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ABSTRACT

Membrane/�vebrane duality in D = 11 implies Type IIA string/Type IIA �vebrane

duality in D = 10, which in turn implies Type IIA string/heterotic string duality in D = 6.

To test the conjecture, we reproduce the corrections to the 3-form �eld equations of the

D = 10 Type IIA string (a mixture of tree-level and one-loop e�ects) starting from the

Chern-Simons corrections to the 7-form Bianchi identities of the D = 11 �vebrane (a purely

tree-level e�ect). K3 compacti�cation of the latter then yields the familiar gauge and Lorentz

Chern-Simons corrections to 3-form Bianchi identities of the heterotic string. We note that

the absence of a dilaton in the D = 11 theory allows us to �x both the gravitational constant

and the �vebrane tension in terms of the membrane tension. We also comment on an

apparent conict between fundamental and solitonic heterotic strings and on the puzzle of

a �vebrane origin of S-duality.
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1 Introduction

With the arrival of the 1984 superstring revolution [1], eleven-dimensional Kaluza Klein

supergravity [2] fell out of favor, where it more or less remained until the recent observation by

Witten [3] that D = 11 supergravity corresponds to the strong coupling limit of the D = 10

Type IIA superstring, coupled with the realization that there is a web of interconnections

between Type IIA and all the other known superstrings: Type IIB, heterotic E8 � E8,

heterotic SO(32) and open SO(32). In particular, string/string duality [4{10] implies that

the D = 10 heterotic string compacti�ed to D = 6 on T 4 is dual to the D = 10 Type IIA

string compacti�ed to D = 6 on K3 [11]. Moreover, this automatically accounts for the

conjectured strong/weak coupling S-duality in D = 4, N = 4 supersymmetric theories, since

S-duality for one string is just target-space T -duality for the other [8]. In this paper we

�nd further evidence for an eleven-dimensional origin of string/string duality and hence for

S-duality.

D = 10 string/�vebrane duality and D = 6 string/string duality can interchange the

roles of spacetime and worldsheet loop expansions [4]. For example, tree-level Chern-Simons

corrections to the Bianchi identities in one theory may become one-loop Green-Schwarz

corrections to the �eld equations in the other. In a series of papers [4,7,12{17], it has been

argued that this provides a useful way of putting various duality conjectures to the test.

In particular, we can compare quantum spacetime e�ects in string theory with the �-model

anomalies for the dual p-branes [18{22] even though we do not yet know how to quantize

the p-branes! This is the method we shall employ in the present paper. We reproduce

the corrections to the 3-form �eld equations of the D = 10 Type IIA string (a mixture

of tree-level and one-loop e�ects) starting from the Chern-Simons corrections to the 7-form

~K7 = �K4 Bianchi identities of the D = 11 �vebrane (a purely tree-level e�ect):

d ~K7 = �1

2
K4

2 + (2�)4 ~�0 ~X8 ; (1.1)

where the �vebrane tension is given by ~T6 = 1=(2�)3 ~�0 and where the 8-form polynomial ~X8

describes the d = 6 �-model Lorentz anomaly of the D = 11 �vebrane:

~X8 =
1

(2�)4

h
� 1

768
(trR2)2 +

1

192
trR4

i
: (1.2)

K3 compacti�cation of (1.1) then yields the familiar gauge and Lorentz Chern-Simons cor-
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rections to 3-form Bianchi identities of the heterotic string:

d ~H3 =
1

4
~�0(trF 2 � trR2) : (1.3)

The present paper thus provides evidence not only for the importance of eleven dimensions

in string theory but also (in contrast to Witten's paper) for the importance of supersymmetric

extended objects with d = p + 1 > 2 worldvolume dimensions: the super p-branes2.

2 Ten to eleven: it is not too late

In fact it should have come as no surprise that string theory makes use of eleven dimensions,

as there were already tantalizing hints in this direction:

i) In 1986, it was pointed out [25] that D = 11 supergravity compacti�ed on K3� T n�3

[26] and the D = 10 heterotic string compacti�ed on T n [27,28] have the same moduli spaces

of vacua, namely

M =
SO(16 + n; n)

SO(16 + n)� SO(n)
: (2.1)

It was subsequently con�rmed [29, 30], in the context of the D = 10 Type IIA theory

compacti�ed on K3 � T n�4, that this equivalence holds globally as well as locally.

ii) In 1987 the D = 11 supermembrane was discovered [31, 32]. It was then pointed out

[33] that the (d = 2;D = 10) Green-Schwarz action of the Type IIA superstring follows by

simultaneous worldvolume/spacetime dimensional reduction of the (d = 3;D = 11) Green-

Schwarz action of the supermembrane.

iii) In 1990, based on considerations of this D = 11 supermembrane which treats the

dilaton and moduli �elds on the same footing, it was conjectured [34, 35] that discrete sub-

groups of all the old non-compact global symmetries of compacti�ed supergravity [36{39]

(e.g. SL(2; R), O(22; 6), O(24; 8), E7, E8, E9, E10) should be promoted to duality symme-

tries of either heterotic or Type II superstrings. The case for a target space O(22; 6;Z)

(T -duality) had already been made, of course [40]. Stronger evidence for a strong/weak

coupling SL(2; Z) (S-duality) in string theory was subsequently provided in [5, 9, 41{51].

Stronger evidence for their combination into an O(24; 8;Z) duality in heterotic strings was

provided in [10, 50, 52, 53] and stronger evidence for their combination into a discrete E7 in

Type II strings was provided in [11], where it was dubbed U-duality.

2Super p-branes are reviewed in [9,23,24]
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iv) In 1991, the supermembrane was recovered as an elementary solution of D = 11

supergravity which preserves half of the spacetime supersymmetry [54]. (Elementary so-

lutions are singular and carry a Noether \electric" charge, in contrast to solitons which

are non-singular solutions of the source-free equations and carry a topological \magnetic"

charge.) The preservation of half the supersymmetries is intimately linked with the world-

volume kappa symmetry. It followed by the same simultaneous dimensional reduction in (ii)

above that the elementary Type IIA string could be recovered as a solution of Type IIA

supergravity. By truncation, one then obtains the N = 1;D = 10 elementary string [55].

v) In 1991, the elementary super�vebrane was recovered as a solution of the dual formula-

tion ofN = 1;D = 10 supergravity which preserves half of the spacetime supersymmetry [56].

It was then reinterpreted [57,58] as a non-singular soliton solution of the usual formulation.

Moreover, it was pointed out that it also provides a solution of both the Type IIA and Type

IIB �eld equations preserving half of the spacetime supersymmetry and therefore that there

exist both Type IIA and Type IIB super�vebranes. This naturally suggested a Type II

string/�vebrane duality in analogy with the earlier heterotic string/�vebrane duality con-

jecture [23, 59]. Although no Green-Schwarz action for the d = 6 worldvolumes is known,

consideration of the soliton zero modes means that the gauged �xed actions must be de-

scribed by a chiral antisymmetric tensor multiplet (B�
�� ; �

I ; �[IJ]) in the case of IIA and a

non-chiral vector multiplet (B�; �
I; AI

J ; �) in the case of IIB [57,58].

vi) Also in 1991, black p-brane solutions of D = 10 superstrings were found [60] for d = 1

(IIA only), d = 2 (Heterotic, IIA and IIB), d = 3 (IIA only), d = 4 (IIB only) d = 5 (IIA

only), d = 6 (Heterotic, IIA and IIB) and d = 7 (IIA only). Moreover, in the extreme

mass=charge limit, they each preserve half of the spacetime supersymmetry [61]. Hence

there exist all the corresponding super p-branes, giving rise to D = 10 particle/sixbrane,

membrane/fourbrane and self-dual threebrane duality conjectures in addition to the existing

string/�vebrane conjectures. The soliton zero modes are described by the supermultiplets

listed in Table (1). Note that in contrast to the �vebranes, both Type IIA and Type IIB

string worldsheet supermultiplets are non-chiral3. As such, they follow from T 4 compacti�-

cation of the Type IIA �vebrane worldvolume supermultiplets.

vii) In 1992, a �vebrane was discovered as a soliton of D = 11 supergravity preserving

half the spacetime supersymmetry [62]. Hence there exists a D = 11 super�vebrane and

3This corrects an error in [9,61]
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it forms the subject of the present paper. Once again, its covariant action is unknown but

consideration of the soliton zero modes means that the gauged �xed action must be described

by the same chiral antisymmetric tensor multiplet in (v) above [9, 63, 64]. This naturally

suggests a D = 11 membrane/�vebrane duality.

viii) In 1993, it was recognized [61] that by dualizing a vector into a scalar on the gauge-

�xed d = 3 worldvolume of the Type IIA supermembrane, one increases the number of

worldvolume scalars (i.e. transverse dimensions) from 7 to 8 and hence obtains the corre-

sponding worldvolume action of the D = 11 supermembrane. Thus the D = 10 Type IIA

theory contains a hidden D = 11 Lorentz invariance!

ix) In 1994 [65] and 1995 [66], all the D = 10 Type IIA p-branes of (vi) above were

related to either the D = 11 supermembrane or the D = 11 super�vebrane.

x) Also in 1994, the (extreme electric and magnetic black hole [50, 67]) Bogomol'nyi

spectrum necessary for the E7 U -duality of the D = 10 Type IIA string compacti�ed to

D = 4 on T 6 was given an explanation in terms of the wrapping of either the D = 11

membrane or D = 11 �vebrane around the extra dimensions [11].

xi) In 1995, it was conjectured [64] that the D = 10 Type IIA superstring should be

identi�ed with the D = 11 supermembrane compacti�ed on S1, with the charged extreme

black holes of the former interpreted as the Kaluza-Klein modes of the latter.

xii) Also in 1995, the conjectured duality of the D = 10 heterotic string compacti�ed on

T 4 and the D = 10 Type IIA string compacti�ed on K3 [3, 11], combined with the above

conjecture implies that the d = 2 worldsheet action of the D = 6 (D = 7) heterotic string

may be obtained by K3 compacti�cation4 of the d = 6 worldvolume action of the D = 10

Type IIA �vebrane (D = 11 �vebrane) [68,69]. We shall shortly make use of this result.

Following Witten's paper [3] it was furthermore proposed [70] that the combination of

perturbative and non-perturbative states of the D = 10 Type IIA string could be assembled

intoD = 11 supermultiplets. It has even been claimed [71] that both the E8�E8 and SO(32)

heterotic strings in D = 10 may be obtained by compactifying the D = 11 theory on �1 and

�2 respectively, where �1 and �2 are one-dimensional structures obtained by squashing K3!

4The wrapping of the D = 10 heterotic �vebrane worldvolume around K3 to obtain a D = 6 heterotic

string was considered in [7].
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d = 7 Type IIA (A�; �; 3�) n = 1

d = 6 Type IIA (B�
�� ; �R

I ; �[IJ]) I = 1; : : : ; 4 (n+; n�) = (2; 0)

Type IIB (B�; �
I; AI

J ; �) I = 1; 2 (n+; n�) = (1; 1)

Heterotic ( a; ��) a = 1; : : : ; 60

� = 1; : : : ; 120 (n+; n�) = (1; 0)

d = 5 Type IIA (A�; �
I ; �[IJ]j) I = 1; : : : ; 4 n = 2

d = 4 Type IIB (B�; �
I; �[IJ]) I = 1; : : : ; 4 n = 4

d = 3 Type IIA (�I ; �I) I = 1; : : : ; 8 n = 8

d = 2 Type IIA (�L
I ; �L

I); (�R
I; �R

I) I = 1; : : : ; 8 (n+; n�) = (8; 8)

Type IIB (�L
I ; �L

I); (�R
I; �R

I) I = 1; : : : ; 8 (n+; n�) = (8; 8)

Heterotic (0; �L
M ); (�R

I ; �R
I) M = 1; : : : ; 24

I = 1; : : : ; 8 (n+; n�) = (8; 0)

Table 1: Gauge-�xed D = 10 theories on the worldvolume, corresponding to the zero modes

of the soliton, are described by the above supermultiplets and worldvolume supersymmetries.
The D = 11 membrane and �vebrane supermultiplets are the same as Type IIA in D = 10.

3 D = 11 membrane/�vebrane duality

We begin with the bosonic sector of the d = 3 worldvolume of the D = 11 supermembrane:

S3 = T3

Z
d3�

�
�1

2

p
�ij@iXM@jX

NGMN (X) +
1

2

p
�

� 1

3!
�ijk@iX

M@jX
N@kX

PCMNP (X)
�
; (3.1)

where T3 is the membrane tension, �i (i = 1; 2; 3) are the worldvolume coordinates, ij is the

worldvolume metric and XM (�) are the spacetime coordinates (M = 0; 1; : : : ; 10). Kappa

symmetry [31, 32] then demands that the background metric GMN and background 3-form

potential CMNP obey the classical �eld equations of D = 11 supergravity, whose bosonic

action is

I11 =
1

2�112

Z
d11x

p
�G

�
RG �

1

2 � 4!K
2
MNPQ

�
� 1

12�112

Z
C3 ^K4 ^K4 ; (3.2)

where K4 = dC3 is the 4-form �eld strength. In particular, K4 obeys the �eld equation

d �K4 = �1

2
K4

2 (3.3)

and the Bianchi identity

dK4 = 0 : (3.4)
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While there are two dimensionful parameters, the membrane tension T3 and the eleven-

dimensional gravitational constant �11, they are in fact not independent. To see this, we

note from (3.1) that C3 has period 2�=T3 so that K4 is quantized according to

Z
K4 =

2�n

T3
n = integer : (3.5)

Consistency of such C3 periods with the spacetime action, (3.2), gives the relation

(2�)2

�112T33
2 4 IZ : (3.6)

The D = 11 classical �eld equations admit as a soliton a dual super�vebrane [6,62] whose

worldvolume action is unknown, but which couples to the dual �eld strength ~K7 = �K4. The

�vebrane tension ~T6 is given by the Dirac quantization rule [6]

2�11
2T3 ~T6 = 2�n n = integer : (3.7)

Using (3.6), this may also be written as

�
~T6

T32
2 IZ ; (3.8)

which we will �nd useful below. Although Dirac quantization rules of the type (3.7) appear

for other p-branes and their duals in lower dimensions [6], it is the absence of a dilaton in

the D = 11 theory that allows us to �x both the gravitational constant and the dual tension

in terms of the fundamental tension.

From (3.3), the �vebrane Bianchi identity reads

d ~K7 = �1

2
K4

2 : (3.9)

However, such a Bianchi identity will in general require gravitational Chern-Simons correc-

tions arising from a sigma-model anomaly on the �vebrane worldvolume [7,14,18{22]:

d ~K7 = �1

2
K4

2 + (2�)4 ~�0 ~X8 ; (3.10)

where ~�0 is related to the �vebrane tension by T6 = 1=(2�)3 ~�0 and where the 8-form poly-

nomial ~X8, quartic in the gravitational curvature R, describes the d = 6 �-model Lorentz

anomaly of the D = 11 �vebrane. Although the covariant �vebrane action is unknown, we

know from section 2 that the gauge �xed theory is described by the chiral antisymmetric
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tensor multiplet (B�
�� ; �

I ; �[IJ]), and it is a straightforward matter to read o� the anomaly

polynomial from the literature. See, for example [72, 73]. The contribution from the anti

self-dual tensor is

~XB =
1

(2�)4
1

5760

h
�10(trR2)2 + 28 trR4

i
(3.11)

and the contribution from the four left-handed (symplectic) Majorana-Weyl fermions is

~X� =
1

(2�)4
1

5760

h10
4
(trR2)2 + 2 trR4

i
: (3.12)

Hence ~X8 takes the form quoted in the introduction:

~X8 =
1

(2�)4

h
� 1

768
(trR2)2 +

1

192
trR4

i
: (3.13)

Thus membrane/�vebrane duality predicts a spacetime correction to the D = 11 supermem-

brane action

I11(Lorentz) = T3

Z
C3 ^

1

(2�)4

h
� 1

768
(trR2)2 +

1

192
trR4

i
: (3.14)

Unfortunately, since the correct quantization of the supermembrane is unknown, this predic-

tion is di�cult to check. However, by simultaneous dimensional reduction [33] of (d = 3;D =

11) to (d = 2;D = 10) on S1, this prediction translates into a corresponding prediction for

the Type IIA string:

I10(Lorentz) = T2

Z
B2 ^

1

(2�)4

h
� 1

768
(trR2)2 +

1

192
trR4

i
; (3.15)

where B2 is the string 2-form, T2 is the string tension, T2 = 1=2��0, related to the membrane

tension by

T2 = 2�RT3 ; (3.16)

where R is the S1 radius.

As a consistency check we can compare this prediction with previous results found by

explicit string one-loop calculations. These have been done in two ways: either by computing

directly in D = 10 the one-loop amplitude involving four gravitons and one B2 [74{77], or by

compactifying to D = 2 on an 8-manifold M and computing the B2 one-point function [17].

We indeed �nd agreement. In particular, we note that

~X8 =
1

6
[2Y NS;R

8 � Y
R;R
8 ] ; (3.17)
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where

Y NS;R
8 =

1

(2�)4
1

2880

h
�25

4
(trR2)2 + 31 trR4

i

Y R;R
8 =

1

(2�)4
1

2880

h
10(trR2)2 � 28 trR4

i
: (3.18)

Upon compacti�cation to D = 2, we arrive at

nNS;R =
Z
M
Y
NS;R
8

nR;R =
Z
M
Y
R;R
8 ; (3.19)

where in the (NS,R) sector nNS;R computes the index of the Dirac operator coupled to the

tangent bundle onM and in the (R,R) sector nR;R computes the index of the Dirac operator

coupled to the spin bundle on M . We also �nd agreement with the well-known tree-level

terms
1

2�102

Z
1

2
B2 ^K4 ^K4 ; (3.20)

where

�11
2 = 2�R�10

2 : (3.21)

Thus usingD = 11 membrane/�vebrane duality we have correctly reproduced the corrections

to the B2 �eld equations of the D = 10 Type IIA string (a mixture of tree-level and string

one-loop e�ects) starting from the Chern-Simons corrections to the Bianchi identities of the

D = 11 super�vebrane (a purely tree-level e�ect). It is now instructive to derive this same

result from D = 10 string/�vebrane duality.

4 D = 10 Type IIA string/�vebrane duality

To see how a double worldvolume/spacetime compacti�cation of the D = 11 supermembrane

theory on S1 leads to the Type IIA string in D = 10 [33], let us denote all (d = 3;D = 11)

quantities by a hat and all (d = 2;D = 10) quantities without. We then make a ten-one

split of the spacetime coordinates

X̂M̂ = (XM ; Y ) M = 0; 1; : : : ; 9 (4.1)

and a two-one split of the worldvolume coordinates

�̂ î = (�i; �) i = 1; 2 (4.2)

8



in order to make the partial gauge choice

� = Y ; (4.3)

which identi�es the eleventh dimension of spacetime with the third dimension of the world-

volume. The dimensional reduction is then e�ected by taking Y to be the coordinate on

a circle of radius R and discarding all but the zero modes. In practice, this means taking

the background �elds ĜM̂N̂ and ĈM̂N̂P̂ to be independent of Y . The string backgrounds of

dilaton �, string �-model metricGMN , 1-form AM , 2-form BMN and 3-form CMNP are given

by5

ĜMN = e��=3

0
B@ GMN + e�AMAN e�AM

e�AN e�

1
CA

ĈMNP = CMNP

ĈMNY = BMN : (4.4)

The actions (3.1) and (3.2) now reduce to

S2 = T2

Z
d2�

�
�1

2

p
�ij@iXM@jX

NGMN(X)

� 1

2!
�ij@iX

M@jX
NBMN(X) + � � �

�
(4.5)

and

I10 =
1

2�102

Z
d10x

p
�Ge��

�
RG + (@M�)

2 � 1

2 � 3!H
2
MNP

� 1

2 � 2!e
�F 2

MN
� 1

2 � 4!e
�J2

MNPQ

�

� 1

2�102

Z
1

2
K4 ^K4 ^B2 ; (4.6)

where the �eld strengths are given by J4 = K4 + A1H3, H3 = dB2 and F2 = dA1. Let us

now furthermore consider a simple spacetime compacti�cation of the �vebrane theory on

the same S1 to obtain the Type IIA �vebrane in D = 10. From (3.4) and (3.10), the �eld

equations and Bianchi identities for the �eld strengths J4, H3, F2 and their duals ~J6 = �J4,
5The choice of dilaton prefactor, e��=3, is dictated by the requirement that GMN be the D = 10 string

�-model metric. To obtain the D = 10 �vebrane �-model metric, the prefactor is unity because the re-

duction is then spacetime only and not simultaneous worldvolume/spacetime. This explains the remarkable

\coincidence" [6] between ĜMN and the �vebrane �-model metric.
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~H7 = e�� �H3, ~F8 = �F2 now read

dJ4 = F2H3 d ~J6 = H3J4 (4.7)

dH3 = 0 d ~H7 = �1

2
J4

2 + F2
~J6 + (2�)4 ~�0 ~X8 (4.8)

dF2 = 0 d ~F8 = �H3
~J6 : (4.9)

Of course, the Lorentz corrections to the Bianchi identity for ~H7 could have been derived

directly from the Type IIA �vebrane in D = 10 since its worldvolume is described by the

same antisymmetric tensor supermultiplet. Note that of all the Type IIA p-branes in Table

(1), only the �vebrane supermultiplet is chiral, so only the ~H7 Bianchi identity acquires

corrections.

From (3.7), (3.16) and (3.21), or from �rst principles of string/�vebrane duality [78], the

Dirac quantization rule for n = 1 is now

2�10
2 = (2�)5�0 ~�0 : (4.10)

So from either D = 10 string/�vebrane duality or from compacti�cation of D = 11 mem-

brane/�vebrane duality, the B2 �eld equation with its string one-loop correction is

d(e�� �H3) = �1

2
J4

2 + F2 � J4 +
2�10

2

2��0
~X8 ; (4.11)

which once again agrees with explicit string one-loop calculations [17,74].

5 D = 7 string/membrane duality

Simultaneous worldvolume/spacetime compacti�cation of the D = 11 �vebrane on K3 gives

a heterotic string in D = 7 [68,69]. The �ve worldvolume scalars produce (5L; 5R) worldsheet

scalars, the four worldvolume fermions produce (0L; 8R) worldsheet fermions and the world-

volume self-dual 3-form produces (19L; 3R) worldsheet scalars, which together constitute the

�eld content of the heterotic string. We may thus derive the Bianchi identity for this string

starting from the �vebrane Bianchi identity, (1.1):

d ~K7 = �
1

2
K4

2 + (2�)4 ~�0 ~X8 : (5.1)

We begin by performing a seven-four split of the eleven-dimensional coordinates

XM = (x�; yi) � = 0; 1; : : : ; 6 ; i = 7; 8; 9; 10 (5.2)
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so that the original set of ten-dimensional �elds fAng may be decomposed in a basis of

harmonic p-forms on K3:

An(X) =
X
An�p(x)!p(y) : (5.3)

In particular, we expand C3 as

C3(X) = C3(x) +
1

2T3

X
CI
1 (x)!

I
2(y) ; (5.4)

where !I2, I = 1; : : : ; 22 are an integral basis of b2 harmonic two-forms on K3. We have

chosen a normalization where the seven-dimensional U(1) �eld strengths KI
2 = dCI

1 are

coupled to even charges Z
KI

2 2 4� IZ ; (5.5)

which follows from the eleven-dimensional quantization condition, (3.5).

Following [7], let us de�ne the dual (heterotic) string tension ~T2 = 1=2�~�0 by

1

2�~�0
=

1

(2�)3 ~�0
V ; (5.6)

where V is the volume of K3, and the dual string 3-form ~H3 by

1

2�~�0
~H3 =

1

(2�)3 ~�0

Z
K3

~K7 ; (5.7)

so that ~H3 satis�es the conventional quantization condition

Z
~H3 = 4�2n~�0 ; (5.8)

which follows from the underlying ~K7 quantization. The dual string Lorentz anomaly poly-

nomial, ~X4, is given by

~X4 =
Z
K3

~X8 =
1

(2�)4

Z
K3

�
� 1

768
(trR2 + trR2

0)
2 +

1

192
(trR4 + trR4

0)

�

=
1

(2�)2
1

192
trR2p1(K3)

= � 1

(2�)2
1

4
trR2 ; (5.9)

where p1(K3) is the Pontryagin number of K3

p1(K3) = � 1

8�2

Z
K3

trR2
0 = �48 : (5.10)
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We may now integrate (5.1) over K3, using the Dirac quantization rule, (3.8), to �nd

d ~H3 = � ~�0

4

h
KI

2K
J
2 dIJ + trR2

i
; (5.11)

where dIJ is the intersection matrix on K3, given by

dIJ =
Z
K3
!I2 ^ !J2 (5.12)

and has b+2 = 3 positive and b�2 = 19 negative eigenvalues. Therefore we see that this form

of the Bianchi identity corresponds to a D = 7 toroidal compacti�cation of a heterotic string

at a generic point on the Narain lattice [27,28]. Thus we have reproduced exactly the D = 7

Bianchi identity of the heterotic string, starting from a D = 11 �vebrane!

6 D = 6 string/string duality

Further compacti�cation of (5.11) on S1 clearly yields the six-dimensional Bianchi identity

with two additional U(1) �elds coming from S1, giving trF 2 with signature (4; 20). Alterna-

tively, this may be obtained from K3 compacti�cation of the D = 10 �vebrane, with Bianchi

identity

d ~H7 = �1

2
J4

2 + F2
~J6 + (2�)4 ~�0 ~X8 : (6.1)

Although in this section we focus just on this identity, we present the compacti�cation of

the complete bosonic D = 10 Type IIA action, (4.6), in the Appendix.

The reduction from ten dimensions is similar to that from eleven. There is one subtlety,

however, which is that J4 is the D = 10 gauge invariant combination, J4 = K4 + A1H3.

Compactifying (6.1) to six dimensions on K3, we may identify 22 U(1) �elds coming from the

reduction of J4 and one each coming from F2 and ~J6. Normalizing these 24 six-dimensional

U(1) �elds according to (5.5), we obtain

d ~H3 = � ~�0

4

h
J I2J

J
2 dIJ � 2F2

~J2 � 16�2 ~X4

i
; (6.2)

where J I2 = dCI
2 + A1db

I and J4 = dC3 + A1H3. The 22 scalars bI are torsion moduli of

K3. While we may be tempted to identify these two-forms with U(1) �eld strengths, this

would not be correct since dJ I2 = F2db
I 6= 0 and d ~J2 = J I2db

JdIJ 6= 0. Thus the actual �eld

strengths must be shifted according to

K̂I
2 = J I2 � F2b

I

Ĵ2 = ~J2 � J I2 b
JdIJ +

1
2
F2b

IbJdIJ ; (6.3)
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so that dK̂I
2 = dĴ2 = 0. Inverting these de�nitions and inserting them into (6.2) gives �nally

d ~H3 = �
~�0

4

h
K̂I

2K̂
J
2 dIJ � 2F2Ĵ2 + trR2

i
: (6.4)

In order to compare this result with the toroidally compacti�ed heterotic string, it is

useful to group the U(1) �eld-strengths into a 24-dimensional vector

F2 = [F2; Ĵ2; K̂
I
2 ]
T ; (6.5)

in which case the D = 6 Bianchi identity now reads

d ~H3 = � ~�0

4

h
FTLF + trR2

i
; (6.6)

where the matrix L = [(��1) � dIJ ] has 4 positive and 20 negative eigenvalues. This is

in perfect agreement with the reduction of the D = 7 result, (5.11), and corresponds to a

Narain compacti�cation on �4;20.

Note that the heterotic string tension 1=2�~�0 and the Type IIA string tension 1=2��0

are related by the Dirac quantization rule [6,7]

2�6
2 = (2�)3n�0~�0 ; (6.7)

where �6
2 = �10

2=V is the D = 6 gravitational constant. Some string theorists, while

happy to endorse string/string duality, eschew the soliton interpretation. It is perhaps worth

emphasizing, therefore, that without such an interpretation with its Dirac quantization rule,

there is no way to relate the two string tensions.

7 Elementary versus solitonic heterotic strings

Our success in correctly reproducing the fundamental heterotic string �-model anomaly

polynomial

X4 =
1

4

1

(2�)2
(trR2 � trF 2) ; (7.1)

by treating the string as a (K3 compacti�ed �vebrane) soliton, now permits a re-evaluation

of a previous controversy concerning fundamental [79] versus solitonic [9, 12, 78] heterotic

strings. In an earlier one loop test of D = 10 heterotic string/heterotic �vebrane duality [14],

13



X4 was obtained by the following logic: the d = 2 gravitational anomaly for complex fermions

in a representation R of the gauge group is [72,73]

I4 =
1

2

1

(2�)2
(
r

24
trR2 � trRF

2) ; (7.2)

where r is the dimensionality of the representation and R is the two-dimensional curvature.

Since the SO(32) heterotic string has 32 left-moving gauge Majorana fermions (or, if we

bosonize, 16 chiral scalars) and 8 physical right-moving spacetimeMajorana fermions, Dixon,

Du� and Plefka [14] set R to be the fundamental representation and put r = 32� 8 = 24 to

obtain X4 = I4=2, on the understanding that R is now to be interpreted as the pull-back of

the spacetime curvature. Exactly the same logic was used in [14] in obtaining the heterotic6

�vebrane ~X8

~X8 =
1

(2�)4

h 1
24

trF 4 � 1

192
trF 2 trR2 +

1

768
(trR2)2 +

1

192
trR4

i
(7.3)

and in sections 3 and 4 above in obtaining the Type IIA �vebrane ~X8 of (3.13). This logic

was however criticized by Izquierdo and Townsend [15] and also by Blum and Harvey [16].

They emphasize the di�erence between the gravitational anomaly (which vanishes for the

fundamental heterotic string [79]) involving the two-dimensional curvature and the �-model

anomaly (which is given by X4 [80]) involving the pull-back of the spacetime curvature.

Moreover, they go on to point out that the 32 left-moving gauge Majorana fermions (or 16

chiral scalars) of the fundamental heterotic string do not couple at all to the spin connections

of this latter curvature. They conclude that the equivalence between X4 and I4=2 is a

\curious fact" with no physical signi�cance. They would thus be forced to conclude that

the derivation of the Type IIA string �eld equations presented in the present paper is also

a gigantic coincidence!

An attempt to make sense of all this was made by Blum and Harvey. They observed that

the zero modes of solitonic strings (and �vebranes) necessarily couple to the spacetime spin

connections because they inherit this coupling from the spacetime �elds from which they

are constructed. For these objects, therefore, they would agree that the logic of Dixon, Du�

and Plefka (and, by inference, the logic of the present paper) is correct. But they went on

6Note that the heterotic string X4, the heterotic �vebrane ~X8 and the Type IIA �vebrane ~X8 are

the only non-vanishing anomaly polynomials, since from Table (1), these are the only theories with chiral

supermultiplets.
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to speculate that although fundamental and solitonic heterotic strings may both exist, they

are not to be identi�ed! Recent developments in string/string duality [3, 8, 11, 68, 69, 81],

however, have convinced many physicists that the fundamental heterotic string is a soliton

after all and so it seems we must look for an alternative explanation.

The correct way to resolve the apparent conict is, we believe, rather mundane. The

solitonic string and p-brane solitons are invariably presented in a physical gauge where one

identi�es d of the D spacetime dimensions with the d = p + 1 dimensions of the p-brane

worldvolume. As discussed in [14], this is best seen in the Green-Schwarz formalism, which

is in fact the only formalism available for d > 2. In such a physical gauge (which is only

well-de�ned for vanishing worldvolume gravitational anomaly) the worldvolume curvatures

and pulled-back spacetime curvatures are mixed up. So, in this sense, the gauge fermions

do couple to the spacetime curvature after all.

8 Fivebrane origin of S-duality?

Discard worldvolume Kaluza-Klein modes?

In a recent paper [8], it was explained how S-duality in D = 4 follows as a consequence of

D = 6 string/string duality: S-duality for one theory is just T -duality for the other. Since

we have presented evidence in this paper that Type IIA string/heterotic string duality in

D = 6 follows as a consequence of Type IIA string/Type IIA �vebrane duality in D = 10,

which in turn follows frommembrane/�vebrane duality inD = 11, it seems natural to expect

a �vebrane origin of S-duality. (Indeed, a �vebrane explanation for S-duality has already

been proposed by Schwarz and Sen [46] and by Binetruy [48], although they considered a

T 6 compacti�cation of the heterotic �vebrane rather than a K3�T 2 compacti�cation of the

Type IIA �vebrane.)

The explanation of [8] relied on the observation that the roles of the axion/dilaton �elds

S and the modulus �elds T trade places in going from the fundamental string to the dual

string. It was proved that, for a dual string compacti�ed from D = 6 to D = 4 on T 2,

SL(2; Z)S is a symmetry that interchanges the roles of the dual string worldsheet Bianchi

identities and the �eld equations for the internal coordinates ym (m = 4; 5). However, in

unpublished work along the lines of [34,35], Du�, Schwarz and Sen tried and failed to prove
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that, for a �vebrane compacti�ed from D = 10 to D = 6, SL(2; Z)S is a symmetry that

interchanges the roles of the �vebrane worldvolume Bianchi identities and the �eld equations

for the internal coordinates ym (m = 4; 5; 6; 7; 8; 9). A similar negative result was reported

by Percacci and Sezgin [82].

Another way to state the problem is in terms of massive worldvolume Kaluza-Klein

modes. In the double dimensional reduction of the D = 10 �vebrane to D = 6 heterotic

string considered in section 6, we obtained the heterotic string worldsheet multiplet of 24

left-moving scalars, 8 right moving scalars and 8 chiral fermions as the massless modes of

a Kaluza-Klein compacti�cation on K3. Taken in isolation, these massless modes on the

dual string worldsheet will display the usual T -duality when the string is compacti�ed from

D = 6 to D = 4 and hence the fundamental string will display the desired S-duality.

However, no-one has yet succeeded in showing that this T -duality survives when the massive

Kaluza-Klein modes on the �vebrane worldvolume are included. Since these modes are

just what distinguishes a string XM (�; �) from a �vebrane XM (�; �; �i) (i = 1; 2; 3; 4), this

was precisely the reason in [8] for preferring a D = 6 string/string duality explanation for

SL(2; Z) over a D = 10 string/�vebrane duality explanation. (Another reason, of course,

is that the quantization of strings is understood, but that of �vebranes is not!) The same

question about whether or not to discard massive worldvolume Kaluza-Klein modes also

arises in going from the membrane in D = 11 to the Type IIA string in D = 10. For

the moment therefore, this inability to provide a �vebrane origin for SL(2; Z) remains the

Achilles heel of the super p-brane programme7.

7Another unexplained phenomenon, even in pure string theory, is the conjectured SL(2; Z) duality of

the D = 10 Type IIB string [11], which gives rise to U -duality in D = 4. In this connection, it is perhaps

worth noting from Table (1) that the gauged-�xed worldvolume of the self-dual Type IIB superthreebrane

is described by the d = 4; n = 4 Maxwell supermultiplet [83]. Now d = 4; n = 4 abelian gauge theories

are expected to display an SL(2; Z) duality. See [84, 85] for a recent discussion. Could this be the origin

of the SL(2; Z) of the Type IIB string which follows from a T 2 compacti�cation of the threebrane? Note

moreover, that the threebrane supermultiplet itself follows from T 2 compacti�cation of either the Type IIA

or Type IIB �vebrane supermultiplet. Compacti�cations of such d = 6 self-dual antisymmetric tensors

have, in fact, recently been invoked precisely in the context of S-duality in abelian gauge theories [85]. Of

course, the gauged-�xed action for the superthreebrane is presumably not simply the Maxwell action but

some non-linear (possibly Born-Infeld [83]) version. Nevertheless, S-duality might still hold [86].
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9 Web of interconnections

We have discussed membrane and �vebranes in D = 11, heterotic strings and Type II

�vebranes in D = 10, heterotic strings and membranes in D = 7, heterotic and Type II

strings in D = 6 and how they are related by various compacti�cations. This somewhat

bewildering mesh of interconnections is summarized in Fig. (1a). There are two types of

dimensional reduction to consider: lines sloping down left to right represent spacetime re-

duction (d;D) ! (d;D � k) and lines sloping down right to left represent simultaneous

spacetime/worldsheet reduction (d;D) ! (d � k;D � k). The worldsheet reductions may

be checked against Table (1). Note that the simultaneous reduction on � of the D = 11

membrane to yield the D = 10 heterotic string is still somewhat speculative [71], but we

have included it since it nicely completes the diagram.

According to Townsend [68], a similar picture may be drawn relating the Type IIA string

and heterotic �vebrane, which we show in Fig. (1b), where we have once again speculated on

a spacetime reduction on � of the D = 11 �vebrane to yield the D = 10 heterotic �vebrane.

However, one must now explain how T 3 (or T 4) compacti�cation of the (120; 120) degrees

of freedom of the gauge-�xed D = 10 heterotic �vebrane [59] can yield only the (8; 8) of the

D = 7 membrane (or the (8L; 8L); (8R; 8R) of the D = 6 Type IIA string). Townsend has

given arguments to support this claim. There are more interrelationships one can illustrate

by including horizontal lines representing worldsheet reduction only8, (d;D) ! (d � k;D),

some of which are shown in Figs. (2a,b).

Note that these diagrams describe theories related by compacti�cation and so relate

weak coupling to weak coupling and strong to strong. In Fig. (3), we have superimposed

Figs. (1a) and (1b) to indicate how the various theories are also related by duality (denoted

by the dotted horizontal lines) which relates weak coupling to strong. We believe that these

interrelationships, which have in particular enabled us to deduce supermembrane e�ects in

agreement with explicit string one-loop calculations, strengthen the claim that eleven dimen-

sions and supermembranes have a part to play in string theory: a triumph of diversi�cation

over uni�cation [87].

8Townsend claims [68] that the worldvolume action of the D = 10 Type IIA string (or D = 11 supermem-

brane) may be obtained by T 4 (or T 3) compacti�cation of the worldvolume action of the D = 10 heterotic

�vebrane. However, we do not subscribe to this interpretation. Toroidal compacti�cation can never produce

(n+; n�) = (8; 8) supersymmetry in d = 2 (or n = 8 in d = 3) from (n+; n�) = (1; 0) in d = 6.
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A Reduction of the D = 10 Type IIA model on K3

In section 6 we presented the reduction of the �vebrane Bianchi identity on K3. For com-

pleteness, we present the reduction of the bosonic part of the D = 10 Type IIA supergravity

action, (4.6), which we write here in a form notation:

I10 =
1

2�102

Z
d10x

p
�Ge��

h
RG + (@M�)

2
i

+
1

4�102

Z h
F2 ^ �F2 + e��H3 ^ �H3 + J4 ^ �J4 �K4 ^K4 ^B2

i
; (A.1)

where the ten-dimensional bosonic �elds are the metric G, dilaton � and the 1-, 2- and

3-form �elds A1, B2 and C3. Eleven-dimensionalK4 quantization, (3.5), as well as the usual

Kaluza-Klein condition for F2, give rise to the ten-dimensional conditions

Z
K4 =

4�2nR

T2Z
H3 =

2�n

T2Z
F2 = 2�nR : (A.2)

Following the decomposition of the �elds in section 5, we write

A1(X) =
R

2
A1(x)

B2(X) = B2(x) +
2�

T2

X
bI(x)!I2(y)

C3(X) =
R

2
C3(x) +

�R

T2

X
CI
1(x)!

I
2(y) ; (A.3)

in which case the four-form J4 is given by

J4(X) =
R

2
[K4(x) +A1(x)H3(x)] +

�R

T2

X
[KI

2(x) +A1(x)db
I(x)]!I2(y) : (A.4)

The constants are chosen so the six-dimensional U(1) �elds will be coupled to even charges

Z
F2 2 4� IZ : (A.5)
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For K3, with Betti numbers b0 = 1, b1 = 0, b+2 = 3 and b�2 = 19, we may choose an

integral basis of harmonic two-forms, !I2 with intersection matrix

dIJ =
Z
K3
!I2 ^ !J2 : (A.6)

Since taking a Hodge dual of !I2 on K3 gives another harmonic two-form, we may expand

the dual in terms of the original basis

�̂!I2 = !J2H
J
I ; (A.7)

where we use �̂ to denote Hodge duals on K3. In this case, we �nd

Z
K3
!I2 ^ �̂!J2 = dIKH

K
J : (A.8)

The matrix HI
J depends on the metric on K3, i.e. the b+2 � b�2 = 57 K3 moduli. Because of

the fact that �̂�̂ = 1, HI
J satis�es the properties [69]

HI
JH

J
K = �IK

dIJH
J
K = dKJH

J
I ; (A.9)

so that

HJ
IdJKH

K
L = dIL (A.10)

and hence is an element of SO(3; 19)=SO(3) � SO(19).
Using these properties of K3, we may compactify the second line of (A.1) to obtain

I6 =
1

2�62

Z �
1
2
e��H3 ^ �H3 +

1
2
e��e�dbI ^ �dbJdIKHK

J

+
~�0

4

�
e��F2 ^ �F2 + e��J4 ^ �J4 + J I2 ^ �JJ2 dIKHK

J

�KI
2 ^KJ

2 ^B2 dIJ � 2K4 ^KI
2b

JdIJ
��
: (A.11)

The six-dimensional dilaton is given by � = � + � where � is the ten-dimensional dilaton

and � is the breathing mode of K3:

e�� =
1

V

Z
K3
�̂1 : (A.12)

In order to make contact with the compacti�ed heterotic string, we wish to dualize the four-

form J4. Note, however, that since d(e
���̂J4) = J I2db

JdIJ , the proper expression for dualizing
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J4 is given by (6.3). Performing such a step and rewriting J I2 as well, we �nally arrive at

I6 =
1

2�62

Z �
1
2
e��H3 ^ �H3 +

1
2
e��e�dbI ^ �dbJdIKHK

J

+
~�0

4

�
e��F2 ^ �F2 + (K̂I

2 + F2b
I) ^ �(K̂J

2 + F2b
J)dIKH

K
J

+e�(Ĵ2 + K̂I
2b

JdIJ +
1
2
F2b

IbJdIJ) ^ �(Ĵ2 + K̂K
2 b

LdKL +
1
2
F2b

KbLdKL)

�(K̂I
2 ^ K̂J

2 dIJ � 2F2 ^ Ĵ2) ^ B2

��
: (A.13)

This expression can be brought into a SO(4; 20)=SO(4) � SO(20) invariant form. As in

section 6, we group the U(1) �eld strengths into the 24 component vector

F2 = [F2; Ĵ2; K̂
I
2 ]
T ; (A.14)

which allows us to rewrite the bosonic lagrangian as

I6 =
1

2�62

Z
d 6x

p
�Ge��

�
R + (@��)

2 � 1

2 � 3!H
2
��� +

1

8
Tr[@�ML@�ML]

�

+
1

2�62

Z
~�0

4

�
F2

T (LML) ^ �F2 �F2
T ^ LF2 ^B2

�
: (A.15)

The matrix L is given by

L =

"��1 0

0 dIJ

#
; (A.16)

where �1 =
�
0 1

1 0

�
. The matrixM contains the 1 + 57 + 22 = 80 moduli of K3 with torsion,

broken up in terms of e�, HI
J and bI respectively:

M =

2
664

e� �1
2
e�(bIbJdIJ ) e�bI

�1
2
e�(bIbJdIJ ) e�� + bIbJdIKH

K
J +

1
4
e�(bIbJdIJ )

2 �bKHI
K � 1

2
e�bI(bKbLdKL)

e�bJ �bKHJ
K � 1

2
e�bJ(bKbLdKL) HI

Kd
JK + e�bIbJ

3
775 :

(A.17)

In the last entry of M , dIJ is the inverse of dIJ . We verify that

MT =M; MLMT = L�1 : (A.18)

This agrees with the bosonic action given in [81].
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Figure 1: Compacti�cations relating (a) the Type IIA �vebrane to the heterotic string

and (b) the heterotic �vebrane to the Type IIA string. Worldvolume supersymmetries are

indicated.
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Figure 2: Compacti�cations incorporating worldvolume reductions.
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Figure 3: A superposition of Figs. 1 (a) and (b), illustrating strong/weak coupling dualities
(denoted by the dotted lines).
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