric ĝ,

ĝ��T�� = k
N

24�
R(ĝ) ; (12)

r̂�(ĝ
��T��) = (k � 1)

N

48�
@�R(ĝ) ; (13)

r̂�(ĝ
��T��) +

1� k

2k
@�(ĝ

��T��) = 0 : (14)

This is a consequence[11] of the fact that the transformations (7) can be obtained as the
realization of the di�eomorphism group on a tensorial density of weight 1�k

k
. (N.B.: g�� has

weight 1�k
k

with respect to the metric ĝ�� .)

2Note that the matter action in (1) is invariant under di�eomorphisms and Weyl transformations [and

therefore in particular is invariant under the transformations (7)]; this is related to the fact that, if g�� is a

density of weight �, the transformations of
p�gg�� under di�eomorphisms are independent of �.
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The fact that the right-hand sides of Eqs.(9) and (10) [or equivalently (12) and (13)] do
not transform covariantly under general di�eomorphisms implies that T�� is not tensor. One
can show that, under a coordinate rede�nition x� ! y�, T�� transforms as follows

T (x)
�� ! T (y)

�� = (T
(x)
�� +�

(x;y)
�� )

dx�

dy�
dx�

dy�
(15)

where

�
(x;y)
�� =

N(1�k)
24�

(r�r�lnJ�g��lnJ) + N(1�k)2
96�

(g��rlnJrlnJ�2r�lnJr�lnJ

+r�ln
p�gr�lnJ+r�ln

p�gr�lnJ�g��rln
p�grlnJ+g��lnJ) ; (16)

and J is the Jacobian of the transformation x� ! y�.

Notice that �
(x;y)
�� =0 whenever J is constant. This implies that T�� transforms covariantly

not only under di�eomorphisms of unit Jacobian, but also under dilatations (y�= cx� with
constant c); in fact, a general coordinate rede�nition of constant Jacobian can be obtained
as the composition of a di�eomorphism of unit Jacobian and a dilatation. The covariance
of T�� under this di�eomorphism subgroup which is larger than the one leaving invariant
the measure (6) can be understood[11] as a consequence of the fact that in 1+1 dimensionsp�gR(g) is a total derivative[9].

3 Black Hole Radiation

3.1 Conformal-Gauge Analysis for k=1

We now turn to the study of black hole radiation, starting with a brief review of the con-
ventional (k=1) approach to the problem, i.e. assuming that the relations (2) and (5) hold.
For simplicity, we limit our analysis to the example of black hole discussed in Ref.[1], and
keep our notation consistent with the one of Ref.[1]; in particular, we introduce light-cone
coordinates �� and work in conformal gauge: g+�=�e2�=2, g++=g��=0.

The black hole is formed by collapse of a shock-wave, traveling in the �� direction,
described by the stress tensor3

1

2
@+f@+f = ae��

+

0 �(�+ � �+0 ) : (17)

The solution of the MCDG classical equations of motion, taking into account that for �+<�+0
we are in the vacuum, gives a black hole background metric with conformal factor

� = �1

2
ln

�
1 + �(�+ � �+0 )

a

�
e��

�

�
e�(�

+

0
��+) � 1

��
: (18)

The next step in the conventional semiclassical analysis of this black hole, consists in
using the quantum relations (2) and (5) to derive the ux of matter energy across4 I+R ,

3We choose to write the magnitude of the shock-wave as ae��
+

0 , in order to keep our notation \a"

consistent with the one of Ref.[1].
4Like in Ref.[1], I+R (I�R ) is the future (past) null in�nity for right-moving light rays, and analogously I+L

(I�L ) is the future (past) null in�nity for left-moving light rays.
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which is given by the value of T�� on I+R . In conformal gauge (2) and (5) take the form

T+� = � N
12�

@+@�� ; (19)

@�T�� + @�T+� � 2T+� @�� = 0 ; (20)

and these lead to

T�� =
N

12�

h
@2��� (@��)

2 + t�(�
�)
i
: (21)

The functions of integration t� are to be determined by imposing physical boundary condi-
tions, which for our collapsing shock-wave consist[1] in requiring that T�� vanish on I�L (i.e.
�+=�1), and that there be no incoming radiation along I�R (i.e. ��=�1) except for the
classical shock-wave at �+ = �+0 ; this implies that t� = 0. Substituting t� = 0 and (18) in
(19) and (21) one easily derives that on I+R (i.e. �+ !1)

[T++]I+
R

= 0 ; [T+�]I+
R

= 0 ; (22)

[T��]I+
R

=
Na�2

48�
e��

�
2�� ae��

�

(�� ae��
�)

2 : (23)

As clari�ed in Ref.[1], the physical interpretation of this solutions is clearest in the y�

coordinates

y+ = �+ ; y� = � ln
�
e���

� � a=�
�
=� ; (24)

where the conformal factor takes the form (N.B.: y+0 � �+0 )

� = �1

2
ln[1 +

a

�
e�y

�+��(y+�y+
0
)(y+

0
�y+)] ; (25)

and therefore the metric is asymptotically constant on I�R .
Using the fact that T�� transforms like a tensor under di�eomorphisms, from (22) and

(23) one �nds[1] that in the y� coordinates

[T++]I+
R

= 0 ; [T+�]I+
R

= 0 ; (26)

[T��]I+
R

=
N�2

48�

"
1� 1

(1 + ae�y
�

=�)
2

#
: (27)

Eq.(27) gives the ux of energy across I+R . Consistently with the picture of black hole
radiation[2], in the far past of I+R (i.e. y� ! �1) this ux vanishes exponentially, while it
approaches a constant value as the horizon (i.e. y� !1) is approached.

3.2 Conformal-Gauge Analysis for Arbitrary k

Let us now generalize the analysis to the case in which the matter energy-momentum tensor
satis�es the anomaly relations (9) and (10). Since the anomalies are a quantum e�ect,
nothing changes concerning the black hole background metric, but, instead of (19) and (20),
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the equations satis�ed by the matter energy-momentum tensor in conformal gauge are now
given by

T+� = � N

12�
k2@+@�� ; (28)

@�T�� + @�T+� � 2T+�@�� =
N

12�
k(1� k)@�@+@�� ; (29)

which lead to

T�� =
N

12�

h
k@2��� k2(@��)

2 + t�(�
�)
i
: (30)

Obviously, (28), (29), and (30) reproduce (19), (20), and (21) when k=1.
The functions of integration t� are to be determined by requiring again that T�� vanish

on I�L , and that there be no incoming radiation along I�R except for the classical shock-wave
at �+=�+0 ; this leads again to t�=0. Then using (28), (30), and the expression of � given
in (18) we �nd that in the �� coordinates

[T++]I+
R

= 0 ; [T+�]I+
R

= 0 ; (31)

[T��]I+
R

=
Na�2

48�
ke��

�
2� � kae��

�

(� � ae��
�)

2 : (32)

In order to get a clear physical interpretation of this result we need to express it in the
y� coordinates like before. In doing so, we shall take into account the fact that, when k 6=1,
T�� does not transform covariantly under coordinate rede�nitions of non-constant Jacobian.
For a conformal coordinate rede�nition �+ ! y+=�+,��! y�=f(��), from (16) one �nds

that �
(�;y)
++ =�

(�;y)
+� =0, and

�
(�;y)
�� =

N

24�
(1 � k)

(
@2� ln(

dy�

d��
)� (1� k)

2
[@� ln(

dy�

d��
)]2 � 2k(@��)@� ln(

dy�

d��
)

)
; (33)

which generalizes the ordinary[12] (k=0) Schwarzian derivative of the conformal map �!y,
to the case of our k-dependent anomalous transformations of the energy momentum tensor.

Since d��=dy+=0, from (15) and (31) it follows that on I+Rh
T
(y)
++

i
I+
R

=0 ;
h
T
(y)
+�

i
I+
R

=0 ; (34)h
T
(y)
��

i
I
+

R

=
h
(T

(�)
��+�

(�;y)
�� )(d��=dy�)2

i
I
+

R

: (35)

and with a straightforward calculation we �nd that2
4T (�)

��

 
d��

dy�

!2
3
5
I+
R

=
2kae�y

�

=� + (2k � k2)a2e2�y
�

=�2

(1 + ae�y
�

=�)
2 ; (36)

2
4�(�;y)

��

 
d��

dy�

!2
3
5
I+
R

=
N�2

48�

"
1 � 1 + 2kae�y

�

=� + (2k � k2)a2e2�y
�

=�2

(1 + ae�y
�

=�)
2

#
: (37)

Adding these last two results we see that the k-dependent terms cancel out, and, obviously,
the left-over formula for T�� on I+R exactly reproduces Eq.(27). We conclude that the black
hole radiation observed in the y� coordinate system is insensitive to the value of k.
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Using the covariance of T�� discussed in Section 2, we can deduce that the coordinate
systems which can be obtained from the y� coordinate system by a coordinate rede�nition of
Jacobian asymptotically constant on I+R will also observe k-independent black hole radiation.
Importantly, these are all the coordinate systems with metric asymptotically constant on I+R ,
which obviously include all observers asymptotically Minkowskian on I+R .

3.3 Light-Cone-Gauge Analysis for Arbitrary k

We now want to show that also for the light-cone-gauge observers, which we de�ne as those
with g�� = 0 and g+� = �1=2, the black hole radiation is k-independent. Let us start by
observing that the anomaly relations (9) and (10) imply that

r̂�(ĝ
��T��)� 1

2
r̂�R(ĝ) = � N

48�
@�R(ĝ) ; (38)

which does not depend explicitly on k; it depends on k only implicitly, through the k-
dependence of ĝ�� . This relation is particularly useful in light-cone gauge, where the metric
g�� has constant determinant, and therefore the k-dependence of ĝ�� is trivial.

Using (38) and (9), one �nds that in light-cone gauge the matter energy-momentum
tensor satis�es the relations

T+� + g++T�� = � N

24�
k@2�g++ ; (39)

@�T++ + 2@�(g++T+�)� g++@+T�� = N

24�
@+@

2
�g++ ; (40)

@+T�� + 2@�(g++T��)� g++@�T�� = N

24�
@3�g++ : (41)

Most importantly, the di�erential equation (41) involves only T�� and is k-independent;
therefore, with k-independent boundary conditions, it leads to k-independent T��. The
general solution of (41) has the form

T��=� N

24�
(@�F (�

+;��))2
�
g++(�

+;��)fF (�+;��); ��g+1

2
@�g

2
++(�

+;��)+tlc�(F (�
+;��))

�
; (42)

where �+ and �� are light-cone coordinates, F is such that

g++ = �@+F

@�F
; (43)

f; g denotes the ordinary Schwarzian derivative, and tlc�, which is a function of �+ and ��

only through F , is to be �xed by imposing physical boundary conditions.
It is easy to verify explicitly that, for light-cone-gauge observers, the black hole radiation

is insensitive to the value of k. In light-cone gauge the black hole background metric that
we have been considering can be described by (N.B.: the shock-wave is at �+=�+0 )

g++ = 1 + �(�+ � �+0 )
h
ae�(�

���++�+
0
)=� � 1

i
; (44)

which corresponds to

F = �1

�
ln
h
e�(�

+�����
+

0
) � a=�

i
+�(�+ � �+0 ) (�

+ � �+0 ) : (45)
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We observe that this F also has a geometrical interpretation; in fact, the �� coordinates
that we are using in light-cone gauge and the y� coordinates that we used in the preceding
subsections are related by

y+ = �+ ; y� = F (�+; ��) : (46)

The physical boundary conditions needed to �x tlc�(�
+; ��) are again5 provided by the

requirement that T�� vanish on I�L and that there be no incoming radiation along I�R except
for the classical shock-wave at �+=�+0 . This leads to

tlc� =
�2

2

"
1� 1

(1 + ae�F (�
+;��)=�)

2

#
: (47)

Eqs.(42), (44), (45), and (47) completely determine T��, and in particular on I+R one �nds
that

[T��]I+
R

=
N�2

48�

"
1 � 1

(1 + ae��
�

=�)
2

#
; (48)

which, as expected, indicates that the black hole radiation observed in the �� coordinates
is insensitive to the value of k. Since any two light-cone-gauge observers are connected
by adi�eomorphism of unit Jacobian, which is a symmetry of the theory for any k, the k-
independence of the black hole radiation observed in the �� coordinates also applies to any
other light-cone-gauge observer.

Note that (48) is identical to (27). This is due to the fact that, as shown by (44), also in
the �� coordinates the metric is asymptotically constant on I+R , and, as shown by (46), the
map between �+,�� and y+,y� is the identity on I+R .

For completeness we also notice that, having solved for T�� and �xed the above mentioned
boundary conditions, one can use (39) and (40) to derive T++ and T+�, and in particular on
I+R one �nds again that

[T++]I+
R

= 0 ; [T+�]I+
R

= 0 : (49)

4 Conclusion

To summarize, in our semiclassical analysis of black hole radiation in matter-coupled dilaton
gravity, we have considered a one-parameter k-family of measures for the path integral
quantization of the matter �elds. We have derived several symmetry properties of these
measures, including a formula for the non-covariant transformation of the matter energy-
momentum tensor under coordinate rede�nitions, and observed that the Weyl anomaly is
proportional to the parameter k. We have found that all these quantizations of the matter
�elds are consistent with the phenomena of black hole radiation, and that the radiation seen
by all observers whose metric is asymptotically constant on I+R , which are the observers
ordinarily used in the description of black hole radiation, is insensitive to the value of k. We

5Since the �� coordinates are asymptotically Minkowskian on I�L and I�R (see Eq.(18)), there is a co-

ordinate rede�nition of Jacobian asymptotically constant on I�L and I�R which connects the �� coordinate

system and any given light-cone gauge coordinate system. Therefore, in order to obtain the correspond-

ing boundary conditions in a given light-cone gauge coordinate system, we can transform covariantly the

boundary conditions for T�� imposed on I�L and I�R in the �� coordinate system.
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have veri�ed explicitly this k-independence for two such observers, one in conformal gauge
and the other in light-cone gauge, and used the covariant conservation of the matter energy-
momentum tensor under coordinate rede�nitions of constant Jacobian to deduce its validity
for any other such observer.

Our results should also clarify the relation between anomalies and black hole radiation
in 1+1 dimensions. The usual claim that the black hole radiation is a consequence of the
Weyl anomaly, should now be understood as strongly dependent on the assumption that the
matter energy-momentum tensor be covariantly conserved at the quantum level. In general,
the presence of any (Weyl and/or di�eomorphism) anomaly is su�cient to support black
hole radiation.

Interestingly, in our light-cone-gauge analysis a key role was played by the relation (38),
which in every gauge depends only implicitly on k and in light-cone gauge is completely
k-independent. This relation generalizes the one (k=0) encountered in Ref.[10] to the case
of the k-dependent anomalies (9),(10). The results found in the present paper agree with
the expectation[10] that this relation encodes some essential feature of the theory.

We also observe that the singularity of the limit k!0 in Eq.(7) was not encountered in
any of the results which have followed. Further investigation of the possible consequences of
this singularity would be interesting. It is plausible that it may surface as a non-analyticity
to be handled in the higher orders of the semiclassical approximation, but it may also turn
out to be simply an accidental result of the type of parametrization that we have chosen.

We thank E. Keski-Vakkuri for suggesting that the results of Ref.[10] might be important
for the understanding of the relation between Weyl anomaly and black hole radiation, and
L. Griguolo and R. Jackiw for very useful comments.

Note Added

Upon completion of our manuscript, L. Griguolo brought to our attention the report
Ref.[14], in which 1+1-dimensional black hole radiation is analyzed semiclassically in confor-
mal gauge assuming that the matter energy-momentum tensor be traceless, but not covari-
antly conserved, i.e. the special case k =0 in the one-parameter k-family of quantizations
that we considered here.
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