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ABSTRACT

Motivated by recent developments in in
ationary cosmology indicating the possibility
of obtaining genuinely open universes in some models, we compare the predictions of
Cold Dark Matter (CDM) models in open universes with a variety of observational
information. We allow arbitrary variation of the density parameter 
0 and the Hubble
parameter h, and take full account of the baryon content assuming standard nucle-
osynthesis. We normalize the power spectrum using the recent analysis of the two year
COBE DMR data by G�orski et al. (1995). We then consider a variety of observations,
namely the galaxy correlation function, bulk 
ows, the abundance of galaxy clusters
and the abundance of damped Lyman alpha systems. For the last two of these, we
provide a new treatment appropriate to open universes. We �nd that if one allows an
arbitrary h, then a good �t is available for any 
0 greater than 0.35, though for 
0

close to one the required h is alarmingly low. Models with 
0 < 0:35 seem unable to �t
observations while keeping the universe over 10 Gyrs old; this limit is somewhat higher
than that appearing in the literature thus far. If one assumes a value of h > 0:6, as
favoured by recent measurements, concordance with the data is only possible for the
narrow range 0:35 < 
0 < 0:55.

Key words: cosmology: theory { dark matter.

1 INTRODUCTION

Even before the announcement of the detection of mi-

crowave background anisotropies by the DMR experiment

on the COBE satellite (Smoot et al. 1992), it was realized

that structure formation models based on cold dark mat-

ter (CDM) and a 
at spectrum of primordial perturbations

fared considerably better against the data if the matter den-

sity was reduced by a factor of around three. Most stud-

ies of this possibility invoked a cosmological constant to

restore spatial 
atness (Efstathiou, Sutherland & Maddox

1990; Kofman, Gnedin & Bahcall 1993), with little atten-

tion being directed to the possibility that the cosmological

constant may be redundant and the low density model im-

plemented in a genuinely open universe. This produces the

same shape of perturbation spectrum on scales well below

the curvature radius, but a di�erent normalization and red-

shift dependence.

The reluctance to study such models (though general

arguments in favour of an open universe were developed,

eg Coles & Ellis 1994) arose from a widespread belief that

in
ation, the most plausible candidate for generating the

initial density perturbations, could give rise to an open uni-

verse only in exceptionally �ne tuned circumstances. How-

ever, open universe in
ation models have received renewed

interest recently, and in particular attention has been drawn

(Sasaki et al. 1993a, 1993b; Tanaka & Sasaki 1994; Bucher,

Goldhaber & Turok 1994; Yamamoto, Sasaki & Tanaka

1994; Sasaki, Tanaka & Yamamoto 1994; Yamamoto, Sasaki

& Tanaka 1995; Bucher & Turok 1995) to the bubble nucle-

ation model (Coleman & de Luccia 1980; Gott 1982; Guth &

Weinberg 1983; Gott & Statler 1984; Linde 1995; Amendola,

Baccigalupi & Occhionero 1995). In contrast with the situa-

tion for ordinary models of in
ation (Lyth & Stewart 1990a;

Ratra & Peebles 1994b), this model predicts the present

value of the density parameter in terms of the scalar �eld

potential, without any reference to initial conditions. The

price that one pays for this is a non-generic scalar �eld po-

tential, which will be even more di�cult than usual to realize

in the context of a sensible particle physics model.

In order to compare structure formation models based

on open universe in
ation models with observational data, it

is crucial to be able to normalize the amplitude of the power

spectrum to the COBE observations of cosmic microwave

background (cmb) 
uctuations (Bennett et al. 1994), which

are by far the most accurate available. Anisotropy calcula-

tions in an open universe present many technical di�cul-

ties and progress to the result has consequently been slow.

However, an accurate normalization is now available through

the work of G�orski et al. (1995, henceforth GRSB), super-

seding earlier versions by Ratra & Peebles (1994a) and by

Kamionkowski et al. (1994).
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The viability of the open CDM model has recently

been investigated by Ratra & Peebles (1994a). This pa-

per predated the improved normalizations of in
ationary

open models to COBE supplied �rst by Kamionkowski et

al. (1994) and then more accurately again by GRSB. Each

of those collaborations provided only a brief account of the

observational status against observations other than those

of the microwave background. It is our aim in this paper to

make a more extensive comparison of the model with obser-

vations.

2 THE OPEN UNIVERSE POWER

SPECTRUM

The model is de�ned by giving the spectrum P(k) of the
density contrast �. Our approach towards constraining the

model is to utilize linear perturbation theory, applied across

as wide a range of scales as possible. By considering the for-

mation of objects such as quasars and damped Lyman alpha

systems at moderate redshift, it is possible to impose con-

straints on the spectrum at scales down to one megaparsec

or less, while COBE probes scales of several thousands of

megaparsecs, up to and even above the curvature scale. Be-

tween these extremes, a variety of di�erent constraints can

be applied.

All of the observations except the cmb anisotropy probe

scales which are small compared with the Hubble distance,

so we can use the Newtonian description of density pertur-

bations to describe them. At any epoch well after matter

domination sets in, the power spectrum of the density con-

trast is

P(k) = �
2
HT

2
(k)

g(
)
g(
0)

�
k

aH

�4
: (1)

Here a is the scale factor of the universe, H = _a=a is the

Hubble parameter (dots signifying time derivatives), k is

the comoving wavenumber and we are de�ning P(k) as the
power per unit logarithmic interval of k. The transfer func-

tion T (k) speci�es the scale dependent e�ect of the evolution

of the density perturbation between horizon entry and mat-

ter domination, and is normalized to unity on large scales.

The factor g(
) is introduced to allow for the growth law for

perturbations in an open universe. It gives the total suppres-

sion of growth in an open universe relative to a 
at universe,

and is accurately given? by the �tting function (Carroll et

al. 1992)

g(
) =
5

2



h
1 +




2
+ 


4=7
i�1

: (2)

Finally, the quantity �H speci�es the overall normalization

of the present-day spectrum. Its independence of k indicates

the assumption of an in
ationary model leading to a scale-

invariant spectrum; in typical in
ationary models one would

expect some deviation from this (Liddle & Lyth 1993) which

we do not consider. The value of �H , when �xed by the

COBE observations as discussed below, depends on 
0, but

it has only an extremely weak dependence on H0 which can

? Numerical tests indicate this �tting function is accurate to

within one per cent for 
0 of interest.

be comfortably ignored (throughout, a subscript 0 denotes

the present day).

Many observations do not allow one to impose con-

straints on the power spectrum itself, but instead place

constraints on the dispersion of the density contrast �(R)

smoothed on a comoving scale R. We shall always use a

top-hat �lter W (kR) de�ned by

W (kR) = 3

�
sin(kR)

(kR)3
� cos(kR)

(kR)2

�
; (3)

to perform the smoothing. The dispersion of the smoothed

density contrast is easily calculated from a theoretical power

spectrum as

�
2
(R) =

Z
1

0

P(k)W 2
(kR)

dk

k
; (4)

The prediction for the abundance of objects of various types

has a very simple interpretation as a constraint on �(R),

which cannot be easily represented as a power spectrum con-

straint.

Before proceeding to a full account of the data and

their interpretation, let us be more speci�c regarding our as-

sumptions. The parameters which we shall consider as freely

variable are the total present density 
0 and the present

Hubble parameter h (in units of 100km s�1Mpc�1). An im-

portant contribution to be taken into account is the bary-

onic component of the density, 
B, which we take to be

�xed by nucleosynthesis as 
Bh
2 = 0:0125 (Walker et al.

1991)y. In the presence of baryons, the usual scaling law of

the transfer function with 
0h (which is exact only for zero

baryon density) can be replaced by an empirical scaling law

with 
0h exp(�
B � 
B=
0). This law was discovered by

Sugiyama (1994), and generalizes a scaling law advertised

by Peacock & Dodds (1994) to the case where 
0 < 1. Al-

though Sugiyama's calculations were made for the case of

a 
at universe with a cosmological constant, the di�erence

between that and the present case only sets in long after

the universe is matter dominated and so the shape is the

same in our case. The di�erent overall normalization of the

spectrum between the two cases is of course included in the

COBE normalization we shall carry out.

We use the transfer function from Bardeen et al. (1986)

TCDM(q) =
ln (1 + 2:34q)

2:34q
�

�
1 + 3:89q + (14:1q)

2
+ (5:46q)

3
+ (6:71q)

4
��1=4

; (5)

with q = k=�, where the so-called `shape parameter' � is

de�ned as

� = 
0h exp(�
B � 
B=
0) ; (6)

in accordance with Sugiyama (1994) as discussed above.

Although h is in principle freely variable, it is deter-

mined at some level of accuracy by the requirement of a

reasonable �t to the galaxy correlation function (see further

discussion below), which demands that � should lie in the

y We note that the more recent analysis of Copi, Schramm &

Turner (1995) suggests that the traditional upper limit from

Walker et al. (1991) may be relaxed somewhat, though not su�-

ciently to impact on our results.
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range [0:23; 0:30] at 95 per cent con�dence level assuming

a scale-invariant power spectrum (Peacock & Dodds 1994).

Note though that as 
0 tends to one, the required value of

h to achieve this begins to get uncomfortably small.

Particularly for high h, one is in danger of a con
ict

between measured ages of stellar populations and the age of

the universe. In an open universe the age is given by

t0 =
1


0H0

�

0

1 � 
0

� 
2
0

2 (1� 
0)
3=2

cosh
�1

�
2� 
0


0

��
:(7)

If one �xes H0, then older ages are achieved by lowering 
0.

However, we have written it this way to emphasize an al-

ternative view, which is that the galaxy correlation function

more or less �xes (ignoring for now the baryonic corrections)

the combination 
0H0. Then the quantity in square brack-

ets in the above formula is actually an increasing function

of 
0, peaking at 2=3 when 
0 = 1. Consequently, at �xed

�, the desire for a large age favours a larger value of 
0. To

make this concrete, then �xing � = 0:25 taking the baryons

into account gives the sample values 
0 = 0:2) h = 1:3)
Age = 6 Gyrs; 
0 = 0:3 ) h = 0:89 ) Age = 9

Gyrs; 
0 = 0:4 ) h = 0:69 ) Age = 11 Gyrs;


0 = 1:0 ) h = 0:32 ) Age = 20 Gyrs. In each case

the 15 per cent or so uncertainty in � contributes a similar

uncertainty to the age.

We shall adopt the extremely conservative view that the

age should exceed 10 Gyrs.

3 NORMALIZATION TO COBE

The most crucial piece of data is the overall normaliza-

tion of the density perturbation spectra, which we choose

to match the microwave anisotropies at large angular scales

measured by the DMR experiment on the COBE satellite

(Bennett et al. 1994; G�orski et al. 1994). In the language

of the usual spherical harmonic decomposition, COBE mea-

sures the multipoles with l <� 30, and for a given 
0 the

distance subtended at the surface of last scattering is com-

parable with the curvature if l <� 2
p
1� 
0=
0. With the

possible exception of the super-curvature modes de�ned be-

low, this criterion gives an upper bound on the range of l

for which curvature can be signi�cant. It may however be a

considerable overestimate, because for 
0 < 1 the dominant

contribution to the cmb anisotropy can come from distances

far closer than the surface of last scattering. In any case it

allows curvature to a�ect only l <� 6 even for 
0 as low as

0:3, which means that at most the lowest few multipoles of

COBE are likely to be sensitive to curvature.

To investigate the e�ect of curvature quantitatively, one

must �rst ask how the Newtonian expression (1) should be

continued to larger scales. As discussed in detail in Lyth &

Woszczyna (1995), a number of issues have to be addressed.

First, in order to de�ne the density contrast one has to

specify a slicing of space-time into spatial hypersurfaces. We

make the usual choice that the hypersurfaces are orthogonal

to comoving observers, corresponding to what is called the

`gauge invariant' density perturbation. In the era well after

matter domination (which is the only one that concerns us)

this is the same as the `synchronous gauge' density pertur-

bation (Lyth & Stewart 1990b).

Second there is the de�nition of the spectrum. In dis-

cussing the stochastic properties of a given perturbation f ,

one assumes that it is a typical realization of a random �eld

(an ensemble of functions together with a probability distri-

bution for them). In both 
at and curved space, the spec-

trum is de�ned with reference to an expansion in terms of

eigenfunctions of the Laplacian, being the ensemble average

of the modulus squared of the coe�cient. Following Lyth

& Stewart (1990a), we denote the eigenvalue of the Lapla-

cian by �(k=a)2, and normalize the spectrum Pf (k) of a

generic perturbation f so that it gives the power per unit

logarithmic interval of k. (By `power' we mean the ensem-

ble mean square contribution to f2, which is independent

of position.) We are taking the random �eld to be gaussian,

which means that each coe�cient has an independent gaus-

sian probability distribution, whose variance is essentially

de�ned by the spectrum. (To make this statement precise

one needs to take account of the fact that k is a continuous,

not a discrete, variable.)

Third, there is the range of k over which the spectrum

is nonzero. If k�1 is measured in units of the curvature scale

H�10 =
p
1�
0, then it is known that the most general square

integrable function can be constructed using only the eigen-

functions with k2 > 1. For this reason, cosmologists have

always assumed that the same is true for the most general

gaussian random �eld. That is, they have assumed that such

a �eld can always be generated by keeping only the the sub-

curvature modes (those with 0 < k�2 < 1) as distinct from

the super-curvature modes (those with k�2 > 1). It has re-

cently pointed out (Lyth & Woszczyna 1995) that this is

not so; rather, mathematicians have known for half a cen-

tury that in order to construct the most general gaussian

random �eld the spectrum (and therefore the eigenfunction

expansion) needs to run over the full range k2 > 0. How-

ever, if the perturbation is generated as a vacuum 
uctuation

during in
ation then it does appear to be the case that its

spectrum contains only sub-curvature modes (though there

is not complete agreement (Yamamoto et al. 1995; Bucher &

Turok 1995)). As a working hypothesis it is therefore reason-

able to assume that only sub-curvature modes contribute.z
In most of the cosmology literature a di�erent normal-

ization of the spectrum is adopted, which is denoted by Pf
rather than by Pf . In 
at space, Pf is normalized so that

k3Pf=(2�
2) is the power per unit logarithmic interval of k.

Because super-curvature modes were never considered, this

de�nition is customarily generalized to make q3Pf=(2�
2) the

power per unit logarithmic interval of q, where q2 = k2 � 1.

(The motivation for considering q2 instead of k2 is that its

range is q2 > 0.) This leads to the relation

Pf (q) =
2�2

q(q2 + 1)
Pf (k(q)) : (8)

These preliminaries having been addressed, we are

z In any case a smooth continuation of the spectrum into the

super-curvature regime would probably not have a signi�cant ef-

fect on the cmb anisotropy (Lyth & Woszczyna 1995). One can

and should see whether a delta function contribution at k2 = 0

(the open universe Grishchuk-Zel'dovich e�ect) would be compat-

ible with the data, but in this paper we assume that this is not

the case.
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ready to ask what is the correct continuation to large scales

of the 
at space expression (1). A natural choice is to

keep equation (1) as it stands, either retaining or drop-

ping the super-curvature modes. If super-curvature modes

are dropped there are other natural choices, based on the

alternatively de�ned spectrum P that we have just dis-

cussed. One can take P / q (the usual choice until re-

cently) or P / k; these choices multiply equation (1) by

(q=k)2 and q=k respectively. Another choice (Kamionkowski

& Spergel 1994), relating to the density contrast smoothed

over a sphere of variable radius, makes P / q3 for q <� 1

going smoothly over to P / q for q >� 1.

A further possibility is that instead of focusing on the

density contrast �, one can focus on the primordial curvature

perturbation R, given by (Bardeen 1980; Lyth & Stewart

1990a)

R =
5

2

�
3 + k2

a2H2

�
� : (9)

On small scales equation (1) corresponds to a scale-indep-

endent spectrum PR. However, if PR is taken to be scale

independent also on large scales, equation (1) is multiplied

by a factor [(3 + k2)=k2]2. At k2 = 2 this is a factor ' 5,

corresponding to a factor
p
5 in the rms perturbation, so

it is more signi�cant than the ambiguity associated with

the de�nition of the spectrum, and the use of q2 versus k2.

Thus the crucial decision is whether to regard the density

perturbation or the curvature as the fundamental quantity.

The usual assumption that the perturbation originates

as a vacuum 
uctuation of the in
aton �eld decides in favour

of the curvature, because the in
aton �eld perturbation ��

is related to the curvature by R = (H= _�)�� which is scale

independent (Lyth & Stewart 1990a; Liddle & Lyth 1993).

Making the arbitrary assumption of the conformal vacuum

as the initial state in calculating the in
aton perturbation,

the spectrum of �� and therefore ofR is 
at (Lyth & Stewart

1990a; Ratra & Peebles 1994a; Ratra & Peebles 1994b). Re-

cently it has been pointed out that in the bubble nucleation

model the quantum 
uctuation of the in
aton �eld, and

hence the spectrum, is calculable without recourse to an ar-

bitrary assumption concerning the initial vacuum state. Ac-

cording to Bucher et al. (1994) and Bucher & Turok (1995),

PR varies like coth(�q). At k2 = 2 (q2 = 1) this factor is

1:06, and even at q2 = 0:03 it is only 2. Whether one adopts

the conformal vacuum hypothesis or the bubble nucleation

scenario, the spectrum extends only over q2 > 0 and so the

di�erence between them is insigni�cant (Yamamoto et al.

1995; Bucher & Turok 1995).

The upshot of the above discussion is that the criterion

of some smooth continuation suggests a moderate amount

of ambiguity in the large scale power spectrum, which is

however practically eliminated if the perturbation originates

as a quantum 
uctuation of the in
aton �eld. According

to Sugiyama & Silk (1994), even the moderate ambiguity

suggested by smoothness is not very signi�cant, because it

a�ects only the low cmb multipoles which are poorly deter-

mined because of cosmic variance. However, in this paper

we adopt for de�niteness the hypothesis of a 
at curvature

spectrum, which is the prediction of in
ation.

Given the spectrum one can calculate the expected val-

ues for the multipoles measured by COBE, and compare

with observations to determine the best �t normalization.

The calculation is substantially more complex than that for

spatially 
at models, which is almost analytic, and in the

literature it has been developed in several stages. In this

paper we use the most recent and sophisticated determi-

nation, given by GRSB. They take the curvature pertur-

bation spectrum to be 
at, and �t the full spectrum of

anisotropies including the Doppler peak using a method

based on Fourier analysis on the cut sky for which COBE

data is available. This normalization is more sophisticated

than that of Kamionkowski et al. (1994), who normalized to

the ten degree variance (Bennett et al. 1994) with a correc-

tion incorporated for the beam pro�le and nonorthogonality

of the monopole and dipole subtraction (Wright et al. 1994).

They also arbitrarily increased the error bar to 30 per cent.

The outcome of the GRSB analysis is that essentially

all values of 
0 are capable of providing an acceptable �t

to the COBE data for a suitable choice of normalization.

They do not explicitly state the normalization of the power

spectrum they get for each 
0. However, they do give values

of �(8h�1Mpc) for speci�c choices of h, directly calculated

from their Boltzmann code. We use these to calculate the

large scale normalization of the power spectrum (�H(
0) in

equation (1)), which is independent of h. This can then be

used to calculate �(R) using equation (4) for any value of h

by using the appropriate transfer function.

We �nd that the normalization can be accurately rep-

resented, to within two per cent for 0:1 < 
0 < 1, by the

�tting function

�
2
H(
0) =

�
4:13 + 8:20
0 � 8:11


2
0

�
� 10

�10
; (10)

where we use the GRSB analysis which includes the quadru-

pole (almost no change arises if the quadrupole is dropped

from the analysis).

The normalization from GRSB has an error bar of eight

per cent (more or less independently of 
0), as compared

to the thirty per cent used by Kamionkowski et al. (1994).

Although this tighter error bar is certainly more constrain-

ing, this normalization is quite a bit higher than used by

Kamionkowski et al. An increase in the normalization gener-

ally acts in favour of the lower density models when it comes

to comparing with the observations. As the COBE normal-

ization has a considerably smaller error bar than other ob-

servations, on occasion we shall take this normalization as

�xed, ignoring its error bar.

4 SMALLER SCALE CONSTRAINTS

A wide range of observations provide a variety of constraints

on the power spectrum on scales of order 1 to 100Mpc.

These include the distribution of galaxies and clusters, the

peculiar motions of galaxies and the abundances of various

objects including clusters, quasars and damped Lyman al-

pha systems. Our approach is to use only the most powerful

ones, as described elsewhere for the case 
0 = 1 (Liddle &

Lyth 1995; Liddle et al. 1995). When the spatial geometry is

changed, all constraints need to be recalculated for a variety

of reasons, amongst which the primary ones are a suppressed

rate of perturbation growth at low redshift and an amended

relation between scale and mass.
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4.1 The galaxy correlation function

One of the most highly advertised problems with the stan-

dard Cold Dark Matter scenario is its failure to correctly

reproduce the shape of the galaxy correlation function on

scales of tens of megaparsecs, on the reasonable assump-

tion of a scale independent bias parameter for galaxies of

a given type. For CDM models, this is quanti�ed via the

shape parameter � which we have already introduced, and

from a detailed analysis of a compilation of data sets Pea-

cock & Dodds (1994) obtain the very stringent constraint

� = 0:264+0:040�0:033 at the 95 per cent con�dence limit assuming

a scale-invariant power spectrumx. Provided one is willing

to tolerate a su�ciently small h (around 0:35) the shape

parameter can be �t in a spatially 
at universe.

In addition to providing a constraint on the shape pa-

rameter, the galaxy distribution data also in principle con-

strain the normalization of the spectrum through redshift

space distortions and non-linear e�ects. By choosing a scale

in the middle of the data the best-�t amplitude can be found

independently of �; assuming 
0 = 1 and bI = 1, where bI
is the bias parameter for IRAS selected galaxies, we �nd the

constraint �(15:35h�1Mpc) = 0:395+0:029�0:028 . For general 
0,

Peacock & Dodds provide a best-�t bias parameter, and by

�tting for this and processing through the redshift distor-

tion factor for general 
0 one obtains the formal result with

1-sigma error (almost entirely due to the uncertainty in the

bias) of

�(15:35h
�1
Mpc) = (0:395 � 24%)f(
0) ; (11)

where the �tting function f(
0) is given by

f(
0) = 1:62 + 0:81
0 � 2:60

2
0 + 1:31


3
0 : (12)

However, the literature contains a widespread range of esti-

mates of the bias parameter (see for example the compila-

tion in Dekel (1994)), suggesting a true uncertainty larger

than that advertised by Peacock & Dodds. As this result is

anyway less constraining than other data, we choose not to

impose this constraint.

A chi-squared analysis of the sixteen data points in Ta-

ble 1 of Peacock & Dodds (1994) taking � and the normaliza-

tion as �tting parameters has 14 degrees of freedom. Unfor-

tunately the minimum chi-square is somewhat low (about

12). It is perfectly reasonable that this has occurred by

chance, though it could also have an origin in weak cor-

relations of neighbouring data or through non-normal er-

rors. This prevents us incorporating their full data set into

a chi-squared analysis along with other data, because such

an analysis allows other data points to receive a high chi-

square in compensation because their data set has so many

more points. We have tried to evade this by only incorpo-

rating the shape parameter into a chi-squared test on all the

data.

x Peacock & Dodds give a �tting function which includes a �t to

di�erent spectral indices n. We have re�t assuming n is �xed at

unity, which results in the modest numerical di�erence between

the result quoted here and that given by their equation (53). One-

sigma errors are adequately represented by hal�ng these error

bars.

4.2 Bulk 
ows and POTENT

For a given present-day amplitude of density perturbations,

the predicted peculiar velocities depend quite strongly on

the value of 
0, becoming much smaller in the low density

case. The best measurements of the bulk 
ow available are

those found via the POTENT technique of velocity �eld re-

construction (Bertschinger & Dekel 1989). For the Mark III

data set (Dekel 1994), the velocity has been evaluated in

spheres about our position for a range of radii. However,

these separate determinations are not independent as the

rms bulk 
ow is sensitive to long wavelengths to a much

greater extent than the density contrast. We therefore con-

centrate on a single measurement, which is the bulk 
ow

smoothed on a scale 40h�1 Mpc. The method used to gener-

ate this requires an additional gaussian smoothing on 12h�1

Mpc in order to generate the original continuous velocity

�eld used as a starting point. The theoretical prediction for

the rms bulk 
ow is therefore given by

�
2
v(R) = H

2
0


1:2
0

Z
1

0

W
2
(kR) exp

�
�(12h�1k)2

� P0
k2

dk

k
;(13)

where W (kR) is the top-hat window given by equation (3)

and the factor 
1:2
0 is an extremely accurate �tting function

to the 
0-dependent velocity suppression.

The Mark III POTENT analysis gives the bulk 
ow in

a 40h�1 Mpc sphere as (Dekel 1994)

vobs(40h
�1
Mpc) = 373� 50kms

�1
; (14)

and this provides the best estimate of �v(40h
�1Mpc). The

error given in expression (14) arises from di�erent ways of

dealing with sampling-gradient bias and can thus be thought

of as re
ecting the systematic uncertainty in the POTENT

analysis. Additionally there is an intrinsic uncertainty in the

POTENT calculation due to random distance errors, which

at the 1-sigma level is ' 15 per cent (Dekel 1994). The ob-

servational error is dominated by cosmic variance; since the

mean square bulk 
ow is the sum of the squares of the three

velocity components, each of which is gaussian distributed,

it follows a �2 distribution with three degrees of freedom.

This enables a calculation of the cosmic variance error in

using the bulk 
ow as an estimator of the normalization

of the dispersion of the density contrast, that error being

89 per cent upwards and 24 per cent downwards at the 68

per cent con�dence level which notionally corresponds to 1-

sigma. At the 95 per cent con�dence level the error bars are

+273 per cent and �43 per cent. We can improve on this by

modelling the observational errors and convolving with the

theoretical distribution. Assuming the error in expression

(14) corresponds to something like 95 per cent con�dence

level (though as it is the smallest error this assumption is

insigni�cant), then the convolution of the three types of er-

ror results in the total error in using the Mark III POTENT

bulk 
ow calculation as an estimator of the normalization

of the dispersion of the density contrast. The increase in

the error range as compared to cosmic variance alone is not

large, the total error range being +98 per cent and �25 per
cent at the 68 per cent con�dence level, and +295 per cent

and �47 per cent at the 95 per cent con�dence level. Only

the lower limits are useful for us.

We note that a constraint on the value of 
0 can be

extracted from non-linear e�ects on the peculiar velocity
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data, yielding 
0 >� 0:3 at least at the 2-sigma con�dence

level (Dekel 1994) which serves to reinforce our conclusions.

The scale at which the bulk 
ow data applies is of order

one per cent of the Hubble distance, so one might wonder if

general relativistic e�ects might be detectable. The formulae

that we have given remain valid in that case, provided that

the density perturbation is de�ned on hypersurfaces orthog-

onal to comoving observers, and that the peculiar velocity is

de�ned with respect to worldlines having zero shear (Bruni

& Lyth 1994). It is noted in GRSB that with a di�erent

choice, the theoretically calculated bulk 
ow is di�erent by

several per cent, which is not totally insigni�cant. This sug-

gests that a careful analysis of the observations using general

relativity would be worthwhile, using a speci�c set of world-

lines to de�ned the peculiar velocity. In any event, as long

as Newtonian physics is used to analyse the data there is

certainly no point in going beyond that framework in the

theoretical calculation.

4.3 Object abundances

In the case of a 
at universe the standard analytical tech-

nique to calculate object abundances relies on the use of the

Press{Schechter theory (Press & Schechter 1974), which has

been found through N -body simulations to provide a good

approximation (Lacey & Cole 1994). This kind of compari-

son between analytical techniques and N -body simulations

has not been performed with the same extent for an open

universe. However, the derivation of the Press{Schechter

theory relies solely on statistical arguments; there is noth-

ing in it which explicitly relies on the background cosmology.

It should therefore be also applicable in an open universe.

We shall use it to obtain constraints on the abundances of

galaxy clusters and damped Lyman alpha systems.

Using the Press{Schechter theory, the fraction of the

matter in the universe which is in collapsed objects above a

given mass at a redshift z is given simply by


(> M(R); z)

(z)

= erfc

�
�cp

2�(R; z)

�
; (15)

where �c is the threshold value �xed by comparison with N -

body simulations, �(R; z) the dispersion smoothed on scale

R at redshift z and `erfc' is the complementary error func-

tion. The appropriate value for �c in this expression depends

on the type of collapse one wants to consider, and on the

type of �lter one uses to carry out the smoothing. In a 
at

universe the spherical collapse of a top-hat perturbation is

associated with �c = 1:7. Non-spherical collapse along all

three axes of symmetry is associated with higher values for

�c, whilst non-spherical collapse along the �rst and second

collapsing axis is associated with smaller values (e.g. Monaco

1994). As the value of �c is determined by the timescale of

collapse of a given type of perturbation, one might expect it

to be quite sensitive to the background cosmology being con-

sidered. However, this does not seem to be the case when one

moves from a 
at to an open universe. Lilje (1992), Lacey

& Cole (1993) and Colafrancesco & Vittorio (1994) found

that at least for any type of collapse where �c � 1:7 in a 
at

universe, the value of �c varies at most by 5 per cent when

one goes from a 
at universe to one with 
0 = 0:1. This ap-

plies at the present epoch, therefore implying that the same

change in background cosmology will give rise to an even

smaller variation in �c at higher redshifts, as presently open

universes approach 
atness with increasing redshift.

The abundance of galaxy clusters is used to constrain

the present-day power spectrum. In order to constrain

shorter scales, which are well into the non-linear regime to-

day, a successful technique is to study objects at high red-

shift, when those scales were still in the linear regime. By

using linear theory to scale those constraints to the present,

one can compare directly with the present-day predicted

linear power spectrum. The most useful objects on which

data are available are the damped Lyman alpha systems

(Lanzetta, Wolfe & Turnshek 1995; Storrie-Lombardi et al.

1995). These o�er a tighter constraint than the quasar abun-

dance, the latter being weakened by unknown e�ciency fac-

tors such as the required number of generations of quasars,

and by the uncertainty in the required host galaxy mass.

We wish to take into account the growth of density

perturbations between a redshift say around four and the

present. As 
0 is decreased, the amount of growth between

these epochs becomes highly suppressed, which is one of the

main reasons why the present normalization of the primor-

dial spectrum is lower than in the 
at case. On the other

hand, this e�ect helps with high redshift object formation

since for a given present-day normalization, the perturba-

tions at high redshift are substantially higher than were the

universe 
at.

In a critical density matter-dominated universe, �(M;z)

simply grows proportional to (1+z)�1. In an open universe,

there is a suppression g in growth relative to this given by

equation (2). This equation can be applied at any epoch,

using the redshift dependence of 
 which in a matter dom-

inated universe is given by


(z) = 
0
1 + z

1 + 
0z
: (16)

One therefore needs to apply the growth factor for a criti-

cal density universe, correcting for the suppression both at

the redshift of the observation and at the present, to get a

constraint on the present-day power spectrum from

�(M;z = 0) = �(M; z) (1 + z)
g(
0)

g(
(z))
: (17)

4.3.1 Cluster abundance

A large galaxy cluster has a typical mass of about 1015M�,
which corresponds to a linear scale of around 8h�1 Mpc.

Such clusters are relatively rare, indicating that this scale is

still in the quasi-linear regime. One is then able to use the

Press{Schechter theory to calculate �8 � �(8h�1Mpc). To

our knowledge the �rst to attempt this was Evrard (1989),

followed by Henry & Arnaud (1991). Both these analyses

were only valid for a 
at CDM universe, and though us-

ing di�erent observations they reached essentially the same

result. Then White, Efstathiou & Frenk (1993a) again ob-

tained a result similar to the previous two, and extended the

analysis to a 
at CDM universe with non-zero cosmological

constant. Our analysis is similar to theirs extended to an

open universe, the main di�erence being that we attempt

to take into account that clusters with equal mass which

virialize at di�erent redshifts have distinct properties, like

velocity dispersion and X-ray temperature, at the present.



Open Cold Dark Matter Models 7

A variety of di�erent observations are available concern-

ing the abundance of clusters. To use the Press{Schechter

theory, it is vital to have good mass estimates as well as

an estimate of the number density. Galaxy cluster cat-

alogues assembled through optical selection from photo-

graphic plates, even disregarding the subjective nature of

such selection, su�er from possible errors in cluster identi�-

cation due to foreground and background contamination in

the galaxy counts. Furthermore, the velocity dispersion, the

optical observable most directly related to the cluster mass,

is prone to serious projection e�ects and possible velocity

biases. On the other hand, cluster identi�cation through X-

ray emission is free from foreground and background con-

tamination, as X-rays are only produced in deep potential

wells, and the X-ray observable most directly associated

with the cluster mass, the mean X-ray temperature, is only

very weakly a�ected by projection e�ects. Accordingly, we

choose to use X-ray instead of optical data.

The observed number density of clusters per unit tem-

perature, n(kBT ), at z = 0 was calculated by Henry & Ar-

naud (1991). They found that clusters with a mean X-ray

temperature of 7 keV have a present number density

n(7 keV; 0) = 2:0
+2:0
�1:0 � 10

�7
h
3
Mpc

�3
keV

�1
: (18)

The comoving number density of clusters with virial

mass Mv per unit mass at a redshift z is obtained by di�er-

entiating equation (15) with respect to the mass and mul-

tiplying it by �b=Mv, where �b is the comoving background

density (a constant during matter domination), thus giving

n(Mv; z) = �
r

2

�

�b

Mv

�c

�2(z)

d�(z)

dMv

exp

�
� �2c
2�2(z)

�
; (19)

where � � �(rL) with rL the comoving linear scale asso-

ciated with Mv, r
3
L = 3Mv=4��b. Traditionally the cluster

abundance is used to constrain the dispersion at 8h�1 Mpc,

and the quantity � is speci�ed by an analytic approximation

to the power spectrum in the vicinity of this scale. Generally,

one can write

�(z) = �8(z)

�
rL

8h�1 Mpc

��
(rL)
: (20)

For the CDM spectra we adopt the form


(rL) = (0:3� + 0:2)

�
2:88 + log

�
rL

8h�1 Mpc

��
: (21)

This is a more sophisticated analytic approximation than

the power-law approximation used by White et al. (1993a);

the open universe calculation requires accuracy over a wider

range of scales (note also that their � has a slightly di�erent

de�nition). This approximation is accurate to within 1 per

cent for rL within a factor of 4 of 8h�1 Mpc for the � values

we are primarily interested in.

Note that in any CDM model, 
(rL) is redshift inde-

pendent since the growth of perturbations is independent

of scale. Using expression (20) to calculate the derivative in

equation (19) we therefore get

n(Mv; z) =

r
2

�

�b

M2
v

2:88(0:3� + 0:2)�c

3�(z)
exp

�
� �2c
2�2(z)

�
:(22)

As large clusters are relatively rare, it is reasonable to

assume that shear did not play an important part during

their collapse, which to a good approximation can then be

considered to have occurred spherically (Bernardeau 1994).

Nevertheless, we shall include an assumed 1-sigma disper-

sion of �0:1 in the value of �c. Bearing in mind that vary-

ing the background cosmology has a negligible e�ect on the

value of �c we then use �c = 1:7 � 0:1 when needed for all

our models at all z.

For the type of models we are considering, Hanani

(1993) has shown that

Mv / 

�

1

2

0 �
�

1

2 (1 + zc)
�

3

2 (kBT )
3

2 ; (23)

where

� = 1 + (

�0:8
0 � 1)(1 + 


0:5
0 zm)

�

�0:4

0 : (24)

Here zc and zm are the redshifts of cluster virialization and

turnaround respectively; they are related by the expression

(1 + zm) ' 22=3(1 + zc). The scalings in equation (23) have

been found through hydrodynamical N -body simulations to

hold remarkably well in a 
0 = 1:0 CDM model (Navarro,

Frenk & White 1995).

In order to normalize equation (23) we use results from

the hydrodynamical N -body simulations for a 
0 = 1:0

CDM model performed by White et al. (1993b). From a cat-

alogue of 12 simulated clusters with a wide range of X-ray

temperatures they estimated that a cluster with a present

mean X-ray temperature of 7.5 keV corresponds to a mass

within one Abell radius (1.5 h�1 Mpc) of the cluster cen-

tre of MA = (1:10 � 0:22) � 1015 h�1 M�. The error arises
from the dispersion in the catalogue and is supposed to rep-

resent the 1-sigma signi�cance level. To be conservative we

shall increase this dispersion to 30 per cent. White et al.

(1993b) also found that the simulated clusters had a den-

sity pro�le in their outer regions approximately described by

�c(r) / r�2:4�0:1. This same result was obtained by Met-

zler & Evrard (1994) and Navarro et al. (1995). Bearing in

mind that the cluster virial radius in a 
0 = 1:0 universe en-

closes a density 178 times the background density, it is then

straightforward to calculate the cluster virial mass fromMA.

We therefore have Mv = (1:23+0:55�0:45) � 1015 h�1 M� for a

cluster with a present mean X-ray temperature of 7.5 keV in

a 
0 = 1:0 universe. Assuming that such a cluster virialized

at a redshift of zc ' 0:05�0:05 (e.g Metzler & Evrard 1994;

Navarro et al. 1995), we can now normalize equation (23)

Mv = (1:32
+0:73
�0:54)� 10

15 � (25)



�

1
2

0 �
� 1

2 (1 + zc)
� 3

2

�
kBT

7:5 keV

� 3

2

h
�1

M� :

This result is in very close agreement with the one obtained

by Evrard (1990) from his own hydrodynamical N -body

simulations. Hence the virial mass Mv for a cluster with

a present mean X-ray temperature of 7 keV is given by

Mv = (1:2
+0:7
�0:5)� 10

15


� 1

2

0 �
� 1

2 (1 + zc)
� 3

2 h
�1

M� : (26)

As one can see from equation (23), the relation between

the cluster virial mass and its mean X-ray temperature de-

pends on the redshift of cluster virialization. One therefore

expects that at the present there will be some dispersion in

the virial masses of clusters with the same mean X-ray tem-

perature. This dispersion increases with decreasing 
0, as

due to the slower growth of density perturbations in lower
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0 models cluster formation at a given scale proceeds over

a greater redshift interval.

According to Press{Schechter theory the comoving

number density of clusters with virial mass Mv per unit

mass which virialize at some redshift z and survive until the

present is given by (Sasaki 1994)

N(Mv; z) =

�
� �2c
�2(z)

n(Mv; z)

�8(z)

d�8(z)

dz

�
�8(z)

�8(z = 0)
; (27)

where �8(z) and d�8(z)=dz are calculated using equation

(17). In equation (27) the expression within the square

brackets gives the formation rate of clusters with virial mass

Mv at redshift z, whereas the fraction outside gives the prob-

ability of these clusters surviving until the present. If one

now assumes that at each redshift z the cluster virial mass

Mv in equation (27) is determined by expression (26) with

zc = z, then equation (27) gives the comoving number den-

sity of clusters per unit mass which virialize at each red-

shift z and survive up to the present such that they have a

mean X-ray temperature of 7 keV at the present. Through

the chain rule we can then determine the comoving number

density of clusters per unit temperature which virialize at

each redshift z and survive up to the present such that they

have a mean X-ray temperature of 7 keV at the present,

N(kBT; z) = N(Mv; z)
dMv

d(kBT )
: (28)

Using expression (23) we get

N(kBT; z) =
3

2

Mv

kBT
N(Mv; z) ; (29)

where kBT = (7 keV)(1 + z)�1. We therefore have

N(kBT; z) = �3

2

Mv

kBT

�2c
�2(z)

n(Mv; z)

�8(z = 0)

d�8(z)

dz
: (30)

Numerically integrating this expression from z = 0 to

z = 1 then gives the present comoving number density

of clusters per unit temperature with a mean X-ray tem-

perature of 7 keV as a function of 
0 and of the present

value of �8. Comparing with the observational value given

by equation (18) we thus get �8(
0). We �nd to a good

approximation that

�8 =
�
0:59

+36%
�27%

�


�C(
0)
0 ; (31)

where C(
0) = 0:29 + 0:43
0 � 0:34
2
0 is a �tting func-

tion representing the changing power-law index of the 
0

dependence. The errors in equation (31) represent 1-sigma

signi�cance levels and arise from the dispersions in the ob-

servational value of �, in the assumed value for �c, and in

expressions (18) and (26).

4.3.2 Damped Lyman alpha systems

Many types of model with 
0 = 1, such as Mixed Dark

Matter models, are strongly constrained by data on damped

Lyman alpha systems (Kau�mann & Charlot 1994; Ma &

Bertschinger 1994). However, the constraint becomes weaker

as 
0 is reduced as we will now see.

Instead of the widely quoted data of Lanzetta et al.

(1995), we use the recent data of Storrie-Lombardi et al.

(1995) which revises downwards{ the estimated abundances

at a redshift of around 3 and provides a new estimate at

redshift 4. The strongest constraint comes from the redshift

4 point, and so we shall concentrate on it. However, the

constraint it not signi�cantly weakened if the redshift 3 point

is used instead, and in any case we shall see this data is not

very constraining for open CDM models.

At redshift z = 4, the contribution of the damped Ly-

man alpha systems to the density in baryons is estimated

as


DLAS = (0:0011 � 0:0002) h
�1

r
1 + 
0z

1 + z
: (32)

Remembering that we are taking the dark matter to be cold,

it is a reasonable hypothesis that the total density of these

systems is bigger by a factor 
0=
B , where 
B = 0:0125h�2

is the average baryon density given by nucleosynthesis. If

M is the typical mass of the systems, this implies that the

fraction f(> M; z) of the total mass which resides in bound

objects of mass at least M at redshift z = 4:0 satis�es

f(> M; z = 4:0) > (0:088 � 0:024) h

r
1 + 
0z

1 + z
; (33)

where a twenty per cent uncertainty in the baryon fraction

has been added in quadrature to the observational uncer-

tainty.

Since we want a lower bound on the density perturba-

tion we take the lower end of the error bar. Bearing in mind

that there is no evidence that damped Lyman alpha systems

at high redshifts are completely collapsed objects, as we only

observe their baryonic component which is able to collapse

faster through radiative cooling (e.g. Katz et al. 1994), we

conservatively assume that these systems are more akin to

collapsing protospheroids (see also Lanzetta et al. 1995). In

order to re
ect this choice we will use �c = 1:5 in the Press{

Schechter calculation, which some numerical studies (e.g

Monaco 1994) have shown is associated with the timescale

of gravitational collapse of a perturbation along its �rst two

collapsing axes, i.e. `�lament' formation. Also, in order to be

compatible with lower redshift observations, the collapsing

protospheroids have to be massive enough to eventually give

rise to rotationally supported disks (Lanzetta et al. 1995).

Therefore we take the minimum mass of damped Lyman al-

pha systems to be 1010 M�, which corresponds to a circular

velocity of about 100 kms�1. We shall illustrate this con-

straint in Figure 2. Although formally it is only a 1-sigma

lower limit, it is almost unchanged by going to 2-sigma.

5 DISCUSSION

We plot the data we have discussed in two separate ways.

The �rst is direct contouring of the observations in the 
0{h

plane, in Figures 1 and 2. For these Figures we have �xed

the normalization of the spectrum by the COBE measure-

ment, taking advantage of its small error bar. It turns out

that the constraints based on the abundances of clusters and

{ Note that this still ignores the e�ect of gravitational lensing,

which it is claimed can reduce the estimated abundance by a

further 50 per cent (Bartelmann & Loeb 1995).
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Figure 1. The most important constraints plotted in the 
0{h plane, assuming baryon density as given by standard nucleosynthesis. All

models are normalized to the COBE data as given by GRSB. The solid lines are limits on the shape parameter at 95 per cent con�dence

level. The dot-dashed lines are lower limits from POTENT at 68 per cent and at 95 per cent con�dence as labelled, in each case with

the allowed region to the right of the line (since they come from con�dence intervals, formally they are actually 84 per cent and 97:5 per

cent as lower limits, the upper limits not being shown here). Finally, the labelled dotted lines are contours of constant age as indicated.

The shaded region shows the parameter space not excluded at greater than 95 per cent on any single piece of data.

of damped Lyman-alpha systems are not very strong (both

in the spatially 
at case and for general 
0). It is some-

what surprising that the cluster point is not constraining;

the implication of earlier work (White et al. 1993a) is that

a very high normalization would be required in low den-

sity universes, a feature associated with cosmological con-

stant models rather than open universes. However, we have

found from our improved open universe treatment that the

normalization required at low 
0 remains compatible with

other constraints.

For clarity, we have chosen to plot only the most con-

straining data in Figure 1. The constraints from object abun-

dances are shown in Figure 2, with the preferred region from

Figure 1 transposed for comparison.

The second type of plot, Figure 3, shows chi-squared

contours of the data. The only di�erence in input data is

that we treat the COBE data with its error bar, so that

at each point in parameter space the chi-squared statistic

is that for the optimal normalization. The chi-squared plot

has the advantage of producing a simple summary of the

constraints, but the drawback that one cannot tell which of

the data are predominant in contributing to the constraints.

By incorporating all the data, it indicates a narrowing of the

allowed region at low 
0

Along with COBE, the most important constraints are

the shape parameter and the bulk velocities, with the age

constraint providing a cut-o� at low 
0. This still leaves a

rather substantial allowed parameter region.

Most of the recent literature on structure formation

models has concentrated attention either on retaining 
0 =

1 and making other modi�cations such as introducing a hot

dark matter component, or on reducing 
0 all the way down

to 0.2 or 0.3. We notice that the best �ts with the new COBE

normalization favour rather higher values, the lowest permit-

ted being about 
0 = 0:35. Further, good �ts are available

for the whole continuum of 
0 values above this, for a suit-

able choice of Hubble parameter. Without inputing extra

information on the preferred values of h, the observational

data make no particular preference towards any value of 
0.

A variety of recent measurements of the Hubble param-

eter have favoured higher values (eg Schmidt et al. 1994;

Freedman et al. 1994). While we feel that the situation has

yet to be completely closed, it is interesting to examine the

reduction in parameter space implied by choosing h > 0:6.

This still allows a �t to all the data (even allowing an age

over 12 Gyrs), but such a constraint requires that 
0 falls

in a narrow band between 0.35 and 0.55.

In conclusion, we have made a thorough investigation

of linear theory constraints on Cold Dark Matter models in

genuinely open universes. We have also placed these models
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Figure 2. As Figure 1, but illustrating the constraints we have derived but which do not prove constraining. The solid lines are 1-sigma

limits from the cluster abundance. The limit from damped Lyman alpha system formation is shown as a dashed line (allowed region to

the upper right). For comparison, the shaded region is transposed from Figure 1. Contours of constant age are again indicated.

in their in
ationary cosmology context. The normalization

to COBE provided by GRSB allows a much more precise

comparison to observations than has been made previously.

We have included a treatment of the abundances of both

clusters and damped Lyman alpha systems; although these

have proved constraining for various types of model such as

Mixed Dark Matter models, they are easy to satisfy here.

On the whole, the new constraints we have computed sup-

port the allowed parameter space from earlier considerations

rather than reduce it. We conclude that there is a substantial

parameter space still viable for these models.
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