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Abstract

We consider a space{time invariant duality symmetric action for the free Maxwell �eld and

an SL(2;R)�SO(6; 22) invariant e�ective action describing a low{energy bosonic sector

of the heterotic string compacti�ed on a six{dimensional torus. The manifest Lorentz

and general coordinate invariant formulation of the models is achieved by coupling dual

gauge �elds to an auxiliary vector �eld from an axionic sector of the theory.
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1 Introduction

The understanding of the important role played by duality in the theory of strings, su-

pergravity and (super){Yang{Mills theories has allowed one to make new insight into the

structure of these theories and to �nd deep relationship between their di�erent (dual)

versions. If target space duality (T{duality) and S{duality (which is the generalization

of the electric{magnetic duality) are the exact symmetries of string theory [1, 2, 3], it

is natural to assume that there should be a version of the theory where these duality

symmetries are manifest.

A T{duality symmetric string action was proposed by Tseitlin [4] and generalized to

the case of the heterotic string by Schwarz and Sen [5] This required modi�cation of space{

time transformations of �elds. Note, however, that e�ective supersymmetric �eld actions

which describe the low{energy behavior of superstrings do have a global non{compact

symmetry related to T{duality, while S{duality is only a symmetry of the equations of

motion [6]{[9].

In [9] Schwarz and Sen proposed models for describing antisymmetric gauge �elds in

D{dimensional space{time, where S{duality symmetry was lifted to the level of action,

their results being the generalization of earlier work by Floreanini and Jackiw [10] and

Henneaux and Teitelboim [11] who constructed actions for describing self{dual tensor

�elds in (4p+2){dimensional space{time (p=0,1,..). The general feature of the models

[4, 5, 9, 10, 11] is that, due to the explicit �xing of the time direction, they loose manifest

Lorentz and general coordinate invariance, which, however, are replaced by some modi�ed

transformations. This is an example how duality e�ects the symmetry structure of the

theory.

Anyway, one may try to look for a formulation of duality symmetric actions in which

conventional space{time symmetries are restored. An attempt to do this for a duality

symmetric version of Maxwell theory [9] 1 was undertaken in [13]. Having been inspired by

this paper we proposed in [14] a manifestly space{time and duality symmetric formulation

of (supersymmetric) Maxwell theory by enlarging the Schwarz{Sen model [9] with an

auxiliary vector �eld um(x) and an antisymmetric tensor �eld �mn(x) (m=0,1,2,3) in

such a way that upon solving for equations of motions and gauge �xing additional local

symmetries associated with the auxiliary �elds the model [14] could be reduced to that

of Schwarz and Sen. The physical nature of um(x) and �mn(x) was supposed to be a relic

of gravitational vielbein and an axion{like potential, respectively.

In the present paper we further develop the duality symmetric model of [14]. In

particular, we will show that the model indeed has a local symmetry (anticipated in

[14]) allowing one to choose um(x) to be a unit{norm time{like vector and, thus, to

demonstrate that the duality symmetric models [9], with their non{conventional space{

1Earlier an alternative version of duality invariant Maxwell action was considered in [12]
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time symmetries, correspond to a de�nite gauge choice for auxiliary �elds in corresponding

duality symmetricmodels with ordinary Lorentz and general coordinate invariance. Using

the example of a model for two abelian gauge �elds in D=1+3, we shall show that duality

between these two �elds arises due to their speci�c coupling to a pseudoscalar sector of

the theory through the �eld um(x), and the latter can be gauge �xed to a constant time{

like vector by use of a local counterpart of a Peccei{Quinn symmetry of axion models.

Thus, um(x) can originate, in fact, from the pseudoscalar sector of the theory. In Section

3 we will present a space{time and SL(2;R) � O(6; 22) invariant e�ective action which

describes a low{energy limit of a toroidally compacti�ed heterotic string.

2 Duality symmetric Maxwell action

Let us start with an action describing a free Maxwell �eld Am(x) and a pseudoscalar

(`axion') �eld a(x) in D=1+3 Minkovski space:

S =
Z
d4x

�
�1

4
FmnF

mn � 1

2
(@ma(x)� um(x))(@ma(x)� um(x))� �pqmnup@q�mn

�
; (1)

where the �rst term is the ordinary Maxwell Lagrangian with Fmn = @mAn(x)� @nAm(x)

and the last two terms form the Lagrangian which, upon solving the equations of motion

for um(x) and using a local symmetry of (1) under transformations

�a(x) = '(x); �um(x) = @m'(x); (2)

produces (see, for the details [15, 16, 17, 18, 19] and references therein) the free Lagrangian

for the scalar �eld a(x)

L = �1

2
@ma(x)@

ma(x); (3)

or its dual

L =
1

3!
@[m�np]@

[m�np]; (4)

with the duality relation between a(x) and the antisymmetric �eld �np to be

@la(x) = �lmnp@m�np: (5)

The role of um(x) in (1) is to be the gauge �eld of the symmetry (2) and to ensure (5) on

the mass shell.

Besides (2) the action (1) is invariant under the abelian gauge transformations of

Am(x) and �mn(x):

�Am(x) = @mb(x); ��mn = @[mbn](x): (6)

Note that without violating local symmetry (2) one can couple �elds from the pseu-

doscalar sector of (1) to the gauge �eld in an axion{like fashion:

Sint = �
Z
d4x(@ma� um)�mnlpAnFlp: (7)
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The sum of (1) and (7) is explicitly invariant under (2). It is also invariant under the gauge

transformations (6) if one requires that the variation of �mn acquires the contribution

���mn = �(x)Fmn. Eliminating either um and �mn or um and a(x) by use of equations of

motions and local symmetries one gets the dual versions of the axion theory [16, 17, 18, 19].

Now the question arises whether it is possible to replace (1) with an action which

would be duality symmetric in the Maxwell �eld sector, still possess ordinary Lorentz

invariance and be equivalent (at least classically) to the action (1). The answer turns out

to be positive [14].

From [9] we learn that for making the electric{magnetic duality manifest at the level

of action one has to double the number of abelian �elds (introducing A�
m(x) (�=1,2)) and

construct a duality symmetric action in such a way that equations of motion obtained

from this action lead to the vanishing of the self{dual tensor

F�
mn = L��F �

mn � F ��
mn =

1

2
�mnpqL��F�pq; (8)

where L�� = �L�� (L12 = 1), F ��
mn =

1
2
�mnlpF

lp.

When

F�
mn = 0 (9)

one of the abelian �elds becomes completely determined through another one, and for

the latter we get the free Maxwell equations by di�erentiating (9). Then the duality (9)

between the two gauge �elds reduces to the duality between the electric and magnetic

strength of the gauge �eld which has been chosen to be independent.

The duality symmetric action proposed in [9], which gives (9), has the following form:

S = �1

2

Z
d4x(Bi�L��E

�
i +Bi�B�

i ); (10)

where

E�
i = F �

0i = @0A
�
i � @iA�

0 ; Bi� =
1

2
"ijkF �

jk = "ijk@jA
�
k ; (11)

and i; j; k = 1; 2; 3 are spacial indices. The action (10) is invariant under modi�ed space{

time transformations of A�
i (in the gauge A�

0 = 0):

�A�
i = x0vk@kA

�
i + vkxk@0A

�
i + vkxkL��F�

0i; (12)

where the �rst two terms describe the ordinary Lorentz boosts along a constant velocity

vi and the third term vanishes on the mass shell (9).

The model constructed this way [9] is classically and quantum mechanically [20] equiv-

alent to the free Maxwell theory.

The covariantization of (10) is achieved by coupling the self{dual tensor (8) to the

auxiliary �eld um(x) from the pseudoscalar part of the Lagrangian (1) as follows:

S =
R
d4x(�1

8
F �
mnF

�mn + 1
4(�ulu

l)
umF�

mnF�npup

�1
2
(@ma� um)(@ma� um)� �mnpqum@n�pq): (13)
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Action (13) di�ers from that considered in [14] at the following point. In [14] um(x)

was required to have the negative unit norm

u2 � umu
m = �u0u0 + uiui = �1 (14)

and played the role of a component of a local Lorentz frame. In (13) we weakened the

normalization condition by introducing the norm of um(x) only into the term containing

F�
mn. We shall demonstrate the relationship between the two versions of the model later

on.

The necessity to introduce the norm of um(x) into the F�
mn{term is dictated by the

requirement to preserve the local symmetry (2). The action (13) is invariant under the

transformations (2) provided A�
m(x) and �mn(x) are transformed as follows

�A�
m =

'(x)

u2
L��F�

mnu
n; ��mn =

'(x)

(u2)2
F�r

m urF�s
n usL��: (15)

Then, since the solution to the equation of motion of �mn, obtained from (13), is

um(x) = @m'̂(x); (16)

where '̂(x) is a scalar function, we can use the transformations (2) to put um = �0m.
2 In

this gauge the action (13) reduces to (10), and the transformation of A�
m in (15) (with

' = xivi) is combined with the corresponding Lorentz transformation producing (12).

We see that um(x) plays a double role. From the one hand side it is the gauge �eld of

local Peccei{Quinn symmetry and from the other hand it corresponds to a component of

a local Lorentz frame.

The action (13) has another local symmetry [14] (which generalizes that of (10) [9])

under the following transformations of A�
m and �mn:

A�
m ! A�

m + um'
�(x); (17)

�mn ! �mn � '�

u2
F�

mpu
pun +

'�

u2
F�

npu
pum:

This symmetry allows one to reduce the general solution of the equations of motion

of A�
m

�lmnp@m(unF�
pru

r) = 0 (18)

to eq. (9) (see [9, 14] for the details). In the gauge where F�
mn = 0, the equations of

motion of um lead to the same expressions for a(x) and �mn that follow from (1).

To transit from (13) to (1) we must solve eqs. (18) for one of the gauge �elds in terms

of another one and substitute the solution back to (13) [9, 14]. If we skip the kinetic term

for a(x) in (1) and (13), �mn becomes a pure gauge �eld as well, and the three actions (1),

2To escape singularities we should require the norm of um to be nonzero.
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(10) and (13) become classically equivalent and describe dynamics of a single Maxwell

�eld.

Now we shall demonstrate how the action (13) is related to the version considered in

[14]. There the vector �eld um (in (13)) was subjected to the normalization condition

(14) (we shall denote the normalized vector as ûm). This caused a problem of establishing

the explicit invariance of the model under the transformations (2), (15). To ensure this

invariance one should couple (13) with the normalized ûm [14] to scale invariant gravity

[21]. Then the action takes the form (we skip, for simplicity, the kinetic term of a(x)):

S =
R
d4x
p�g(�1

8
F �
mnF

�mn + 1
4
ûmF�

mnF�npûp

� 1p
�g
�pqmnûp@q�mn +R�2 + 6@m�@

m�); (19)

where gmn(x) is a metric, g = det gmn, R(x) is the scalar curvature and �(x) is a conformal

scalar �eld. The action (19) is invariant under (2), (15) provided gmn(x) and �(x) subject

to the following scale transformations:

�gmn(x) = (um@m')
2gmn(x); ��(x) = �(um@m')�(x): (20)

Making rede�nition of the metric and ûm as follows

gmn(x) ! �2gmn; ûm(x) ! 1

�
ûm; (21)

(which preserves the condition (14) 3) we can rewrite (20) in the form which describes

coupling the model to the Einstein gravity:

S =
Z
d4x
p
g(�1

8
F �
mnF

�mn +
1

4
ûmF�

mnF�npûp � 1p
g
��pqmnûp@q�mn +R): (22)

The only place where �(x) is present in (22) is the term ��pqmnûp@q�mn. Then, putting

�(x)ûm(x) = um(x), making use of (14) and taking the at limit we get the action (13).

This concludes the establishment of the links between di�erent versions of the duality

symmetric formulation of free Maxwell theory.

3 Low{energy e�ective action in string theory with

manifest SL(2;R)�O(6; 22) and space{time symme-

try

In this section we present manifest space{time invariant generalization of the SL(2;R)�
O(6; 22) invariant low-energy e�ective action [9] describing heterotic string theory com-

pacti�ed on a six{dimensional torus [8, 22]. To do this we should introduce 28 dual

3Note that one can introduce (14) into (19) with a Lagrange multiplier which transforms under the

scale transformations in an appropriate way
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pairs [23] A�;a
m (a=1,...,28) of abelian gauge �elds and couple them to scalar �elds in an

SL(2;R)�O(6; 22) covariant way. This is achieved by modifying the self{dual tensor (8)

as follows:

F�;a
mn = L��LabF �;b

mn� (LTML)��(LTML)abF ��;b
mn �

p�g
2

(�LTM)��(LTM)ab�mnpqF�;b pq;

(23)

where 2� 2 matrix valued scalar �eld

M =
1

�2(x)

 
1 �1(x)

�1(x) �21 + �22

!
; (24)

satis�es the following conditions:

MT =M; MLMT = L: (25)

M, L and A�;a
m transform under the global SL(2;R) transformations ! as follows:

M ! !TM! !L!T = L Am = !TAm: (26)

A 28 � 28 matrix{valued scalar �eld M(x) satis�es the conditions

MT =M; MTLM = L; (27)

where

L =

0
BB@
0 I6 0

I6 0 0

0 0 �I16

1
CCA : (28)

Under a global O(6; 22) rotation M , L and A�;a
m transform as follows:

M ! 
TM
; 
TL
 = L Am ! 
TAm: (29)

(see ref. [9] for the details). The transformation law of the self{dual tensor (23) under

SL(2;R)�O(6; 22) is
Fmn ! !�1
�1Fmn: (30)

Using the properties of the �elds described above one may convince oneself that the

following general coordinate invariant action has SL(2;R)�O(6; 22) symmetry:

S =
Z
d4x
p�g(�1

8
F �;a
mn (LTML)��(LTML)abF �;b mn +

1

4u2
umF�;a

mnM��MabF�;b npup

� 1

4
gmntr(@mML@nML) + 1

8
gmnTr(@mML@nML)� 1p

g
�pqmnup@q�mn +R): (31)

It can be rewritten in a simpler form

S =
Z
d4x
p�g( 1

2u2
umF ��;a

mn F�;a npup � 1p�g �
pqmnup@q�mn +R

7



� 1

4
gmntr(@mML@nML) + 1

8
gmnTr(@mML@nML)) (32)

which, upon �xing the gauge um = 1p
�g00

�0m, �mn = 0, directly reduces to the Schwarz{

Sen action [9].

Note that we did not add the kinetic term of a(x) (1), (13) to the actions (31) and (32).

This is because we would like to identify a(x) with �1(x) which has already entered the

actions (31) and (32) as part of the dilaton{axion matrixM (24). The coupling ofM to

the gauge �elds ensures the manifest SL(2;R) symmetry but brakes local transformations

of �1(x) (or a(x) in (2)) down to the global Peccei{Quinn shifts which form a subgroup

of the global SL(2;R) (26) 4. Such a coupling violates duality between the pseudoscalar

�eld and �mn in favor of the former and makes �mn an auxiliary �eld, which can be

eliminated from (31), (32) by solving for the equations of motion of um and �mn, and

substituting um(x) back into (31), (32) in the form um = @m'̂(x) (16).

It is tempting to look for a version of the low{energy e�ective string action which

would be manifestly duality symmetric not only in the gauge sector but in the axion

sector (1), (7) as well. Might it imply a localization of the SL(2;R) ?

4 Conclusion and discussion

We have constructed the space{time invariant duality symmetric action for the free

Maxwell theory and the SL(2;R) � O(6; 22) invariant e�ective action describing low{

energy bosonic sector of the heterotic string compacti�ed on a 6{dimensional torus. This

has been achieved by coupling the self{dual stress tensor, constructed out of the dual

gauge �elds, to the auxiliary vector �eld from the axionic sector of the theory.

One can add to the bosonic action (13) the kinetic term for neutral fermions:

SF = �i
Z
d4x m@m : (33)

Then the full action becomes supersymmetric [9, 14] under the following transformations

with odd constant parameters �� = i5L����:

�A�
m = i m�

�;

� =
1

8
F �mnmn�

� +
1

4
L��upF�pmunmn�

�; (34)

all other �elds being inert under the supersymmetry transformations.

We see that the supersymmetric transformation law for the fermion  (x) (34) is non{

conventional and reduces to the ordinary one only on the mass shell (8). This reminds

the problem with the Lorentz transformations (12) which we have just solved. Using the

4Note that the action (31), (32) is still invariant under the local transformations of um (2), Am and

�mn (15)
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same reasoning as lead us to introducing um(x) one may try to �nd a superpartner of

um(x) whose presence in the theory gives rise to a local fermionic symmetry (being a

counterpart of (2, 15)) which involves  (x) and leads to (34) upon gauge �xing the local

fermionic symmetry. This construction may arise from coupling the models discussed

above to supergravity, from which, in fact they originate.

The covariantization procedure for duality symmetric actions [10, 11, 4, 9] proposed in

[14] and developed herein is applicable to abelian tensor �elds in space{time dimensions

other than D = 4 and may turn out to be useful for �nding new dual versions of D = 10

supergravity [9].
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