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Abstract

We analyze the map between heterotic and type II N=2 supersym-

metric string theories for certain two and three moduli examples found
by Kachru and Vafa. The appearance of elliptic j-functions can be traced

back to specializations of the Picard-Fuchs equations to systems for K3

surfaces. For the three-moduli example we write the mirror maps and

Yukawa couplings in the weak coupling limit in terms of j-functions; the

expressions agree with those obtained in perturbative calculations in the
heterotic string in an impressive way. We also discuss symmetries of the

world-sheet instanton numbers in the type II theory, and interpret them

in terms of S{duality of the non-perturbative heterotic string.
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1. Introduction

In a very interesting recent paper [1], Kachru and Vafa provided concrete evidence

of the conjecture that the exact non-perturbative behavior of the heterotic string

compacti�ed on K3 � T2 is governed by certain Calabi-Yau (CY) manifolds [2], and

can e�ectively be described in terms of type II strings [3].

In particular, there are examples [1,4] of CY's that, when taken as background of

type II theories, lead to prepotentials that reproduce certain perturbative corrections

of the heterotic theory in the weak string coupling limit (for non-zero coupling, one

expects new stringy non-perturbative phenomena [5] to become visible, analogous to

rigid N=2 Yang-Mills theory [6]). It is known from explicit heterotic string compu-

tations [7,8] that these corrections are given in terms of elliptic j-functions in the

T2 moduli. That precisely such combinations of j-functions really do appear [9] in

the moduli spaces of certain CY manifolds, is highly suggestive, and at �rst rather

surprising.

One of the purposes of this letter is to gain insight in the origin of such modular

functions in the moduli spaces of certain Calabi-Yau's. We will show that this can

be very simply understood in terms of specializations of Picard-Fuchs equations, and

more abstractly in terms of CY manifolds being elliptic or K3 �brations. This under-

standing opens up the possibility of a more systematic construction of CY manifolds

that describe the exact quantum theory of N = 2 supersymmetric heterotic strings.

In particular, it also allows us to perform further non-trivial checks on the original

examples of Kachru and Vafa, by explicitly writing certain \Yukawa couplings"
y
in

terms of j-functions.

We will also briey investigate the symmetry structure of certain models, link-

ing the symmetries of the CY instanton expansion to the perturbative and non-

perturbative T - and S-dualities of the quantum heterotic string. In particular, we

�nd evidence that in some models there is a symmetry of exchanging the heterotic

dilaton S with a target space moduli �eld, T .

y What we mean are the triple derivatives of the prepotential, which have in the present context,

strictly speaking, the interpretation of anomalous magnetic moments.
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2. Modular properties of certain Calabi-Yau moduli sub-spaces

The appearance of j-functions is the key for making the relationship of heterotic

strings compacti�ed on K3 � T2 with type II compacti�cations evident [1]. Many of

the examples of \dual" Calabi-Yau threefolds in [10,11] are actually elliptic �brations

over rational surfaces, or K3 �brations over rational curves. In this section we show

how these properties lead to the crucial modular properties of the mirror map (and

Yukawa couplings) in the weak string coupling domain.

In fact, K3 �brations are of natural interest for the conjectured duality between

heterotic and type II compacti�cations, because they automatically give rise to prepo-

tentials in the large complex structure limit of the form: F = sQ(t) +C(t) (where Q

is quadratic polynomial and C is a cubic polynomial). That is, s is a good candidate

for the heterotic dilaton.

Speci�cally, consider the model X12(1; 1; 2; 2; 6)
�252
2

,
�
which is the �rst of the

examples discussed in [1]. The de�ning polynomial is

p(x) = x1
12 + x2

12 + x3
6 + x4

6 + x5
2 � 12 x1x2x3x4x5 � 2�x1

6x2
6 ; (1)

and the weak coupling limit was identi�ed in [1] with y = 1

�2
! 0 and x = � 2�

(12 2)3

�nite. In terms of these variables, the Picard-Fuchs operators look (�x � x@x, etc.):

D1 = �2x (�x � 2 �y)� 8x (6 �x + 5) (6 �x + 3) (6 �x + 1)

D2 = �2y � y (2 �y � �x + 1) (2 �y � �x) :
(2)

One way of understanding why a modular function appears in the y ! 0 limit is

via the following two steps. First, the surface (1) is a K3 �bration [9] in that there

is a linear system jLj generated by the polynomial of degree one, whose divisors

are described after the substitution x1 = �x2 and the single-valued variable change

ex1 = x2
1
as following family of degree 12 K3 hypersurfaces in IP(1;1;1;3):

K : (1 + �12 � 2��6)ex6
1
+ x6

3
+ x6

4
+ x2

5
� 12 �ex1x3x4x5 = 0 (3)

As divisors in jLj are disjoint, jLj � jLj = 0 holds and thus the cubic intersection form

has indeed the desired property. Moreover, taking the above limit �!1,  � �1=6 e 

� We use the notation of [10], e.g. Xd1;:::;dr
(w1; : : : ; wn)

�

h1;1
is a complete intersection (hy-

persurface) of multi-degree d1; : : : ; dr in weighted projective space IPn�1(w1 ; : : : ; wn) (if all

wi = 1 we omit them) with Euler number � and Betti number h1;1.
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and � � ��1=6 all terms in (3) stay �nite, and x = � 2

(12e 2)3 can be identi�ed as the

canonical one-parameter deformation of K.

Second, there is strong evidence that one-modulus deformations of K3 surfaces

are intrinsically related to modular functions [12]. That is, it was observed in [13]

that the W3-invariant of any single-modulus Picard-Fuchs operator of K3 vanishes,

and since W2 transforms under coordinate changes z ! �(z) as W2 !W2 + f�; zg, it

is possible to rewrite the PF operator, after gauging awayW2, as D = @3t . In order to

implement this gauging, one needs to solve a Schwarzian di�erential equation of the

form �
x; tx

	
= 2Q(x) (@txx(tx))

2 (4)

for some Q(x). Its solution tx(x) is given by a triangle function s(x), whose inverse

yields a modular function that is automatically associated with some discrete subgroup

of PSL(2; IR). (Equivalently, the mirror map x(qx), where qx � e2�itx , is given by

the ratio of two independent solutions of the associated PF-system.)

It was observed in [12] that in all examples investigated so far this subgroup is

given by a subgroup of the modular group SL(2;ZZ) (possibly together with some extra

Atkin-Lehner involutions), and the authors conjectured this to be true for general

one-modulus deformations of K3 arising from orbifold constructions.
z
In the present

example, Q(x) = 1�1968x+2654208x2

4x2(1728x�1)2
, tx = s(1

2
; 1
3
; 0; j(qx)), and this leads indeed to

x = 1=j(qx) (this feature of the mirror map for vanishing y was noticed �rst in [9]).

The occurrence of this kind of specialization to K3 surfaces, with similar modular

properties, is actually ubiquitous in the class of complete intersection (hypersurface)

CY spaces. Consider, for example, the families

A : X8(1; 1; 2; 2; 2)
�86
2

B : X6;4(1; 1; 2; 2; 2; 2)
�132
2

C : X4;4;4(1; 1; 2; 2; 2; 2; 2)
�112
2

(5)

and their associated PF systems, whose relevant parts are

A : D1 = �2x(2�y � �x) + 4x(4�x + 3)(4�x + 2)(4�x + 1)

B : D1 = �2x(2�y � �x) + 6x(2�x + 1)(3�x + 2)(3�x + 1)

C : D1 = �2x(2�y � �x) + 8x(2�x + 1)3 :

(6)

z More precisely, they conjectured the mirror maps to be given by Thompson series, which

have an intrinsic relationship to modular functions and to the representation theory of the

Convay-Norton groups.
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Together with the �rst example (1), these examples represent selected one-modulus

K3 �brations, and the PF operators (2),(6) e�ectively reduce under y ! 0 to the

following list of K3 operators [12]:
\

K3family PF operator mod: group

K X6(1; 1; 1; 3) �3 � 8x(6� + 5)(6� + 3)(6� + 1) �0(1) � �
KA X4 �3 � 4x(4� + 3)(4� + 2)(4� + 1) �0(2)+
KB X3;2 �3 � 6x(2� + 1)(3� + 2)(3� + 1) �0(3)+
KC X2;2;2 �3 � 8x(2� + 1)3 �0(4)+

Model A was briey discussed in [1], where it was conjectured that the relevant

modular group should be given by an extension of some �0(2
k); from the table we

can infer that this is indeed true, with k = 1. The commensurability relations of the

K3 mirror maps x(qx) with the j-function were explicitly worked out in [12]:

K : P (j; x) = 1� jx = 0 ;

KA : P (j; x) = 1 + 432x� jx+ 62208x2 + 207jx2 + 2985984x3

� 3456jx3 + j2x3 = 0 ; etc:

For the �rst model we immediately recover x = 1=j(qx). Similarly, the mirror maps

for the models A;B;C, when written in the form 1=x(qx) � c (with c = 104; 42; 24),

specialize to the Hauptmodul of �0(N) for N = 2; 3; 4, while y(qx = 0; qy) =
qy

(1+qy)2
.

They are given by certain Thompson series [14], which can be written in terms of

modular functions as follows:

A : x(qx; qy = 0) =
16(�(qx)�(q

2

x))
8

(#4
3
+ #4

0
)4

B : x(qx; qy = 0) =
� �12(qx)
�12(qx3)

+ 729
�12(qx

3)

�12(qx)
+ 54

��1

C : x(qx; qy = 0) =
�24(qx)�

24(qx
4)

�48(qx2)

These expressions might be useful for further checks on the conjectured heterotic-type

II string duality.

\ �0(N)+ denotes a group that in general includes certain Atkin-Lehner involutions besides

�0(N); see [14] for details.
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A simple generalization of (1) and example A would be to take K3 hypersurfaces

in weighted IP3 of the form Xd(1; w3; w4; w5), and consider as CY the K3 �bration

X2d(1; 1; 2w3; 2w4; 2w5)
�
. From the examples we have checked, it appears that the

discriminant naturally is of the form 4 = 4(K3)
2 + ::: , where the dots denote

terms which vanish in an appropriate (weak coupling) limit. There are 95 transversal

families of suchK3 surfaces [15]; 31 of them with w1 = 1 give rise to transversal Calabi-

Yau con�gurations and are listed in the Appendix. It would be very interesting to

investigate whether these CY manifolds describe non-perturbative quantum heterotic

strings.

In fact, the surfaceX24(1; 1; 2; 8; 12)
�480
3

, which was studied too in [1], is precisely

of this type. The de�ning polynomial is given by

p = x2
1
+ x3

2
+ x12

3
+ x24

4
+ x24

5
� 12 0x1x2x3x4x5 � 2 1(x3x4x5)

6 �  2(x4x5)
12 ; (7)

and variables that are appropriate near the point of maximal unipotent monodromy

in the large complex structure limit are: x = � 2 1
17282 6

0

, y = 1

 2
2

, z = �  2
4 2

1

. For y ! 0,

the PF-system

D1 = �x (�x � 2 �z) � 12x (6 �x + 5) (6 �x + 1)

D2 = �2y � y (2 �y � �z + 1) (2 �y � �z)

D3 = �z (�z � 2�y)� z(2 �z � �x + 1) (2 �z � �x)

(8)

degenerates to the two moduli system of the generic �ber, given by aK3 family of type

X12(1; 1; 4; 6). Actually, this K3 is in itself a elliptic �bration over IP1 with generic

�ber X6(1; 2; 3), as can be seen in an analogous way.

It is quite clear that elliptic �brations lead very directly to modular functions.

Speci�cally, we present below a table of elliptic curves E, noticing that the present

example corresponds to the last entry.

� For K3 �brations one can always choose a basis s.t. F = sQ(t) + C(t) and
R
c2 ^ s = 24.

Conversely given this topological data one has still to �nd the suitable projection map. For

hypersurfaces in toric varieties there seem to be the combinatorical condition, that the K3

polyhedron is embedded in the Calabi-Yau polyhedron.
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elliptic family PF operator j(x) mod: subgroup

E1 X3(1; 1; 1) �2 � 3x(3� + 2)(3� + 1)
(1 + 216x)3

x(1 � 27x)3
�(3)

E2 X4(1; 1; 2) �2 � 4x(4� + 3)(4� + 1)
(1 + 192x)3

x(1 � 64x)2
�(2)

E3 X6(1; 2; 3) �2 � 12x(6� + 5)(6� + 1)
1

x(1 � 432x)
��

Table 1: Families of elliptic curves E , their Picard-Fuchs operators, commensurability re-

lations of the mirror-map x(q) as de�ned in [10,11] with the j-function, and the relevant

modular subgroup of SL(2;ZZ). In the �rst two cases the Hauptmodul of �(3) and �(2)

is related to the mirror map by removing from 1=x the constant term. In the third case

the commensurability polynomial is of genus one, meaning that one needs two generators to

de�ne the function �eld on E3.

The PF operator of E3 obviously represents the y; z ! 0 limit of (8). From the

commensurability relation of the mirror map of E3 with j(qx) we can immediately see

that the mirror map of (7) in the limit z; y ! 0 is given by

x(qx) =
2

j(qx) +
p
j(qx)(j(qx)� 1728)

: (9)

In addition, it follows from analyzing the corresponding degeneration limits of the

PF-system that the mirror-maps y(qy) (and z(qz)) specialize to rational functions on

the boundary of the moduli space, x = z = 0 (x = y = 0, resp.): y(qy) =
qy

(1+qy)2
,

z(qz) = qz
(1+qz)2

. We will use the solution (9) below to provide further evidence in

favor of the conjectured heterotic-type II string duality.

Moreover, we can infer from Table 1 that the mirror map x(qx) (and y(qy)) of the

hypersurface of bidegree (3; 3) in IP1� IP1, denoted X3j3(1; 1; 1j1; 1; 1)
�162
2;83 , of [10] for

y = 0 (x = 0) is related to the Hauptmodul of �(3). Finally, we �nd that the mirror

map
y
X12(1; 1; 1; 3; 6)

�324
3(1);165

is related to the Hauptmodul of �(2) at the boundary

y = z = 0.

y The problem of including the twisted sector in the analysis of the PF-system was recently

solved in [16].
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3. The three-moduli example X24(1; 1; 2; 8; 12) revisited

We have seen how the appearance of elliptic functions in the mirror maps of

Calabi{Yau compacti�cations can naturally be understood in terms of their special

structure as �brations, at least in the case of one modulus, where we could use the

results known in the mathematical literature. Unfortunately, an analogous treatment

for more than one modulus does not seem to exist. We will now show that the mirror

map and Yukawa couplings of the three-moduli example of [1], X24(1; 1; 2; 8; 12), can

nevertheless be written in terms of elliptic functions in the weak coupling limit. This

will provide a further impressive non{trivial check on the conjecture of equivalence of

the corresponding N=2 heterotic and type II strings.

Following Kachru and Vafa [1], we identify y � e��S ! 0 with the weak coupling

limit of the heterotic string theory. This identi�cation is motivated by the fact that

the discriminant locus of the mirror CY becomes a perfect square, representing the

splitting [6] of the classical SU(2) singularity into two branches in the quantum theory.

Speci�cally, the discriminant is

4 = [ (1� z)2�y z2 ]� [ ((1�x)2�x2z)2�y x4 ]� [ 1� y ] � 41�42�43 ; (10)

where x = 432x; y = 4y; z = 4z. For y ! 0, 4 degenerates into quadratic factors that

have the following signi�cance with respect to gauge symmetry enhancements in the

heterotic theory:
41 = 0 : T = U SU(2)

42 = 0 : T = U = i SU(2) � SU(2)

T = U = � SU(3) :

The discriminant factor 43 has the interpretation of a strong-coupling singularity in

the heterotic theory. The conjectured duality between the type II theory and the

heterotic theory implies that the perturbative SO(2; 2;ZZ) symmetry of the latter

theory should be encoded in the former one. Indeed it turns out that in the limit

y ! 0 the mirror map for x and z can be written in terms of elliptic j-functions. More

precisely, using (9) and the fact that T and U should enter symmetrically, we �nd:

x = q1 +
X

m+n>1

amnq
m
1
qn
3
=
�

2

j(T ) + j(U)� �

j(T )j(U) +
p
j(T )(j(T ) � �)

p
j(U)(j(U) � �)

z = q3 +
X

m+n>1

bmnq
m
1
qn
3
=

(j(T )j(U) +
p
j(T )(j(T ) � �)

p
j(U)(j(U) � �))2

j(T )j(U)(j(T ) + j(U) � �)2
;

(11)
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where � � j(i) = 1728 and where we have de�ned q1 � qT , q3 � qU=qT
�
(we also

have veri�ed directly that this corresponds to solutions of the PF equations).

Although on the �rst glance complicated, eqs. (11) can be recognized as appropri-

ate generalization of the various limits. That is, for the SU(2) enhanced line, T = U ,

we �nd

x =
�

2j
; z = 1 ;

and consequently 41 = 0. For the points of further enhancement we get

T = U = i : x =
1

2
; and T = U = � : x =1 ;

such that in addition 42 = 0. Moreover, in the limit U ! i1 we recover (9):

z = 0 ; x =
�

2

1

j(T ) +
p
j(T )(j(T ) � �)

(12)

(and similarly for T ! i1). This equation also reects the invariance of the de�ning

polynomial (1) under a subgroup of general automorphisms: xi ! xi, i = 3; 4; 5,

x2 ! x2 + a(x3x4x5)
2, x1 ! x1 + b(x3x4x5)

3 + cx2x3x4x5 that acts non-trivially on

the moduli space as follows:

 0 ! i 0 ;  1 !  1 + 2� 6
0
;  2 !  2 (13)

and hence:

�1 !
�1

�1 � 1
(ZZ2)

on �1 � 1=x. Identifying the invariant expression with j(T ) reproduces (12). Note

also that the symmetry (13) exchanges the factors of the discriminant (10):

41 ! x442 ; 42 !
1

(1� x)4
42 :

The identi�cations (11) provide a further, highly non{trivial check on the conjec-

tured string duality. For this purpose we need the translation of the Yukawa couplings

(that were determined in [10]) in terms of S; T and U , as well as the expression for

the mirror map of the third Calabi{Yau modulus, y. It has the general form

y = q2
X

m+n�1

qm
1
qn
3
+O(q2

2
) � qsfy(q1; q3) +O(q

2

2
) ; (14)

� For the de�nition of the special coordinates ti = 1=(2�i) ln qi, see ref. [10].
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with qs = e�8�
2S , where S will be identi�ed with the (tree level) dilaton of the

heterotic string. Then, using

@Tx = �jT (T )

p
j(U)(j(U) � �)p
j(T )(j(T )� �)

1

j(T ) + j(U) � �
x(1� x)

@Ty = y @T ln fy(q1; q3)

@T z = �jT (T )z �p
j(T )(j(T ) � �)(j(T ) + j(U) � �)� 2j(T )

p
j(U)(j(U) � �)(1� x)

j(T )
p
j(T )(j(T ) � �)(j(T ) + j(U) � �)

@Sx = @Sz = 0 ; @Sy = �8�2 y ;

(jT (T ) � @T j(T )) and the analogous relations obtained by exchanging T and U , the

CY Yukawa couplings given in [10] when written in terms of S; T; U read:

eKSSS = eKSST = eKSSU = eKSTT = eKSUU = 0

eKSTU = 1

eKTTT =
i

2�

E4(T )E4(U)E6(U)(E4(T )
3 �E6(T )

2)

E4(U)3E6(T )2 �E4(T )3E6(U)2

= �
1

4�2
jT (T )

2j(U)(j(U) � �)

(j(T )� j(U))j(T )(j(T ) � �)jU (U)

eKTTU = �
i

2�

E4(T )
2E6(T )(E4(U)

3 �E6(U)
2)

E4(U)3E6(T )2 �E4(T )3E6(U)2
+

i

2�
@T ln fy(q1; q3)

=
1

4�2
jT (T )

j(T )� j(U)
+

i

2�
@T ln fy(q1; q3) :

(15)

Here E4;6 are the normalized Eisenstein series, and eKABC = 1=(2�2!0)
2KABC , where

!0 = E4(T )
1=4E4(U)

1=4 is the fundamental period and the transition from KABC to

eKABC corresponds to going to the canonical gauge. The expressions (15) must be

compared with the results from perturbative string calculations performed in the

heterotic theory [7,8]. We �nd indeed perfect agreement ! Note also that corrections

to KTTT arising from the T -dependence of y cancel in a very non{trivial way. This

is just as expected: for the coupling KTTT we do know the exact expression from the

calculations in the heterotic theory, while the corrections to KTTU proportional to

fy(q1; q3) are not known (this coupling has been determined only to the leading order

in T � U).
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As was pointed out to us [17], the mirrormap for y provides a further independent

consistency check. In fact, since y is invariant under the CY monodromy group that

contains the modular groups for T and U , its logarithm should to be identi�ed with

the modular invariant dilaton de�ned in [7]:

Sinv = S �
1

2
@T @Uh

(1)(T;U) �
1

8�2
ln(j(T )� j(U)) + const: : (16)

Here h(1)(T;U) is the moduli dependent one-loop contribution to the holomorphic

prepotential. Since h(1)(T;U) transforms as modular form of weight (�2;�2) under

(T;U) duality transformations up to terms quadratic in T and U [7,8], @3T @
3

Uh
(1)(T;U)

is a modular form of weight (4; 4). Consistency of (16) and (14) then implies

@2T@
2

U lnfy(q1; q3) =M(q1; q3) + �@2T @
2

U ln(j(T )� j(U)) ; (17)

whereM is a modular form of weight (4; 4) that is regular in the fundamental domain,

except for a fourth order pole at T = U . We indeed �nd that (17) is ful�lled, with

� = 1 and M = 4�2@3U
eKTTT .

4. Duality symmetries

Having successfully met further non-trivial checks on the heterotic{type II du-

ality for the model X24(1; 1; 2; 8; 12), we now address some questions beyond leading

perturbation theory. Adopting the duality hypothesis, we know that important infor-

mation about the non{perturbative S- and T-duality of the heterotic string must be

encoded in the symmetries of the CY moduli space. Its monodromy properties have

been explicitly worked out [9] for the two-moduli example X8(1; 1; 2; 2; 2), and can

be straightforwardly determined for other examples as well, using known results for

the periods. Another type of symmetries arise from the de�ning polynomial, such as

the automorphisms (13). Alternatively, we may directly look for symmetries in the

instanton expansions, which reect some of the monodromy properties.

More speci�cally, analyzing various instanton expansions, we are lead to consider the

following symmetries acting on qi :

a) X24(1; 1; 2; 8; 12) q1 ! q1q3 q3 ! 1=q3 (q2 � 0) z T $ U
b) " q3 ! q2q3 q2 ! 1=q2 y ?
c) X8(1; 1; 2; 2; 2) q1 ! q1q2 q2 ! 1=q2 y ?

X12(1; 1; 2; 2; 6) q1 ! q1q2 q2 ! 1=q2 y ?

� 10 �



We indicated in the last two colomns the relevant modulus and the interpretation of

the symmetry in terms of the dual heterotic string; evidence for what the question

marks should stand for will be presented below.

Symmetry a) is easily identi�ed as the mirror symmetry of the heterotic string

that exchanges the K�ahler and complex structure moduli of the compacti�cation

torus, T2. We did not found a simple generalization to q2 6= 0, possibly indicating a

non-perturbative breaking of this symmetry. Furthermore zjq3=1 6= 1 for q2 6= 0, that

there is a shift of the singularity T = U . However a clari�cation of these points is of

course strongly connected to the precise relation between heterotic and CY moduli at

all orders in q2, an information which is beyond the present knowledge.

A consequence of the inversion symmetry q3 ! 1=q3 is that the mirror map has

the property that powers of q3 are accompagnied by a su�cient number of powers

of q1. Translated into the heterotic string language, this means that no negative

powers of qT ; qU appear in the expansions of physical quantities such as the Yukawa

couplings.
y
In fact, this property can be traced back to the special form of the basis

vectors of the Mori cone. Furthermore, note that the only association of t3 with

the moduli T , U 2 IH+ of the heterotic string that is consistent with the symmetry

q3 ! 1=q3, is given by: q3 = qT =qU . Finally, remember from section 2 that the mirror

map for z reduces to q3=(1 + q3)
2 in the limit q1; q2 ! 0.

A crucial observation is that these features are shared also by the other two

symmetries, b) and c). However, these transformations are quite di�erent from the

point of view of the heterotic string, in that they involve q2 that is related to the

dilaton S.

If we allow q2 to have additional dependence on T , and de�ne for convenience q2 =

q0Sq
�
T , the symmetry c) translates to T ! (1+�)T +S0; S0 !�(1+�)S0��(2+�)T .

Realizing the shift symmetries t ! t + 1 for t = t1; t2; S
0; T , requires then � to be

an integer. Imposing in addition the reasonable condition that the positivity of the

imaginary parts of S0 and T (which are � g�2 and � R2, respectively) is preserved,

enforces � = �1, and this implies: q2 = qS=qT . That is, the natural interpretation of

the symmetry c) is a symmetry under exchange of S and T (and similarly of S and

U for b)) ! Note also that a linear change of variables, S0 ! S0 + �T , does not alter

the expressions for the Yukawa couplings, apart from a constant shift.

y More precisely, the mirror map for z has an additional overall factor of q3 that is compatible

with (15).
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Finally, we point out a remarkable property of the mirror maps z; y (y) in the

models X24 (X8;X12). That is,

zX24
j q2=0
q3=1

= 1 ; yX24
jq2=1 = 1 ; yX8;X12

jq2=1 = 1 ;

are independent of q1 (and of q3 for the second equation). Comparing with the

discriminants of these models, we see that the singularities z = 1 (cf:; T = U), y = 1

(cf., strong coupling) are precisely at the �xed points of the symmetries a){c). This

means that the singularities correspond to ti = 0 of the relevant moduli. Keeping

in mind the relation ti = (
P

iA
j
i!j)=!0, where !i are the (generically independent)

components of the CY period vector, we see that this implies the vanishing of certain

linear combinations of the periods. Hence, according to the N = 2 mass formula [18],

Bogomolnyi states with the appropriate quantum numbers should become massless at

these points in the moduli space (provided they exist). The fact that these singularities

are not of the simple conifold type indicates that the ideas described in [5] might apply

in a more general context.

5. Conclusions

We have amassed further, and we think convincing, evidence in favor of the

conjectured duality between heterotic strings compacti�ed on K3 � T2, and type II

strings compacti�ed on certain Calabi-Yau manifolds. We have also gained insight in

the modular properties of certain CY theories in the weak coupling limit, and believe

that by focusing onK3 �brations, many more examples can be systematically studied.

We also analyzed the symmetry structure of some models, linking the symmetries of

the CY instanton expansion to the perturbative and non-perturbative T - and S-

dualities of the quantum heterotic string. We hope that the methods described in

this paper can be developed further, allowing to make new, concrete and truly non-

perturbative predictions for N=2 supersymmetric string theory.
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Appendix: Calabi-Yau manifolds that are K3 �brations

h1;1 h2;1 � deg: weights
1 2 86 �168 8 (1; 1; 2; 2; 2)
2 2 128 �252 12 (1; 1; 2; 2; 6)
3 3 99 �192 10 (1; 1; 2; 2; 4)
4 3 243 �480 24 (1; 1; 2; 8; 12)
5 4 148 �288 16 (1; 1; 2; 4; 8)
6 4 190 �372 20 (1; 1; 2; 6; 10)
7 5 101 �192 12 (1; 1; 2; 4; 4)
8 5 121 �232 14 (1; 1; 2; 4; 6)
9 5 161 �312 18 (1; 1; 2; 6; 8)
10 7 143 �272 20 (1; 1; 4; 4; 10)
11 7 271 �528 36 (1; 1; 4; 12; 18)
12 8 104 �192 16 (1; 1; 4; 4; 6)
13 8 164 �312 24 (1; 1; 4; 6; 12)
14 8 194 �372 28 (1; 1; 4; 8; 14)
15 9 111 �204 18 (1; 1; 4; 6; 6)
16 9 125 �232 20 (1; 1; 4; 6; 8)
17 9 153 �288 24 (1; 1; 4; 8; 10)
18 9 321 �624 48 (1; 1; 6; 16; 24)
19 10 194 �368 32 (1; 1; 6; 8; 16)
20 10 220 �420 36 (1; 1; 6; 10; 18)
21 10 376 �732 60 (1; 1; 8; 20; 30)
22 11 131 �240 24 (1; 1; 6; 8; 8)
23 11 143 �264 26 (1; 1; 6; 8; 10)
24 11 167 �312 30 (1; 1; 6; 10; 12)
25 11 227 �432 40 (1; 1; 8; 10; 20)
26 11 251 �480 44 (1; 1; 8; 12; 22)
27 11 485 �960 84 (1; 1; 12; 28; 42)
28 12 164 �304 32 (1; 1; 8; 10; 12)
29 12 186 �348 36 (1; 1; 8; 12; 14)
30 12 318 �612 60 (1; 1; 12; 16; 30)
31 13 229 �432 48 (1; 1; 12; 16; 18)

Table A.1: Simple hypersurfaces in weighted IP4 which are K3 �brations.
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h1;1 h2;1 d1 d2 weights
1 2 68 6 4 (1; 1; 2; 2; 2; 2)
2 3 69 6 6 (1; 1; 2; 2; 2; 4)
3 4 84 8 8 (1; 1; 2; 2; 4; 6)
4 4 76 8 6 (1; 1; 2; 2; 4; 4)
5 6 138 16 12 (1; 1; 2; 6; 8; 10)
6 6 102 12 10 (1; 1; 2; 4; 6; 8)
7 6 98 12 8 (1; 1; 2; 4; 6; 6)
8 6 82 10 8 (1; 1; 2; 4; 4; 6)
9 6 70 8 8 (1; 1; 2; 4; 4; 4)
10 8 76 12 8 (1; 1; 4; 4; 4; 6)
11 9 81 12 12 (1; 1; 4; 4; 6; 8)
12 9 75 12 10 (1; 1; 4; 4; 6; 6)
13 10 122 20 16 (1; 1; 4; 8; 10; 12)
14 10 98 16 14 (1; 1; 4; 6; 8; 10)
15 10 94 16 12 (1; 1; 4; 6; 8; 8)
16 10 84 14 12 (1; 1; 4; 6; 6; 8)
17 10 76 12 12 (1; 1; 4; 6; 6; 6)
18 12 128 24 20 (1; 1; 6; 10; 12; 14)
19 12 108 20 18 (1; 1; 6; 8; 10; 12)
20 12 104 20 16 (1; 1; 6; 8; 10; 10)
21 12 96 18 16 (1; 1; 6; 8; 8; 10)
22 13 139 28 24 (1; 1; 8; 12; 14; 16)
23 13 121 24 22 (1; 1; 8; 10; 12; 14)
24 13 117 24 20 (1; 1; 8; 10; 12; 12)
25 14 166 36 32 (1; 1; 12; 16; 18; 20)

Table A.2: Simple complete intersections Calabi-Yau spaces in weighted IP5 which

are K3 �brations.
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