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The collective yrast band of the nucleus 48Cr is studied

using the spherical shell model and the HFB method. Both
approaches produce basically the same axially symmetric in-

trinsic state up to the - accurately reproduced - observed

backbending. Agreement between both calculations extends
to most observables. The only signi�cant discrepancy comes

from the static moments of inertia and can be attributed to

the need of a more re�ned treatment of pairing correlations
in the HFB calculation.
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The study of the collective behavior of deformed nuclei

is a classical problem in Nuclear Physics. Traditionally,

mean �eld descriptions in the intrinsic frame have been

favoured, as they take naturally advantage of the spon-

taneous breakdown of rotational symmetry. The price to

pay for the gain in physical insight is the loss of angular

momentum as good quantum number.

In the laboratory frame description, as provided by

spherical shell model calculations (SM), angular momen-

tum is conserved but the physical insight, associated to

the existence of an intrinsic state is lost, except in the

very rare cases where Elliott's SU3 symmetry [1] oper-

ates. Furthermore, the approach su�ers form numeri-

cal limitations. Hence, so far, it had been implemented

mostly in regions such as the p and sd shells where the

number of active particles is too small for collective fea-

tures to become dominant. Nonetheless, there are a few

nuclei - such as 20Ne and 24Mg - that are well repro-

duced by the SM calculations and do exhibit collective

properties, whose origin can be traced to the approximate

validity of the SU3 symmetry, for which the relationship

between the intrinsic and laboratory frame descriptions

is well understood.

In regions where the SU3 symmetry is poorly re-

spected, as in in the pf shell [2], the study of poten-

tially good \rotors" was impaired by lack of experi-

mental evidence, and by the di�culty of an exact SM

treatment beyond 5 active particles. The situation has

changed through recent measurements [3] demonstrating

that 48Cr is a good rotor up to spin J = 10 where the

yrast band bends back. This behavior is reminiscent of

the situation in much heavier deformed nuclei. Simul-

taneously, full pf calculations [4] have become available,

that reproduce in detail the observed properties of A=48

isobars, and in particular those of 48Cr.

Therefore, this nucleus provides an unique testing

ground to compare the SM (laboratory frame) descrip-

tion of permanent deformation with Cranked Hartree-

Fock- Bogoliubov (CHFB) calculations [5] with the �nite

range density dependent Gogny force [6]; which repre-

sent the (self-consistent) state of the art formulation of

the intrinsic frame approach.

From the comparison it should be possible to obtain a

better understanding of the intrinsic structure of the SM

solutions, which in turn, may indicate in what sense the

CHFB description falls short of an exact one.

Computational procedures. In the Spherical Shell

Model (SM) 48Cr is described in a 0�h! space, i.e. eight

particles are allowed to occupy all the states available

in the pf shell (1963461 states). The e�ective interac-

tion is given by a minimally modi�ed version of the Kuo-

Brown's G-matrix [7] denoted KB3 in [4]. The single par-

ticle energies are taken from the 41Ca experimental spec-

trum. The e�ect of core polarization on the quadrupole

properties is taken into account by the use of e�ective

charges q� = 1:5, q� = 0:5. The Hamiltonian is treated

by the Lanczos method and diagonalized by the code

ANTOINE [8].

In the intrinsic frame calculations we have used the Self

Consistent Cranking Hartree- Fock- Bogoliubov method

( CHFB) with the density dependent Gogny force. The

CHFB equations determining the mean �eld intrinsic

state j�!i are obtained by imposing the condition that

the mean value of the Routhian be stationary against

small variations of the intrinsic state, i.e.,

�h�!jĤ � !Ĵx � �N N̂ � �ZẐ j�!i = 0: (1)

The Lagrange multipliers !, �N and �Z are determined

by the usual angular momentum and particle number

constraints h�!jĴxj�!i =
p
I(I + 1), h�!jN̂ j�!i = N

and h�!jẐj�!i = Z.

The HFB wave functions have been expanded in a tri-

axial harmonic oscillator basis jnxnynzi with di�erent

oscillator lengths. Ten oscillator shells are included in

order to ensure the convergence of the mean �eld re-

sults. The parameters of the Gogny force used in this

calculation were adjusted more than ten years ago to re-

produce ground state bulk properties of nuclei (DS1 set

[9]). Without further changes, this force has proven ca-

pable of describing successfully many phenomena, and in

particular high spin behaviour [5].

In order to understand more qualitatively the physics

involved and to make contact with the Shell Model cal-
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culations we have computed the following quantities in a

spherical representation of the basis:

The \fractional shell occupancy"

�(n; l; j) =
1

2j + 1

m=jX

m=�j

h�!jc
+
nljmcnljmj�!i; (2)

the \shell contribution to hJxi"

jx(n; l; j) =X

m;m0

(Jx)(nljm);(nljm0)h�!jc
+
nljmcnljm0 j�!i (3)

and the \shell contribution to the quadrupole moment"

Q20(n; l; j;n
0; l0; j0) =X

m;m0

(q20)(nljm);(n0l0j0m0)h�!jc
+
nljmcn0l0j0m0 j�!i: (4)

In the above formulae j�!i is the intrinsic CHFB wave

function expressed in the triaxial basis and c+nljm are the

operators creating a particle in the harmonic oscillator

orbit jnljmi with oscillator length b0 = (bxbybz)
1=3. In

order to obtain these quantities the triaxial basis has been

expanded in a spherical one following a procedure similar

to that of Ref. [10]. As the triaxial basis has, in gen-

eral, di�erent oscillator lengths the expansion contains

in principle an in�nite number of terms. In our case, an

e�cient truncation is obtained by allowing the spherical

basis to contain four major shells beyond those in the tri-

axial basis. The convergence of the truncation has been

checked by comparing
P

nlj(2j + 1)�(nlj),
P

nlj jx(nlj)

and
P

nlj;n0l0j0 q20(nlj;n
0l0j0) with hN i, hJxi and hQ20i

respectively. The di�erences are typically of the order of

0:01%.

Energetics.In Fig. 1 the SM, CHFB and experimen-

tal gamma ray energies E(J) = E(J) � E(J � 2) are

plotted as a function of the angular momentum J . The

SM results nicely reproduce the experiment including the

backbending seen at J = 10. On the other hand, the

mean �eld values of E follow the same trend as the ex-

perimental and SM ones but they are shifted downwards

by � 0:5 MeV. This means that the mean �eld dynamic

moment of inertia (J (2)(J) = 4=�E) is similar to the

SM and experimental ones although the static moment

of inertia (J (1)(J) = (2J � 1)=E ) is on the average a

factor 1.5 bigger. (The origin of this discrepancy will be

explained later.)

Quadrupole properties. The striking similarity be-

tween the SM and CHFB results up to the backbend can

be gathered from the lower part of �g. 2, in which the

intrinsic quadrupole moment is plotted along the yrast

band. The SM values are extracted from the BE2 val-

ues, assuming K = 0. The existence of an intrinsic state

common to the members of the band can be guessed di-

rectly by calculating the contribution of a given con�gu-

ration to each SM wave function, (i.e., by summing the

square of the amplitudes of all basic states having the

same number of particles in each subshell). These con-

tributions are practically identical in all the eigenstates

up to J = 10. At higher spins rapid changes occur, and

the con�guration in which all the particles are in the f7=2
orbit becomes increasingly dominant. It is clear that the

intrinsic state is becoming J-dependent at the backbend-

ing region, and the discrepancies in �g. 2 beyond J = 10,

suggest that it is no longer possible to extract an intrinsic

Q0 from the SM results assuming a K = 0 band. In the

upper part of the �gure an alternative is proposed, by

comparing the B(E2) values, obtained directly in the SM

case with those derived from CHFB by applying the gen-

eralization of the rotational model prescription to small

triaxialities (see [5]). The agreement is again nearly per-

fect up to J = 10 but then deteriorates, although not as

much as in the lower �gure.

In assessing the signi�cance of these results we should

keep in mind that they are in both cases (rotational)

model dependent. They indicate that the model is as

good as exact up to the backbend, and then breaks down

- at least in the standard implementation proposed here.

They certainly do not indicate that the SM and CHFB

descriptions are becoming di�erent. On the contrary, we

shall �nd evidence of their closeness.

Orbital occupancies. In �gure 3 are have plotted

the fractional occupancies of the spherical orbits in the

CHFB solution (eq. (2 )) (upper part) and in the SM

one (lower part). In all cases they are quite constant up

to the backbending where the f7=2 orbit becomes rapidly

the only relevant one.

However : the f7=2 occupancy is always the largest by

far , and in the CHFB case the contribution jx(f7=2) to

hJxi in eq.(3) is always greater than 99 %. It means

that the f7=2 orbit plays a major part in the two yrast

regimes: below backbend as the major contributor to

the deformed wavefunctions; and above through the f87=2
con�guration that becomes increasingly dominant. This

picture is consistent with the usual idea that the back-

bend is associated with alignment of f7=2 particles, which

are also massively present in the collective regime at low

spin.

Magnetic properties. In Figure 4 we present the

CHFB and SM results for the gyromagnetic factor g. In

both cases and up to the backbending zone they are close

to the rotational limit gR = Z=A = 0:50. For a pure f7=2
con�guration the value of g is also constant and equal to

0.55 explaining the slight increase in g as we enter the

backbending region where these con�gurations become

dominant.

Pairing properties. From all we have said, it follows

that the SM and CHFB results are basically the same,

except for a di�erence in the static moment of inertia .

Its origin can be understood by redoing the SM calcu-

lations reducing the JT = 01 two-body matrix elements

involving orbits r and t according to
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W 01
rrtt �!W 01

rrtt + 0:165
p
(jr + 1=2)(jt + 1=2); (5)

which amounts to subtracting a standard pairing term

(jr is the angular momentum of orbit r). The resulting

E pattern for an exact calculation with the modi�ed

interaction is shown as SM(E) in �g. 5. To gain further

insight we have also calculated in SM(P) the energies by

taking expectation values of the modi�ed interaction (5)

using the SM wavefunctions obtained with KB3. (The

coe�cient 0.165 was chosen - somewhat arbitrarily - to

make the �rst point coincide for CHFB and SM(P)). The

conclusion is that:

Although the energetics of the yrast band are strongly

a�ected by the pairing modi�cations, the other proper-

ties are not, since the wavefunctions change little. (The

overlaps < SM (E); J j SM; J > exceed 0.97 in all cases).

The large static moments of inertia obtained in the

CHFB calculations should be attributed to an inadequate

treatment of pairing e�ects in a weak correlation regime:

Exploratory tests using the Lipkin-Nogami approach on

top of the CHFB scheme suggest that it is not the Gogny

force that is responsible for the discrepancies but the lim-

itations of the mean �eld treatment.
48Cr as axial rotor It has been recently argued [12]

that the building blocks of wavefunctions describing good

rotors are constructed by allowing particles to move in

spaces de�ned by �j = 2 sequences of major shell orbits,

starting on the one with the largest j. For these blocks,

an approximate form of SU3 symmetry is valid (quasi-

SU3). One of the predictions of this model is that 48Cr is

an axially symmetric rotor, contrary to what happens to

its counterpart in the sd shell, 24Mg, that obeys Elliott's

SU3 and is triaxial. Experimentally no second 2+ state

is found in 48Cr at low excitation energy, while in 24Mg

the second 2+ is degenerate with the yrast 4+. In �gure

6 we present the values of the deformation parameters �

and  coming from the CHFB calculation.

At �rst, � stays constant at � � 0:3, while  � 0

which means that 48Cr behaves indeed as an axial rotor

up to the backbend. Above it, as � decreases fast and the

system moves to a spherical regime making it di�cult to

interpret in a simple way the  behaviour.

E�ective charges. Finally, we can separate from the

total quadrupole moment Q20 in CHFB, the valence con-

tribution Q20pf(HO) by summing q20(n; l; j;n
0; l0; j0) in

eq. (4) over the 0f and 1p orbits, i.e., by identifying the

valence orbits with harmonic oscillator ones. The ratio

Q20=Q20pf(HO) = 1:99(J = 0) � � �1:83(J = 14)

is quite consistent with the isoscalar e�ective charge used

in the SM calculations q� + q� = 2.

Alternatively, we can de�ne Q20pf(HF) by summing

over all the values of l, j and l0, j0 corresponding to the

pf shell, which amounts to use spherical HF orbits. This

choice naturally reduces the e�ective charges but they

remain quite constant since

Q20=Q20pf(HF) = 1:70(J = 0) � � �1:63(J = 14):

Conclusions. The quantitative equivalence of the SM

and CHFB descriptions has two direct and welcome con-

sequences:

� It suggests that the Gogny force must be reasonably

close to the realistic ones, consistent with NN data

and known to yield high quality spectroscopy once

their bad monopole properties are corrected.

� It con�rms the validity of the SM choice of a model

space restricted to orbits in the vicinity of the Fermi

level.

Clearly there is much to be gained by combining the sim-

plicity and rigour of CHFB with the SM precision and

generality.
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FIG. 1. Yrast energies E = E(J)� E(J � 2).

FIG. 2. Comparing B(E2) and Q0 trends.

FIG. 3. Orbital occupancies.

FIG. 4. Gyromagnetic ratios

FIG. 5. Inuence of the pairing strength on the moment of

inertia. See text.

FIG. 6. The CHFB deformation parameters.
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