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Symmetry analysis of the hadronic tensor for the semi-inclusive

pseudoscalar meson leptoproduction from an unpolarized nucleon target
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By examining the symmetry constraints on the semi-inclusive pseudoscalar par-

ticle production in unpolarized inelastic lepton-hadron scattering, we present a com-

plete, exact Lorentz decomposition for the corresponding hadronic tensor. As a

result, we �nd that it contains �ve independent terms, instead of the four as have

been suggested before. The newly identi�ed one is odd under the naive time rever-

sal transformation, and the corresponding structure function is directly related to

the single spin asymmetry in the semi-inclusive pseudoscalar meson production by a

polarized lepton beam o� an unpolarized target.
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In the particle physics, the symmetry analysis plays a very important role, since it can forbid or

allow for the existence of physical quantities before we set about the details of dynamics. Although

the principles and methods involved in the symmetry analysis are usually not complicated, in some

circumstances it is a highly nontrivial matter to arrive at a complete result. As the time reversal

(T ) invariance of interactions is involved, this is even the case. In fact, most mistakes associated

with the symmetry analysis can be traced to the confusion the so-called naive T transformation

with the full T transformation. In other words, the constraints due to time reversal invariance are

often not properly considered.

In this paper, we clarify an unsatisfying fact [1] [2] existing in the literature, i.e., the early

suggested Lorentz decomposition of the hadronic tensor for the spinless particle leptoproduction

from unpolarized nucleon target is incomplete. In principle, one may make e�orts to attend the

more general case in which the target nucleon is polarized and the spin state of the detected

particle is speci�ed in the case it has spin. However, such an analysis will be tedious and the

phenomenological implications of the corresponding structure functions are not easy to exemplify.

Therefore, we choose to study the simplest case in which a pseudoscalar meson is semi-inclusively

detected in the deeply inelastic lepton scattering o� an unpolarized target. Obviously, the result

can also apply to the semi-inclusive baryon production if one does not measure the baryon spin.

Nevertheless, we assume the lepton beam is polarized so that the phenomenological consequence

of the newly identi�ed structure function can be conveniently demonstrated.

To be speci�c, we consider

l(Pl; Sl) + p(Pp)! l(P 0
l ) + �(P�) +X; (1)

where the particle momenta in the brackets is self-explanatory. We normalize the spin vector in

such a way that Sl � Sl = �M2

l and Sl � Pl = 0 for a pure lepton state.

In the one-photon exchange approximation, the proton structure is probed by a space-like

photon with momentum q = Pl �P 0
l . The invariant cross section for the process considered can be

written as a contraction of the leptonic and hadronic tensors:
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lE�

d�(Sl)
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3P�
=

�
2

16�3MpElQ
4
L��(Pl; Sl; q)W��(q; Pp; P�); (2)

where Mp is the target mass, El the beam energy in the laboratory frame, and Q =
p�q2.

Conventionally, the leptonic and hadronic tensors are de�ned as

L��(Pl; Sl; q) =
1

2
Tr[/P 0

l �/Pl�
1 + 5/Sl

2
] =

q
2

2
(g�� �

q�q�

q2
) + 2(Pl� �

q�

2
)(Pl� �

q�

2
) + i"����q

�
S
�
l ;

(3)

and

W��(q; Pp; P�) =
1

4�

X
X

Z
d
4
ye

iq�y
< Ppjj�(0)j�(P�); X >out out< �(P�); X jj�(y)jPp >; (4)

respectively. The electromagnetic current is de�ned to be j� =
P
f

ef
� f� f , with f being the avor

index and ef being the quark charge in unit of the electron charge. In de�ning W��(q; Pp; P�), the

out-state property of the �nal states has been labelled explicitly.

The hadronic tensor contains all the information about the nucleon structure and pion pro-

duction. Because the fundamental vertex of the deeply inelastic scattering in the one-photon

approximation is electromagnetic, W��(q; Pp; P�) should be subjected to the hermiticity, current

conservation, parity conservation and time reversal invariance. To write out the general expression

of W��(q; Pp; P�) in terms of structure functions, one ought to exhaust all the possible candidate

terms by imposing all the symmetry constrains that the electromagnetic interaction satis�es.

Concerning W��(q; Pp; P�), its Lorentz decomposition has ever been suggested by Mulders and

collaborators [1] [2]. Here we simply recapitulate their result in our language. Choosing ẑ axis

to be along the direction of the virtual photon momentum, one can de�ne a covariant transverse

vector P�?, which is

P
�

�? = (0; P�x; P�y; 0) (5)

in the target rest frame. Then, the Mulders decomposition for W��(q; Pp; P�) reads

W
��(q; Pp; P�) =W1(�g��q2 + q

�
q
�) +W2(P

�
p �

Pp � q
q2

q
�)(P �

p �
Pp � q
q2

q
�)

+W3

�
(P�

p �
Pp � q
q2

q
�)P �

�? + P
�
�?(P

�
p �

Pp � q
q2

q
�)

�
+W4P

�

�?P
�
�?; (6)
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whereW 's are called structure functions, dependent on q2, Pp �q, P� �q and Pp �P�. Our �ndings to

be presented are that this Lorentz expansion is incomplete, and in a more complete decomposition

there exists another term, which is imaginary, antisymmetric under � $ �, and odd under the

naive T transformation.

Let us examine in turn the constraints that all the electromagnetic symmetries impose on the

hadronic tensor. First, the electromagnetic interaction is gauge invariant, as is reected by the

current conservation condition:

q�W
��(q; Pp; P�) = q�W

��(q; Pp; P�) = 0: (7)

Second, the hermiticity jy� = j� of the electromagnetic current leads to

[W��(q; Pp; P�)]
� = W

��(q; Pp; P�): (8)

Thirdly, the electromagnetic interaction is parity conserved. For a generic Lorentz coordinate

vector x�, we follow Itzykson and Zuber [3] and de�ne ~x� = x�. Then, under a parity (P)

transformation, the momentum P
� and spin vector S� behave in the fashion

P
� P! ~P�

; S
� P! � ~S�

: (9)

On the other hand, the electromagnetic current satis�es

j
�(x)

P! j�(~x): (10)

As a result, the parity conservation of the electromagnetic interaction yields

W
��(q; Pp; P�) = W��(~q; ~Pp; ~P�): (11)

Fourthly, the fundamental electromagnetic vertex is T invariant. Under a T transformation,

one has

P
� T! ~P�

; S
� T! ~S�

: (12)

and
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j
�(x)

T! j�(�~x): (13)

In addition, the complex conjugation should be operated and an in state changed into the corre-

sponding out state, or vice versa. In general, an in state is related to its corresponding out state

by S matrix (operator) [4]:

j >in= Sj >out; (14)

where S can be written as

S = 1 + iT (15)

with T being the transition matrix (operator). Unless the state is composed of an individual

particle or a set of non-interactive particles, the in state di�ers from its corresponding out state.

Experiences tell us that there exist violent multi-interactions in the hadron system, so we cannot a

priori identify the semi-inclusive hadron out state with its corresponding in state. As a consequence,

T invariance can only tell us

W
��(q; Pp; P�) =

"
1

4�

X
X

Z
d
4
ye

iq�y
< ~Ppjj�(0)j�(P�); X >in in< �(P�); X jj�(y)j ~Pp >

#�
: (16)

If the �nal-state interactions are neglected, the in state reduces to its corresponding out state.

The resulting simpli�ed time reversal transformation can be called the naive time reversal trans-

formation, under which one has

W
��(q; Pp; P�) = [W��(~q; ~Pp; ~P�)]

�
: (17)

Examining Eqs. (11) and (17), one can see that it is more convenient to use the complex PT

transformation instead of the individual discrete transformations P and T . This is even the case

in discussing the single spin asymmetry, which is odd under the naive PT transformation. In our

case, a PT transformation gives rise to

W
��(q; Pp; P�) =

"
1

4�

X
X

Z
d
4
ye

iq�y
< P jj�(0)j�(P�); X >in in< �(P�); X jj�(y)jP >

#�
: (18)
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Substituting Eqs. (14) and (15) into (18), one has

W
��(q; Pp; P�) = [W��(q; Pp; P�)]

� + T
��(q; Pp; P�); (19)

where T��(q; Pp; P�) incorporates the di�erence between the in and out states. Equation (19)

implies that W��(q; Pp; P�) can be decomposed into two parts, one even and another odd under

the naive PT transformation.

We note that the metric tensor g�� gets into work in our decomposition. As for the full

antisymmetric rank-four tensor "���� , it is not involved because we are dealing with the unpolarized

target. Keep in mind thatW��(q; Pp; P�) satis�es the current conservation condition, which greatly

constrains the forms in which momenta and spin vectors contribute. Regarding the metric tensor,

its only independent, gauge invariant combination is g��q
2�q�q� . In our case, we can construct two

independent momentum combinations P�
p �q�(Pp �q)=q2 and P�

� �q�(P� �q)=q2, whose contractions

with the photon momentum q
� vanish. Another combination P�

p �P�
� (Pp�q)=(P��q) can be expressed

in terms of P�
p � q�(Pp � q)=q2 and P�

� � q�(P� � q)=q2. Exhausting all the possible candidate terms,

we attain

W
��(q; Pp; P�) = F1(g

��
q
2 � q�q�) + F2(P

�
p �

Pp � q
q2

q
�)(P �

p �
Pp � q
q2

q
�)

+ F3(P
�
� �

P� � q
q2

q
�)(P �

� �
P� � q
q2

q
�)

+ F4

�
(P�

p �
Pp � q
q2

q
�)(P �

� �
P� � q
q2

q
�) + (P�

� �
P� � q
q2

q
�)(P �

p �
Pp � q
q2

q
�)

�

+ iF̂

�
(P�

p �
Pp � q
q2

q
�)(P �

� �
P� � q
q2

q
�)� (P�

� �
P� � q
q2

q
�)(P �

p �
Pp � q
q2

q
�)

�
: (20)

If the Mulders parameterization is used, one has equivalently

W
��(q; Pp; P�) =W1(�g��q2 + q

�
q
�) +W2(P

�
p �

Pp � q
q2

q
�)(P �

p �
Pp � q
q2

q
�)

+W3

�
(P�

p �
Pp � q
q2

q
�)P �

�? + P
�
�?(P

�
p �

Pp � q
q2

q
�)

�
+W4P

�
�?P

�
�?

+ iW
�
(P�

p �
Pp � q
q2

q
�)P �

�? � P �
�?(P

�
p �

Pp � q
q2

q
�)

�
: (21)

The newly identi�ed term, associated with F̂ in Eq. (20) or with Ŵ in (21), is imaginary, anti-

symmetric under � $ �, and odd under the naive T transformation. Physically, it incorporates
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the distinction between the inclusively detected hadron state and its corresponding in state. Since

such a di�erence is caused by the nontrivial �nal-state interaction described by the transition op-

erator T [see Eqs. (14){(16), (18) and (19)], it can be said that the new term reects the e�ects of

�nal-state multi-interactions.

To exemplify the phenomenological consequences, we call for the polarized incident lepton

beam, as has been speci�ed in our kinematics. Obviously, when the hadronic and leptonic tensors

contact, their imaginary parts co-work to make a contribution to the cross section. Using our

parameterization for W��(q; Pp; P�), we have

E
0
lE�

d�(Sl)

d3P 0
l d

3P�
=

�
2

16�3MpElQ
4

�
Q

4
F1 +M

2

p (2ElE
0
l �

Q
2

2
)F2 +

�
2(Pl � P�)(P 0

l � P�)�
1

2
M

2

�Q
2

�
F3

+ Mp(2E
0
lPl � P� + 2ElP

0
l � P� � E

0
�Q

2)F4 + 2MpSl � q � P�F̂
o
: (22)

Consequently, structure function F̂ can be related to the correlation among the lepton polariza-

tion vector, the momentum of the virtual photon and that of the semi-inclusively detected pion.

Experimentally, of more interest are the single spin asymmetries. Considering that large spin asym-

metries of the order of ten or more percent have been observed in inclusive pion production [5] [6]

from hadron-nucleus �xed target experiments, we discuss briey in the following the feasibilities

to measure the longitudinal and transverse spin asymmetries in the process we are considering.

We �rst discuss the case in which the lepton beam is longitudinally polarized. Neglecting the

lepton mass e�ects, we may replace Sl with HlPl, where Hl is the lepton helicity. The lepton

scattering plane is symmetric under the rotation about the beam axis, so there are only �ve

independent degrees of freedom. We work in the target rest frame, with the ẑ axis along the beam

direction and the x̂ axis in the lepton scattering plane. Call the outgoing angle of the scattered

lepton �0l . When the detected pion falls into the solid angle d
� = d cos ��d��, the di�erential cross

section reads

E�

d�(Hl)

d3P�dE
0
ld cos�

0
l

=
�
2

8�2MpQ
4

E
0
l

El

�
Q

4
F1 +M

2

p (2ElE
0
l �

Q
2

2
)F2 +

�
2(Pl � P�)(P 0

l � P�)�
1

2
M

2

�Q
2

�
F3

+ Mp(2E
0
lPl � P� + 2ElP

0
l � P� � E

0
�Q

2)F4 � 2HlMpElE
0
l jP�j sin �0l sin �� cos��F̂

o
: (23)

The longitudinal spin asymmetry for the inclusive pion production is de�ned as
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AL =

Z
E�

d�(+)

d3P�dE
0
ld cos �

0
l

dE
0
ld cos�

0
l �

Z
E�

d�(�)
d3P�dE

0
ld cos�

0
l

dE
0
ld cos �

0
lZ

E�

d�(+)

d3P�dE
0
ld cos �

0
l

dE
0
ld cos�

0
l +

Z
E�

d�(�)
d3P�dE

0
ld cos�

0
l

dE
0
ld cos �

0
l

; (24)

which can be cast into

AL = �2ElMpjP� j sin �� cos��
Z
dE

0
d cos�0l F̂

E
02
l

Q4
sin �0l �

�Z
dE

0
ld cos �

0
l

E
0
l

Q4

�
Q

4
F1 +M

2

p (2ElE
0
l �

Q
2

2
)F2

+

�
2(Pl � P�)(P 0

l � P�)�
1

2
M

2

�Q
2

�
F3 +Mp(2E

0
lPl � P� + 2ElP

0
l � P� �E0

�Q
2)F4

���1

: (25)

Notice that the integrations over E0
l and sin �0l cannot be completed at present unless we have

known how structure functions depend on them.

Now we attend the transverse polarization case of the incident lepton beam, in which there are

six independent degrees of freedom. Again, we work in the target rest frame, letting the ẑ axis

be along the beam direction but specifying the x̂ axis as the lepton polarization direction. Then,

the spin vector is S�
l";# = �Ml(0; 1; 0; 0) for the lepton polarized parallel and antiparallel to the

x̂ axis, respectively. Provided the scattered lepton and the detected pion y into the solid angles

d
0
l = d cos �0ld�

0
l and d
� = d cos ��d�� respectively, the cross section can be written as

E�

d�(Sl";#)

d3P�dE
0
ld


0
l

=
�
2

16�3MpQ
4

E
0
l

El

�
Q

4
F1 +M

2

p (2ElE
0
l �

Q
2

2
)F2

+

�
2(Pl � P�)(P 0

l � P�)�
1

2
M

2

�Q
2

�
F3 +Mp(2E

0
lPl � P� + 2ElP

0
l � P� �E0

�Q
2)F4

�2MlMpjP�j [El sin �� cos�� +E
0
l(sin �

0
l sin�

0
l cos �� � cos �0l sin �� cos��)] F̂

o
: (26)

The transverse spin asymmetry is de�ned as

AT =

Z
E�

d�(Sl")

d3P�dE
0
ld cos�

0
l

dE
0
ld


0
l �

Z
E�

d�(Sl#)

d3P�dE
0
ld cos �

0
l

dE
0
ld


0
lZ

E�

d�(Sl")

d3P�dE
0
ld cos�

0
l

dE
0
ld cos


0
l +

Z
E�

d�(Sl#)

d3P�dE
0
ld cos �

0
l

dE
0
ld cos


0
l

: (27)

From Eq. (26), one has

AT = �2MlMpjP�j
Z
dE

0
ld cos


0
l

E
0
l

Q4

�
El sin �� cos�� +E

0
l(sin �

0
l sin�

0
l cos �� � cos �0l sin �� cos��)

�
F̂

�
�Z

dE
0
ld cos


0
l

E
0
l

Q4

�
Q

4
F1 +M

2

p (2ElE
0
l �

Q
2

2
)F2 +

�
2(Pl � P�)(P 0

l � P�)�
1

2
M

2

�Q
2

�
F3

+ Mp(2E
0
lPl � P� + 2ElP

0
l � P� � E

0
�Q

2)F4

�	�1

: (28)

8



Comparing Eqs. (25) and (28), we observe that the single transverse spin asymmetry is O(Ml=El)

suppressed relative to the longitudinal spin asymmetry. So measuring the transverse spin asymme-

try is infeasible in practice. At moderate energies, however, we can anticipate that the longitudinal

spin asymmetry is be measured.

In summary, we examined the hadronic tensor for the semi-inclusive pion leptoproduction in

the case of unpolarized target. It is found that a term has been missed in the early suggested

Lorentz decomposition of the hadronic tensor. Such an incompleteness is simply due to the fact

the constraint of time reversal invariance on the inclusive one-particle production is not properly

considered. By carefully examining the contents of time reversal transformation, we suggest a

complete Lorentz decomposition for the hadronic tensor considered, which contain �ve independent

terms instead of the four in the literature. The newly identi�ed term is imaginary, antisymmetric

under � $ �, and odd under the naive time reversal transformation. Moreover, the possible

phenomenology pertinent to the new structure function is discussed.
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