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Abstract

We consider the generalization of Haldane's state-counting procedure to describe all

possible types of exclusion statistics which are linear in the deformation parameter g.

The statistics are parametrized by elements of the symmetric group of the particles in

question. For several speci�c cases we determine the form of the distribution functions

which generalizes results obtained by Wu. Using them we analyze the low-temperature

behavior and thermodynamic properties of these systems and compare our results with

previous studies of the thermodynamics of a gas of g-ons. Various possible physical

applications of these constructions are discussed.
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1 Introduction

The importance of the notion of statistics for the formulation of the quantum many-body

problem and investigation of its macroscopic properties is very well established. Moreover in

the last decade it was realized that there are dynamical models where interparticle forces can

be regarded as purely statistical interactions. The most famous of these is a system of particles

with Aharonov- Bohm type interactions [1, 2] (anyons in 2+1 dimensions) and models solved by

the Thermodynamic Bethe Anzatz [3, 4, 9]. These two examples demonstrate the possibility of

constructing intermediate statistics which are neither Bose-Einstein nor Fermi-Dirac statistics.

It is obvious that there are at least two ways to deform statistics to interpolate between

Fermi and Bose statistics. The �rst is to deform the exchange factor which appears when

particles are permuted (exchange statistics) and the second is to change the allowed occupation

numbers for each quantum state (exclusion statistics). This latter possibility was initially

explored by Haldane [5].

Here we will summarize the de�nition of exclusion statistics for one species of particles, for

simplicity. Following Ref.[5] let us consider the system con�ned to a �nite region for which

the number K of independent single particle states is �nite and extensive, i.e. proportional

to the size of the region where the particle resides. Then the statistics are determined by the

consequence of adding a second particle, keeping all coordinates of the existing particles and

external properties (size etc.) of the system �xed. In general an N -particle wave function with

�xed coordinates of N � 1 particles can be expanded in a basis of wave functions of the Nth

particle. It is important that in the presence of N � 1 particles the number of allowed single

particle states d(N) is not in general equal to K but can depend on the number N � 1. If we

impose a state homogeneity condition (i.e. independence of d(N) on the particular choice of

state for the N�1 particles) and particle homogeneity condition (i.e. independence d(N+m)�d(N)
m

on m) then Haldane's exclusion statistical parameter g is de�ned by

g = �d(N + m)� d(N)

m
(1)

for any choice of N and m. Using the homogeneity properties it is possible use the de�nition

in the form g = d(1)� d(2) from which it immediately follows that such statistical interactions

make their �rst contribution at the level of the second virial coe�cient.

Applying (1) to the usual Bose and Fermi ideal gases gives g = 0 for the Bose case (i.e. the

number d(N) does not depend on N) and g = 1 for the Fermi case (i.e. after the inclusion of

N�1 particles the next particle can occupy only K�N+1 states and hence d(N) = K�N+1).

These straightforward examples make the de�nition of the statistical deformation (1) very

attractive.

However one complication arises: the de�nition of a fractional dimension for the Hilbert

space associated with both single and many particle states. This question is also closely related

to the construction of quantum statistical mechanics for a system with such `g-particles' {

state-counting which is needed to calculate the entropy and other thermodynamical quantities

of the system. In his original paper [5] Haldane suggested calculating the dimension of the

full Hilbert space for N-particle states W using (we will call this expression the Haldane-Wu

state-counting procedure)
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W =
(d(N) + N � 1)

(d(N) � 1)!(N)!
d(N) = K � g(N � 1); (2)

which was subsequently used by many authors [6, 4, 7] to describe the thermodynamic prop-

erties of g-ons. In our previous paper [10] we argued that this state-counting procedure is

inconsistent with a step by step application the original de�nition of Haldane's statistics (1).

In that paper we showed that expression (2) is actually one of the two simplest state-counting

deformations of the exclusion statistics and so it is perhaps not surprising that this possibility

was realized in many models. However the procedure for state-counting is closely connected

with the construction of a fractional dimensional Hilbert space and could not be performed

self-consistently without it.

In reference [10] we tried to resolve at least some of the di�culties connected with the

fractionality of the Hilbert space dimension. Our main suggestion was to treat the notion of

Haldane's dimension, and the corresponding statistics, in a probabilistic spirit. Motivated by

the experience of dimensional regularization we de�ned the dimension of a space as a trace of

diagonal `unit operator' where the diagonal matrix elements are not unity in general but are

the probabilities to �nd a system in a given state. These probabilities are then uniquely de�ned

by the statistics of the particles with homogeneity properties or, equivalently, by a statistical

interaction.

In this paper we want to consider and classify the generalizations of the Haldane-Wu state-

counting procedure. They describe all the possible types of exclusion statistics which depend

linearly on the deformation parameter g. As we will show, these statistics (which we term �-

statistics) are parametrized by elements of the symmetric group assorted with the particles in

question. For several particular cases of deformations we derive the equations for distribution

functions which generalize the equation obtained by Wu. These are then used to analyze

the low-temperature behavior and thermodynamic properties of the systems and compare our

results with the thermodynamics of a gas of g-ons studied earlier.

The paper is organized as follows. In the next section we describe in more details state-

counting procedures for bosons, fermions and the Haldane-Wu ideal gas. These are used to

motivate the introduction of a general construction of exclusion statistical deformations de-

�ned in section 3. In section 4 we brie
y summarize the main points of the derivation of the

thermodynamics for a gas obeying the Haldane-Wu state-counting procedure. Then in section

5 we investigate the simplest example of �-statistics associated with the identical permutation.

More sophisticated permutations will be explored in section 6.

2 State-counting procedure. Simple examples

Let us consider the familiar counting procedure for many-body states for fermions and bosons

in some detail. It is well-known that the number of quantum states for N identical fermions

occupying a set of single-particle K states is given by the following expression:

Wf =
K!

N !(K �N)!
= K � (K � 1) � (K � 2) : : : (K �N + 1) � 1

N !
(3)
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To understand the procedure of the construction we can consider the factor K as the number

of ways to place a �rst particle in the system, K � 1 as the corresponding number for a second

particle and so on. In this procedure we consider the particles as distinguishable and at the

end take into account indistinguishability by the factor 1=N !.

In a similar manner we interpret the bosonic expression for the number of possible N -particle

states, which is

Wb =
(K + N � 1)!

N !(K � 1)!
= K � (K + 1) � (K + 2) : : : (K + N � 1) � 1

N !
(4)

as a product of the number of ways to add the i-th particle to the system. It is easy to see that

in contrast to the fermionic case, where the addition of each particle reduces the number of

accessible states, in the bosonic case the number of states it increases by unity when a particle

is added. A picture which provides an explanation of this strange fact appeals to quantum

mechanical arguments.

Initially we assume that the particles are distinguishable and so we may associate di�erent

creation operators with them. These do not commute in general and this is the main origin of the

distinction with particles obeying Boltzmann statistics. For the �rst particle noncommutativity

does not contribute and we may place it in K possible states. To see why the number of states

for the second particle increases we presume that the Hilbert space of the system is factorized

into a tensor product of the Hilbert spaces for each single particle state. Then we obtain K �1

ways to place the particle in the empty states and two possibilities for the state occupied by

the �rst particle: due to the noncommutativity of the creation operators for the �rst (a+1 ) and

second (a+2 ) particles the state vectors a+1 a
+
2 j0 > and a+2 a

+
1 j0 > are in principle di�erent (in

the case of Boltzmann particles these states are identical). As a result we obtain K � 1 + 2

accessible states for the second particle. By close analogy with the previous step, at the third

step we have K � 2 possibilities to add to empty states and 2 � 2 possibilities to add to the

two single-occupied states. And so on. As a consequence we obtain the product of factors in

equation (4). The additional factor of 1=N ! makes our particles indistinguishable. It is not

di�cult to see that for the same reasons for Boltzmann particles we obtain KN

N !
which also can

be considered from state-counting procedure point of view.

So for both fermions and bosons the expression for W contains a product of N brackets

which are interpreted as the number of the accessible states for the corresponding particle. We

will now construct in the same manner intermediate statistics which reduce to fermionic or

bosonic statistics for particular values of the deformational parameter.

We can now state the simplest deformation of the state-counting procedure, which is natural

and interpolates between Bose- and Fermi- cases. We suppose that the increase in the number

of available single particle states due to the addition of one particle is not 1, as it was for

bosons, nor �1, as it was for fermions, but is �. Then the number for states of N particles

occupying a set of K single particle states is given by

W =
1

N !
�K � (K + �) � (K + 2�) : : : (K + �(N � 1)) (5)

This expression reduces to Wb when � = 1 and to Wf when � = �1 in such a manner that

the lth bracket of Eq.(4) is transformed into the lth one of Eq.(3). In the next section we will

consider this simple example in detail.
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The Haldane-Wu state-counting procedure can also be viewed in this manner. It gives the

following dimension for the N-particle space:

W =
(K + (N � 1)(1 � g))!

N !(K � gN � (1� g))!
(6)

which also interpolates between the Bose- and Fermi- expressions. Originally the expression was

introduced by Haldane [5] to describe a state-counting procedure for particles with exclusion

statistics and subsequently was used by many authors [6, 4, 7] to investigate the thermodynamic

properties of a gas of such particles (g-ons). One can rewrite (6) as follows

W =
1

N !
� (K + (N � 1)(1� g))! � (K + (N � 1)(1 � g)� 1)! : : : (K � g(N � 1))! (7)

=
1

N !
�
N�1Y
l=0

(K � g(N � 1) + l)! :

In this form we can see again that each of the brackets in the expression interpolates from one

of brackets in Eq.(4) (by g = 0) to another one in Eq.(3) (by g = 1). Moreover the lth bracket

of Eq.(4) is transformed into (n� l + 1)th one of Eq.(3), i.e. brackets of Eq.(4) correspond to

brackets of Eq.(3) in reverse order by replacement of g = 0 by g = 1 in Eq.(8).

Motivated by these two examples, in the next section we give the general de�nition of

deformed state-counting procedures which are based on the linearity of the deformation of

single-particle dimensions and on the symmetric group of the system of particles.

3 State-counting procedure: general construction

In this section we will describe the general case of state-counting deformations of statistics

which are linear in g. These deformations di�er from Haldane's original exclusion statistics but

are still of an exclusion type as they are concerned with occupation number considerations (as

in eqs.(8) and (5)). Moreover we will show that the expressions (8) and (5) represent the two

simplest examples of such deformations.

The de�nition of the deformed statistics (which depend linearly on g) consists in stating a

one to one correspondence between the brackets of Eq.(4) and Eq.(3). It is clear that there

are N ! possibilities of such a correspondence and they are parametrized by the general element

of the group of permutations of the set of N distinguishable objects. The discussion in the

previous section implies that the general expression for the number of states is:

W =
1

N !
�
N�1Y
l=0

(K � gl + (1� g)�l) ; (8)

where �l is the lth member of a permutation of 1; : : : ; N , denoted by �. The cases g = 0 and

g = 1 correspond respectively to bosons and fermions independently of the choice of �. For

the identical permutation (� = id : �l = l) expression (8) reduces to Eq.(5) with � = 1 � 2g

while for the inverse case (�l = N � l � 1) we �nd Eq.(8). It is obvious that expression (8)

represents all possible linear (in term of g) exclusion statistics. Henceforth we will term the

statistics parametrized by the permutation � as �-statistics.
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Let us now note that not all permutations � lead to distinct thermodynamic behavior in

the thermodynamic limit K;N ! 1, N=K = const. Indeed, permutations di�ering only

by a �nite number of pairwise transpositions give the same statistics in the thermodynamic

limit. Moreover only the permutations which di�er by an in�nite number, M = O(N), of

pairwise transpositions which in their order change the positions of the particles on in�nite

number M 0 = O(N) give distinguishable thermodynamic results. So if we are interested in

thermodynamic quantities we should consider not the original group of permutations S but the

quotient group S0 = S=H where H is the subgroup of permutations for which the numbers M

and M 0 are o(N) (we imply that an arbitrary but �nite number of elements in the products

are allowed). The simplest example of such transposition � 2 H can be easy found: �l = l + 1

for l = 0; : : : ; N � 2 and �N�1 = 0. In this case M 0 is equal N but M = 1 and is negligible

if N ! 1. In the following we will be interested speci�cally in �-statistics with � 2 S 0 for

N !1.

Following [6] we can consider systems containing particles of di�erent species. We introduce

the notation: Ki is the number of independent states of a single particle of species i, Ni is the

number of particles of species i. Then the number of many-body states at �xed fNig in the

framework of �-statistics is given by the expression:

W =
Y
i

1

(Ni)!
�
Ni�1Y
l=0

(Ki � gili + (1 � gi)�
(i)
li
� gik�

ik
lk

) ; (9)

where, as above, �i is a permutation of the particles of i-th species and the mapping �ik is a

mapping of the k-species into the i-th one. If the parameters gik are not zero or the mappings �ik

are not trivial (�iklk = 0) we will call such �-statistics as mutual �-statistics. This construction

exactly generalizes the Haldane-Wu mutual statistics and models the dependence of the number

of states for particles of species i on the particle number Nj of other species. We will not deal

with mutual statistics in detail but the generalizations are straightforward.

4 Thermodynamical properties of Haldane-Wu gas

This section is included to make the picture more complete and the references more convenient.

It is devoted to the brief description of the thermodynamic properties of a gas using the Haldane-

Wu state-counting procedure (6):

W =
Y
i

(Ki + (Ni � 1)(1 � g))!

Ni!(Ki � gNi � (1� g))!
:

Starting with this counting procedure it is possible to construct thermodynamics in the standard

manner. In the thermodynamic limit, the number of particles Ni, as well as the number of

single-particle states Ki, becomes in�nite. But the occupation numbers ni = Ni=Ki still remain

�nite. The entropy of the system S = lnW (we set Boltzmann's constant equal to unity). By

de�nition, the ideal gas with fNig particles has a total energy of the following form:

E =
X
i

Ni�i
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with constant �i. For such gases, the thermodynamic potential 
 can be evaluated by the

minimizing


 = E � TS� �
X
i

Ni

with respect to the variation of the densities ni (here T is the temperature and � is the chemical

potential).

The resulting thermodynamics may be summarized as follows [6]:


 = �T
X
i

Ki ln
1 + wi

wi

;

where the function wi is de�ned by the following equation:

w
g
i (1 + wi)

1�g = e(�i��)=T : (10)

Using the same notation the distribution functions ni may be expressed as

ni = 1=(wi + g) : (11)

This leads to fermionic-like behavior for cases with the value of the deformation parameter

0 < g � 1 (i.e. except the case of real bosons) at low temperatures. In particular, at zero

temperature the distribution function contains a `Fermi-step':

ni =

(
0 if �i > EF

�1=� if �i < EF
: (12)

We will refer to the formulae (10,11,12) when other deformed state-counting procedures are

considered in the sections below.

5 id-Statistics and its thermodynamics

In this section we derive the occupation number distribution for gas of particles obeying id-

statistics and compare it with the result obtained in [6] for the permutation �X = �l = N�l�1,

i.e. with Haldane-Wu state-counting procedure.

Let us consider the identical permutation in Eq.(9): �
(i)
l = l for all i. In this case we regain

expression (5) for the number of states of particles of species i with � = 1�2g. One can rewrite

Eq.(9) using �-functions (due to the well-known property of �-function: �(z + 1) = z�(z)) as

follows

W =
Y
i

�
�
Ki+�Ni

�

�
�Ni

�
�
Ki

�

�
(Ni)!

:

We consider an ideal gas of such particles, where the total energy is a direct sum

E =
X
i

Ni�i ;
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where �i is the energy of a particle of species i. Following the standard procedure [11], one can

consider a grand canonical ensemble at temperature T and with chemical potential �. Then

the partition function is

Z =
X
fNig

W (fNig) exp

(X
i

Ni(�� �i)=kT

)
:

For very large Ki and Ni the summand has a very sharp peak around the set of most probable

particle numbers fNig. Using the asymptotic approximation for �-functions (ln �(z) = z ln z)

and introducing the average occupation number ni = Ni=Ki, one can express lnW as follows

lnW =
X
i

Ki

��
1

�
+ ni

�
ln(1 + �ni)� ni lnni

�
:

The most probable distribution of ni is determined by

@

@ni

X
i

Ki

��
1

�
+ ni

�
ln(1 + �ni)� ni lnni + ni

�� �i

kT

�
= 0 ;

that leads to the expression for the average occupation number:

ni =
1

exp
�
�i��
kT

�
� �

(13)

This expression recovers the Bose, Boltzmann and Fermi distributions with � = 1, � = 0

and � = �1 respectively.

Now we consider in detail the thermodynamics of a gas with 0 < � � 1 and demonstrate

Bose-condensation at low temperature and values of the deformation parameter � � 0 (which is

equivalent to the inequality g � 1=2). The energy distribution of particles with the occupation

number (13) is [11]

dN� =
SV m3=2

p
2�2h3

�
p
� d�

exp (���)
T

� �
(14)

where we use units such that Boltzmann's constant k = 1, spin degeneracy factor S = 2s+1

(s being the spin of the particle), m is the mass of the particle, V is the total volume of the

gas. Integrating with respect to � we obtain the number of particles with energy � > 0 in the

gas:

N

V
=
S(mT )3=2p

2�2h3

Z
1

0

p
z dz

ez��=T � �
: (15)

This formula determines the chemical potential � of the gas as a function of its temperature

T and density N=V .

From the condition ni � 0 one can derive a restriction on �:

� � � ln� � T ; where ln� < 0 : (16)
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If the temperature of the gas is lowered at constant density N=V , the chemical potential

� given by (15) increases. It reaches the limiting value determined by the relation (16) at a

temperature T0, which can be determined from the equation

N

V
=
S(mT0)

3=2

p
2�2h3�

Z
1

0

p
z dz

ez � 1

which gives the following value for T0:

T0 =
3:31h2

mS2=3

�
N

V

� 2

3 � � 2

3 = T
(b)
0 � � 2

3 (17)

with the temperature of Bose-Einstein condensation for bosons (� = 1) T
(b)
0 .

For T < T0 Eq. (15) has no solution obeying the relation (16). This contradiction arises

because we have actually neglected in (14) the particles with � = 0 by multiplying the expression

by
p
�. In reality the situation for T < T0 is as follows. Particles with energy � > 0 are

distributed according to formula (14) with � = � ln� � T :

dN� =
1

�
� SV m

3=2

p
2�2h3

�
p
� d�

e�=T � 1
:

The total number of particles with energies � > 0 is

N�>0 = N(T=T0)
3

2

and the number of particles in the lowest state with � = 0 is

N�=0 = N

0
@1�

�
T

T0

� 3

2

1
A (18)

Thus we obtain the Bose-Einstein condensation for particles obeying (13) for 0 < � � 1.

Moreover the form of the expression (18) does not depend on �; for di�erent values � we just

obtain di�erent values of Bose-Einstein condensation temperatures (17).

For �1 � � < 0, it follows from (13) that

ni � � 1

�

In this case at T = 0 the average occupation number for single particle states with a continuous

energy spectrum has a `fermionic' step-like distribution:

ni =

(
0 if �i > EF

�1=� if �i < EF
:

Now we can compare the results of this section with those derived for the inverse permu-

tation �X in [6]. Let us remember that for the inverse permutation the average occupation

number at T = 0 has a fermi-like distribution for any value of the parameter except that

which corresponds to bosons. In the present case for the identical permutation we obtained

a fermion-like distribution for parameter values interpolating between Fermi and Boltzmann

distributions (0 < � � 1). For parameter values between Boltzmann and Bose distributions

8



(�1 � � < 0) we obtained a boson-like behavior at low temperatures (18). Furthermore, for

the identical permutation we have the Boltzmann distribution at � = 1=2 while for the inverse

one the distribution tends to the Boltzmann distribution (at the same value of the parameter)

only in the high temperature limit.

Now we are going to consider several more complicated examples of permutations and

compare them with those discussed above.

6 Other permutations

As it is easy to see from the Eqn. (9), we have a lot of possibilities to construct statistics

using di�erent permutations. A more natural and simple way to do this is to divide the set of

brackets into two equal parts (we assume the number of brackets is even, which is not important

in the thermodynamic limit) and then consider the two simplest permutations (id- and inverse

permutations) for these parts (see Figs.2-5). These constructions seem to be simple, however

they display a great variety of thermodynamic properties.

6.1 The permutation �XX

At �rst we will deal with the permutation where the �rst N=2 factors of the number of states

for fermions correspond to those for bosons crosswise and the same correspondence takes place

for the second N=2 brackets (Fig.2). It is natural to call this permutation �XX.

We can formalize our rule representing the permutation in terms of the following expressions:

�XX
(1)
l =

N

2
� l� 1 ; for 0 � l � N

2
� 1

�XX
(2)
l =

3

2
N � l � 1 ; for

N

2
� l � N � 1 :

Then using Eqn. (9) the number of many-body states for very large Ki and Ni is given by

the equality:

WXX =
Y
i

1

(Ni)!
�
�
Ki + 1�g

2
Ni

�
!�

Ki � g

2Ni

�
!
�
�
Ki +

�
1� 3

2
g
�
Ni

�
!�

Ki + 1�3g
2 Ni

�
!

Following the same procedure as in the previous section one can derive the expression for

the average occupation number

nXXi =
1

wXX(�) + g=2

where � = exp
�
�i��
kT

�
and wXX(�) satis�es the following equation:

w
g

2

XX(�) �
�
wXX(�) +

1

2

� 1�g

2 �
�
wXX(�) + 1� g

�1� 3

2
g �
�
wXX(�) +

1

2
� g

��1+3g
2

= � (19)

This equation may be considered as an analogue of Wu's equation (10). It is interesting to note

that not only the general form of this equation is similar to the form of Eqn.(10): the sum of

9



the powers in the expression (19) is equal to unity as in (10). We will see that this property is

common to the other permutations.

The average occupation number at T = 0 has a fermionic step-like distribution for all values

of the parameter g except g = 0 (bosons):

nXXi =

8><
>:

0 if �i > EF
2
g

for g � 1=2
2

3g�1
for g > 1=2 if �i < EF

(20)

where the Fermi level is a continuous function of g for 0 < g � 1 but not a smooth function

as it was for the inverse permutation �X (EF = 1=g). For the case g = 1=2 it is possible to

solve the Eqn.(19) and obtain the following expression for the average occupation number:

0
@nXX =

1q
1
16

+ exp(2 ���
kT

)

1
A
g= 1

2

(21)

Comparing this with previous cases we recall that for the inverse permutation �X the same

expression occurs with the replacement of 1=16 by 1=4 [6] and in the case of the identical

permutation for g = 1=2 we have just the Boltzmann distribution. So in some sense the

function nXX is closer to the Boltzmann distribution at g = 1=2 than to Wu's distribution.

6.2 The permutation �XI

The second example of this section is generated by the permutation where the �rst N=2 brackets

of the number of states for fermions correspond to those for bosons crosswise and for the

second N=2 brackets the identical permutation takes place (Fig.3). One can write the following

expressions for it:

�XI
(1)
l =

N

2
� l � 1 ; for 0 � l � N

2
� 1

�XI
(2)
l = l ; for

N

2
� l � N � 1 :

Then the number of many-body states can be expressed as:

WXI =
Y
i

1

(Ni)!
�
�
Ki +

�
Ni

2 � 1
�

(1� g)
�
!�

Ki � g
�
Ni

2 � 1
�
� 1

�
!
�

�
�
Ki+(1�2g)Ni

1�2g

�
�
�
Ki+(1�2g)Ni=2

1�2g

� � (1� 2g)
Ni
2 :

Following the same procedure as in previous sections (i.e.minimizing the thermodynamic

potential 
), we obtain an expression for the average occupation number:

nXIi =
1

wXI(�) + g=2

where the function wXI(�) as usual is de�ned by the equation:

w
g

2

XI(�) �
�
wXI(�) +

1

2

�1�g

2 �
�
wXI(�) + 1 � 3

2
g

�
�
�
wXI(�) +

1 � g

2

�� 1

2

= � :

10



For this permutation at T = 0 we also obtain a step-like distribution for any value of the

parameter g except g = 0 (bosons):

nXIi =

8><
>:

0 if �i > EF
2
g

for g � 2=3
1

2g�1
for g > 2=3 if �i < EF

(22)

As for the permutation �XX the Fermi level is a continuous, but not smooth, function of g for

0 < g � 1.

6.3 The permutation �IX

The last example of such a type of permutation can be denoted by �IX, illustrated by Fig.4

and described by the formulae:

�IX
(1)
l = l ; for 0 � l � N

2
� 1

�IX
(2)
l =

3

2
N � l � 1 ; for

N

2
� l � N � 1

To escape repetition of standard arguments, we just state the main results for this case without

comment:

WIX =
Y
i

1

(Ni)!
�

�
�
Ki+(1�2g)Ni=2

1�2g

�
�
�

Ki

1�2g

� � (1 � 2g)
Ni
2 �

�
Ki +

�
1 � 3

2g
�
Ni

�
!�

Ki + 1�3g
2 Ni

�
!

:

nIXi =
1

wIX(�) + 3g�1
2

w
3g�1

2

IX (�) �
�
wIX(�) +

1

2

�1� 3

2
g

�
�
wIX(�) +

g

2

� 1

2 � = � (23)

In contrast with the previous examples, for this permutation at T = 0 the fermion distri-

bution takes place only for values of the parameter g > 1=3 and the Fermi level is a continuous

and smooth function of g:

nIXi =

(
0 if �i > EF
2

3g�1 for g > 1=3 if �i < EF
:

To investigate the behavior of particles with such statistics for g � 1=3 we will consider the

particular example g = 1=3. In this case the equation (23) can be solved and the average

occupation number is given by

0
@nIX =

3q
9�2 + 1

4 � 1

1
A
g= 1

3

:

The condition n � 0 implies the following inequality for �

� � ln(2
p

3)kT :

11



It is similar to relation (16) which was obtained for the statistics generated by the identical

permutation. Following the discussion of the previous section one can derive that Bose-Einstein

condensation takes place in this case and the temperature for condensation is determined by

the following equation

N

V
=
S(mT0)

3=2

p
2�2h3�

Z
1

0

3
p
z dz

1
2

p
3ez + 1� 1

:

We obtain the Bose-Einstein condensation at g = 1=3 and it takes place at g = 0 (bosons). So

one can conclude that the statistics generated by the permutation �IX obey Bose-like behavior

at low temperature for the values of the parameter 0 � g � 1=3.

For the permutations �IX and �XI one can obtain the equivalent expressions for the average

occupation number by g = 1=2:

0
B@nXI =

1p
2

exp

�
�2

�� �

kT

�0@
s

1 + 45 exp(4
�� �

kT
) � 1

1
A

1

2

1
CA
g= 1

2

:

In some sense this expression is closer to the Boltzmann distribution than (21). It can be

connected with the presence of partially identical pieces in the basic permutation. Indeed,

in the case of pure identical permutation in this limit we had a Boltzmann distribution. In

other words we can try to characterize the thermodynamic properties in terms of permutation

characteristics. Let us stress, however, that distribution functions of all the above examples

have the Boltzmann limit at enough high temperature.

6.4 The permutation �./

Let us now turn to the last example, which is a little more complicated. Consider the permuta-

tion that correlates the �rst N=2 brackets of the number of states for fermions with the second

N=2 for bosons identically and the same correspondence takes place for the remaining brackets.

It is similar to the identical permutation but the sets of the �rst and second N=2 brackets are

related in a crosswise fashion (Fig.5). We will denote this permutation by the index ./ and

describe it by:

�./
(1)
l =

N

2
+ l ; for 0 � l � N

2
� 1

�./
(2)
l = l� N

2
; for

N

2
� l � N � 1 :

The main results are

W./ =
Y
i

1

(Ni)!
�

�
�
Ki+Ni(1�3=2�g)

1�2g

�
�
�
Ki+Ni(1�g)=2

1�2g

� �
�
Ki+Ni(1�3g)=2

1�2g

�
�
�
Ki�Nig=2

1�2g

� � (1 � 2g)Ni ;

n./i =
1

wIX(�) + g
2

;
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w
g

2
./(�) �

�
w./(�) +

1

2

�g�1

2 �
�
w./(�) +

1

2
� g

� 1�3g

2 � (w./(�) + 1 � g)1�
3

2
g = �1�2g : (24)

It is interesting to note that in this case at T = 0 we obtain exactly the same results as for

the permutation �XX: n./ = nXX (20), i.e. we obtain the Fermi-like distribution at any value

of parameter except that which corresponds to bosons and the Fermi level is a continuous, but

not a smooth, function of the parameter.

The equation (24) obeys the identity at g = 1=2. So for this case we have to consider the

original expression for the number of many-body states for this permutation with g = 1=2.

Following the standard procedure one can obtain the equation for the average occupation

number:

0
@
s

1� n2./
16

= n./ exp

0
@ 1

1 � n2./
16

1
A � exp

�
�� �

kT

�1A
g= 1

2

:

6.5 Summary

We have considered four non-trivial examples of permutations obeying four di�erent statistics.

Summarizing our discussion, we can note that in only one case, �IX, we obtained a Bose-like

behavior at low temperature for some particular choices of parameters. In other three cases

such behavior only takes place at the extreme parameter value corresponding to bosons and

all other parameter values yield a Fermi-like distribution at T = 0 with continuous but non-

smooth Fermi level as a function of g. Moreover the results for the permutation �XX and �./
are identical at T = 0. Comparing these examples with the two simplest permutations �id and

�X, one can observe that the permutations �XX, �XI and �./ are similar to the inverse one

except for the fact that for these permutations the Fermi levels are non-smooth functions of

the parameter g (20, 22). Finally the permutation �IX is close to the identical one but the

transition between the Bose- and Fermi-like behaviors occurs at a di�erent value of g (g = 1=2

for the identical permutation and g = 1=3 for �IX).

7 Conclusion

Summarizing our discussion, let us mention some possible physical applications of the construc-

tions in this paper. The simplest example of �-statistics, obeyed by the identical permutation,

has been recently considered in [12] as an alternative to the state-counting procedure for ex-

clusion statistics. However one can note that similar statistics (up to constant), with integer

positive values of the statistical parameter �, appeared long ago in the theory of statistics of

donor and acceptor levels in semiconductors [13]. In the same manner, the Hubbard model with

an in�nite value of Coulomb interaction on a site can be considered as a gas of g-ons obeying

g = 2 statistics (a site with two single electron levels can be occupied by only one electron).

Apparently, there are many other systems where such statistics arise naturally.

Another example of the �-statistics with � 6= id can be represented by a system of anyons

on a torus in a strong magnetic �eld when only the lowest Landau level is occupied. As was

shown in reference [14] the number of many-body states in this case is given by

13



D = s� � (� + N(1 � �)� 1)!

(�� �N)!N !
;

where � is the magnetic 
ux seen by the particle and � is the statistical parameter which is

presented as � = k=s with positive coprime integers k and s. One can see that this expression

corresponds to the number of many-body states for �-statistics with the permutation

�0 = 0 ; �l = N � l for 1 � l � N � 1 ;

which can be termed �1X and is illustrated in Fig.6. Let us remember that for the same system

on a sphere the number of many-body states is described by Haldane-Wu statistics with the

permutation �X. So it is natural to expect the appearance of more complicated permutations on

higher genus surfaces or taking into account higher Landau levels. Moreover, one can imagine

a lot of possible physical speculations based on the statistics with �XX or �XI; �IX. We will

return to this subject in our forthcoming paper.

In conclusion, we considered the generalization of Haldane's state-counting procedure to de-

scribe all possible types of exclusion statistics which are linear in the deformation parameter g.

The statistics are parametrized by elements of the symmetric group of the particles. For sev-

eral particular cases we derived the equations for distribution functions which generalize results

obtained by Wu. Using them we analyzed the low-temperature behavior and thermodynamic

properties of these systems and compared our results with previous studies of the thermody-

namics of a gas of g-ons. We speculated on the correlation between statistical properties of gas

obeying �-statistics and the properties of the permutation �. Physical examples where these

constructions are realized were discussed.
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Figures
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Fig.1 Illustration for the permutation �X(Haldane-Wu state-counting procedure).
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Fig.2 Illustration for the permutation �XX.

q q q q q q q q

q q q q q q q q

Q
Q
Q
Q
Q
Q
QQ

�
�
�
�
�
�
��

Fig.3 Illustration for the permutation �XI.
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Fig.4 Illustration for the permutation �IX.
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Fig.5 Illustration for the permutation �./.
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Fig.6 Illustration for the permutation �1X.
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