<)

GENEVE, SUNSSE

GENEVA, SWITZERLAND

WHCTUTYT OU3WKWU BHCOKWX 3HEPIWM }‘l

EUROPEAN LABORATORY FOR PARTICLE PHYSICS g
ORI
COLLABORATION ON UNK CONTROLS oo romme
PROTVINO, RUSSIA

CERN-PS

September 3, 1994

YAQ - Yet Another eQuipment access package

E.A. Jarkov, V.1. Kovaltsov
Insitute for High Energy Phsics, Protvino, Russia

RO

VAINAD ‘SHRNVILIT NATD

Abstract

(2

This note describes Version 2.0 of YAQ (Yet Another eQuipment access package). The SW
package provides a unified way to access devices working under different equipment

access protocols. It includes tools for maintaining the equipment database and C libraries

to transparently access equipment in a distributed heterogeneous networking environment

Contents

1. Introduction

2. Terms and scope

3. Basic data structures

4. YAQ components

5. YAQ database management
6. Examples

7. Portability

8. Current status

9. Reference pages

J
oo
&y

Contents

1 Introduction

2 Terms and scope

3 Basic data structures

4 YAQ components
31 YQ . . e e
4.2 YH . . e e e e e
4.3 YR . . e e e
4.4 YD . e e e e e e
4.5 YM . o e
4.6 NCVT o e e e

5 YAQ database management

51 The DBRT control file
52 dbrtgen e

6 Examples
6.1 A simpleclient example
6.2 A simple device server exampleo o000
6.3 A client example with the yqRegister subroutines
6.4 An example with protocol specificdata 000

7 Portability
8 Current status

Reference Pages
vdClose
vdCreate oL e
vdOpen ..o oL e
vdFetch 0 e
vdStore ...
vaCall oo oo
vqRegisterServer Lo
vqRegisterProtocolo
vqRegisterFamilyo o
yqRegisterDevice L
yqRegisterAction
vqLlocateAction L
vqLocateDevice e
viCode o o e
yrLog . . oL e
YISETINE . . o o o e e e

10
10
11
12
13

14
15

16
6
16
16
17

I

19
19
19
19
19
29

22

23
23

yrSetHandler 25

yrSetMode L 25
yhProtocol 26
yhWait . . . o L e 28
Nevt o o e 29

List of Figures

1 YAQupackagecontexto 3
2 YAQ basic data structureso 4
3 YAQecomponents e 5
4 The YQ subroutines 6
5 Structure of DBRT 8

List of Tables

1 Introduction

Version 2.0 is based on Version 1.0, which is in one’s turn based on ideas of the CERN PS
[1] and CERN SPS-LEP [2] equipment access packages. Version 1.0 has been developed in
the beginning of 1993 and is used by the UNK control teams at CERN and in Protvino.
While Version 2.0 1s almost backward compatible with Version 1.0, the source code 1s
completely new. The code has been rewritten with an aim to make it more suitable for
different equipment access protocols which are in use at CERN and which probably will
be used in the UNK controls infrastructure.

YAQ sources can be found in dxcern.cern.ch:/u/pz/ezharkov/vaq. A postscript copy
of this document is in dxcern.cern.ch:/u/pz/ezharkov/vaq/doc/vaq.ps. Ay comments.
suggestions. etc. are greatly welcomed and should be sent to ezharkov o dxeercern.ch.

2 Terms and scope

The YAQ context diagram is shown in Figure 1.

A device is a piece of hardware {power supply. for example) or a soltware ohject (a
database, for example). A device is accessed by means of actions. Each device belongs
to a family. All the devices of one family have the same set of actions.

A set of agreements on the device presentation in a database. inside the application
program and the device server is called equipment access protocol or simply protocol.

YAQ is used by the application program to make a call to a device. YAQ is used
by the device server to decode the equipment call message coming from the application
program and return back the result. The way how a device server communicates with a
device is not covered by YAQ), it is competely up to the author of the device server.

‘)

APPLICATION DEVICE SERVER

NETWORK
YAQ > YAQ

Figure 1: YAQ package context

3 Basic data structures

YAQ basic data structures and their relationships are shown in Figure 2. This is a logical
view of the structures. Physically, in the equipment database, inside the application
program or the device server, the structures can be somewhat different. For example, in
([1. 3]) numbers are used for the device and action identification on the level of the device
server. and there is no need to send device and action names to the device server.

Family, device and action structures consist of two parts, mandatory, which is com-
mon for all protocols. and protocol specific. The protocol specific parts are defined by the
family format, device format and action format fields in the protocol description.
YAQ need not to be rebuild when a specific structure is changing. .\ device protocol
specific structure can include, for example. the member number [3] or a field bus ad-
dress [2]. A protocol specific structure need not to be defined at the time YAQ is huilt.
Protocol specific data are normally defined in an equipment database. selected and sent
transparently to a device server.

4 YAQ components

Physically YAQ is built as one library - 1ibyagq,. logically it consists of a number of
components as shown in Figure 3. The names of the components (and the names of
subroutines inluded) changed in Version 2. The YQ component was previously called
Eqp. YD - Dbrt. YR - Err. i.e. exactly as in [1]. and the reason for changing was to make
it possible in principle to use both packages in one application.

An application program mainly deals with YQ (Section 4.1). There are basically two
types of calls an applications program makes, the first one is to create a device and an

ACTION

L

I
Field Name C Type

FAMILY Action name char *
PROTOCOL I Family name char *
r I Field Name CT Ncvt format char *
Field Name C Type Family name promrs Protocol specific
-
Protocol name char Protocol ID short DEVICE
Protocol ID short Protocol specific r
Flags short .
Family format char * Field Name C Type
Devios format__| char® | || DEVICE SERVER Device name | char *
Action format char * Fl_‘ Family name char *
Field Name C Type Server name char *
Server name char * - Protocol speciﬁc
Server address struct [~

Figure 2: YAQ basic data structures

action data structures, the second one is an actual call to a device.

The device and action descriptions are normally (but not necessarily) stored in a run
time database (DBRT, see Section 5). YQ itself maintains a cache of description data, it
first checks whether the data requested by the user are already in the cache. If not, it calls
YD (Section 4.4) to select data from DBRT. Data in DBRT are in network representation.
YQ converts them to host representation using NCVT (Section 4.6).

When an equipment call is made, YQ forms a message to a device server. converts
the message to network representation using NCVT and sends it over network using YM
(Section 4.5).

A device server is basically in an infinite loop waiting for a message from an application
program. A message first comes to YM. then to YH (section Section 4.2, llaving received
a message the server decodes it. fills up an interface structure and passes control to
an appropriate protocol module (one server can support devices working nnder different
protocols).

When protocol module finishes its job. control returns to YH again. YH forms the result
message and send it to the application programn.

All possible erroneous situations are handled by a call to YR (Section 4.3).

4.1 YQ

An application program mainly deals with YQ.

YQ consists basically of two groups of subroutines, one to create a YQ's data structure,
another to make an actual call to a device (see Figure 4). The first group in one’s turn
is also divided into two subgroups, the Locate and Register subroutines. A Locate
subroutine creates a data structure on the base of information, located in the equipment
database. A Register subroutine creates a data structure on the base of information

4

Run Time

Database
yd
Yo [T R \
- AR YR :ﬁ\\ USER
USER I SO AN, " el
- 1y . \\ e \\
d cvr| /! v [NevT CODE
CODE ALY LN N
/ ’4’ : : \\\ \\
/' — : ‘[Protocol
YQ@——HYMT——+YM<—>1YH<——>MMMC
APPLICATION DEVICE SERVER

Figure 3: YAQ components

directly supplied by the user. Each of these groups consists of general and protocol
specific subroutines. Protocol specific subroutines are included for compatibility with
1.2, 3.

Refer to yqLocate Reference Page. yqRegister Reference Page and yqCall Reference
Page for the complete description of the YQ subroutines.

4.2 YH

The idea of YH library comes from Message Handler [2]. YH easies writing device servers.
taking control over all the communication problems between the device server and the
application program.

YH supports one or more protocol modules in one device server. Each protocol module
must be registered. This is done by the yhRegisterProtocol subroutine (see vhRegis-
terProtocol Reference Page). Once all protocol modules are registered. the device server
enters an infinite loop waiting for an equipment message. This is done by the yhWait
subroutine (see yhWait Reference Page).

YH interacts with the protocol modules using a C structure. When YH receives an
equipment call, it fills up a number of fields in this structure and passes control to the
appropriate protocol module. When the protocol module exits, it uses the interfacing
structure to return the result.

Errors are handled by a call to YR. In case of error the error code and error string are
sent automatically to the application program.

[The LibEQP subroutines |

Managing
data structures
Locate Register
yqLocate yqRegisterProtocol
ygLocateAction yqRegisterServer
yqRegisterFamily
RegisterDevi
isterActi
[Protocol specific | YaRegisterAction
yqglocateByID
yqLocateByFM
ygHLocateByName
ygHIL ocateByFM
eByName
eByNam
eByLi

Figure 4: The YQ subroutines

4.3 YR

Error handling in YAQ is based on use of (' macros. For example. a call to YR may look

like:

Equipment
calls

[General Durpose]

|_yqCall |

I Protocol specific J

|_EqpCommand |

if (strlen(name) >= bufsize) xyzERROR_NameTooLong(name, bufsize);

where xyzZERROR_NameTooLong is defined in an include file as:

#define xyzERROR_NameTooLong(name,size) yrLogiM(xyzERRNO_NameTooLong,\

"Name %s is too long. Buffer size %d", name, size)

Macros allow to switch quite easily to a different way of error handling. For instance,
very often errors are subdivided into categories by severity: warning, fatal, etc. The

macro from the previous example can be redefined to something like:

A

#define xyzERR_NameTooLong(name,size) yrLogiM(xyzERRNO_NameToolong, FATAL, \
"Name %s is too long. Buffer size %d", name, size)

The error strings in YAQ can be kept separately from the source code, in a sort of
message files, and selected from these files using the error code as a key. Keeping error
messages separately from the source code allows to have different message files for several
national languages. The xyzZERROR_NameTooLong macro takes the form:

#define XyzERR_NameTooLong(name,size) yrLogl(xyzERRNO_NameTooLong, name, size)

When control passes to YR, its behaviour is defined by the mode currently set. the
modes are PRINT - print error message, EXIT - exit on receiving an error call. LOG -
log the error information to the errlog archive. In addition to the mode, a user can set
up his own error handler.

Refer to YR reference pages for detailed information.

44 YD

YD 1s used by YQ to get a device description from DBRT, by the dbrtgen program (Sec-
tion 5.2) to create a gdbm based DBRT. and it can also be used by an application program
directly.

YD consists of ydOpen to open a DBRT database, ydFetch to get a record from DBRT.
ydStore to put a record to the gdbm based DBRT. Refer to the corresponding reference
pages for detailed information.

4.5 YM

YM is the communication component. YM is not supposed to be used directly by an ap-
plication program or a device server programumer. it is used internally by YQ. It consists
of subroutines to open a connection and to send/receive a block of data over network.
YM can work on the top of different software interfaces. CERN RPC'. UDP sockets. TC'P
sockets etc.. presently it works via the UDP sockets.

4.6 NCVT

Different computers in the distributed heterogeneous networking environment have dif-
ferent representation and alignment rules of theirs basic data types. To be able 1o speak
to each other computers must use a common machine independent representation of data
(network representation). The NCVT subroutines are to convert data from the local ma-
chine representation (host representation) to network representation and vise versa. NCVT
is based on ideas of the DTM package [4]. As distinct from DTM, NCVT supports pointers,
variable arrays, structures, etc. :

NCVT also supports conversion of variable C-call argument list.

Refer to Ncvt Reference Page for the complete description of the NCVT subroutines.

-
[l

5 YAQ database management

The device and action description in YAQ is normally stored in a run time database
(DBRT), which can be considered as a one-table single-key database. Different types
of records are stored in the database with a key prefixed by the record type. All the
information is in network format. Primary source of data is normally in an ORACLE
database. As an alternative to ORACLE ordinary ASCII files can be used too.

A DBRT database can be organized directly under ORACLE, or in an intermediate
storage built on the base of GNU gdbm. A gdbm-based database is created from an
ORACLE database (or from a set of ASCII files) by the dbrtgen program (Section 5.2).

In case of gdbm an application program can be linked with the gdbm library and read
data directly from a gdbm file. A gdbm file can be accessed from a number of machines
via NFS, but all these machines should be compatible from the point of view of data
representation. The more universal way is to have a DBRT server. In YAQ such a server.
called dbrtora, made as an ordinary device server, selects data directly from an ORACLE
database (of course it can select data from a gdbm database too).

The dbrtgen and dbrtora programs are driven by a special control file (Section 5.1).
which contains information on what and how is to be selected from ORACLE.

The structure of DBRT is shown in Figure 5. In most cases adding new record type

ORACLE o]
Files

7
DBRTORA

'\EJ uf

1,

APPLICATION

Figure 5. Structure of DBRT

to DBRT. or modifving the structure of an old one does not require the dbrtgen code to
be changed or rebuilt.

5.1 The DBRT control file

For each DBRT record type there is a statement in the control file that defines the record
structure and the way data are extracted from ORACLE (or from an ASCII file). Each
of these statements has the following syntax:

K

record {

comment “string";
keyid "string" or number;
ncvt "string";
sqlgen "string";
sqlget “string";
file "string";
};
where:

kevid is a record type;

ncvt is an nevt format string, that defines the record format and is used to convert data
to network representation;

sqlgen 1s a SQL statement used by the dbrtgen program to select data from ORACLE:
sqlget is a SQL statement used by dbrtora server to directly select data from ORACLE;

file is a name of an ASCII file (if any) containing data to be put to gdbm.

Consider an example:

record {
comment '"Device By name";
keyid "device";
ncvt "zzi";
sqlgen "select name, family _name, server_name, device_id "
"from equip.device ";
sqlget "select family_name, server_name, device_id "
“from equip.device
"where name='%s’";
file "device.dat";
}

In this example the record type 1s “device by name™. all the records of this type will be
stored iIn DBRT with a key equal to name (the first item in the sqlgen select hst). prefised
by the string “device™. For instance. if the device name is "mvdevice™ then the kev in
gdbm will be “device.myvdevice™. The structure of this record is defined by the nevt string
“zzi". that corresponds to the (' structure:

struct {
char =*family_name;
char #*server_name;
int device_id;

};

The control file is normally passed through the C preprocessor, this allows to use
include files and avoid explicit specification for keyid and ncvt.

Q

5.2 dbrtgen

The dbrtgen program generates a gdbm based DBRT. dbrtgen is driven by a control file
(Section 5.1). Depending on the description in the control file it selects data either from

ORACLE or from an ASCII files.

6 Examples

6.1 A simple client example

The simplest case for equipment access client is when the device and action descriptions
are in an equipment database. Consider, for example, a device called “Calculator™, which
is able to add, subtract, multiply and divide integer numbers, a client program may look

like:

#include <stdio.h>
#include <yagh.h>

main() {
int sum, difference, product, quotient;
int iteml = 4, item2 = 2;
yqCall("Calculator", "Add", iteml, item2, &sum);
yqCall("Calculator", "Sub", iteml, item2, &difference);
ygCall("Calculator", "Mul", iteml, item2, &product);
yqCall("Calculator", "Div", iteml, item2, "ient);
printf("Result = %d, %d, %d, %d\n",sum,difference,product,quotient);

In the example above device and action are specified by name, the yqCall subroutine in-
ternally calls yqLocateDevice and vqLocateAction. This may be not good by performance
or some other reasons. so one can rewrite the above example as follows:

#include <stdio.h>
#include <yagh.h>

main() {
int sum, difference, product, quotient;
int iteml = 4, item2 = 2;
yqDevice_t *calculator;
yqAction_t *add, *sub, *mul, *div;
calculator = yqlocateDevice("Calculator");
add = yqlocateAction("Add", "Calculator_family");
sub = yqLocateAction("Sub", "Calculator_family");
mul = ygqlocateAction("Mul", "Calculator_family");
div = yqlocateAction("Div", "Calculator_family");
ygCall(calculator, add, iteml, item2, &sum);
yqCall(calculator, sub, iteml, item2, &difference);
yqCall(calculator, mul, iteml, item2, &product);
yqCall(calculator, div, iteml, item2, "ient);
printf("Result = %d, %d, %d, %d\n",sum,difference,product,quotient);

n

6.2 A simple device server example

Our server works via the UDP sockets. In case of the UDP sockets the address is specified
by a structure of type ymUDP_t consisting of a hostname and a UDP port (hostname, in
fact, is not used by the yhRegisterServer subroutine).

We define our protocol as not having specific data for neither family, nor device.
nor action, this is specified by the NULL pointers in the call to the yhRegisterProtocol
subroutine.

We register our protocol with the yqPF MHDEVNAM and yqPF_MHACTNAM flags, thus re-
questing the device and action names to be sent from the client to the server (by default
family, device and action names are not sent to a server). Having the device and action
names we check if this is a right device and we make a switch by the action name to a
particular procedure.

We register our protocol with the yqPF MHACTFMT and yqPF_ARGHOST flags, thus re-
questing the action format string to be sent from the client to the server and the action
parameters to be converted automatically to host representation. We just cast the h->arg
pointer to a data type corresponding to the action’s parameter list.

#include <stdio.h>
#include <yaqr.h>
#include <yaqm.h>
#include <yaqq.h>
#include <yagh.h>

#define FLAGS yqPF_ARGHOST|yqPF_MEDEVNAM|yqPF_MHACTNAM|yqPF_MHACTFMT
static ymUDP_t srvaddr = { NULL, 1994 };

int myprotocol();

main() {
yrSetMode (yrMODE_PRINT|yrMODE_EXIT);
yhRegisterServer (ymCMT_UDP, &srvaddr) ;
yhRegisterProtocol{(myprotocol, 1, FLAGS, NULL,NULL,NULL);
yhWait(0,1000);

}

int myprotocol(yhHeader_t *h) {
if (strcmp(h->device->name,"Calculator"”) == 0) return calculator(h);
return yrLog("Unknown device");

}

calculator(yhHeader_t *h) {
yhAction_t *a = h->action;
struct params {
int 1ii;
int i2;
int *res; } *p = (struct params *)h->arg;
if (strcmp(a->name, "Add") == 0) add(p->il, p->i2, p->res);

else if (strcmp(a->name, "Sub") == 0) sub(p->i1, p->i2, p->res);
else if (strcmp(a->name, "Mul”) == 0) mul(p->il, p->i2, p->res);
else if (strcmp(a->name, "Div") == 0) div(p->i1, p->i2, p->res);

else yrLog("Unknown action");

11

return

}

add(int
sub(int
mul(int
div(int

i1, int i2, int #*res) { *res = i1 + i2;
i1, int i2, int *xes) { *res = il - i2;
i1, int i2, int #*res) { *res = i1 * i2;
i1, int i2, int *res) { *res = i1 / i2;

0;

(S

6.3 A client example with the yqRegister subroutines

In Section 6.1 we showed an example of a simple client which locates device and action
descriptions in an equipment database. Alternatively all this information can be directly
specified by the user in the form of parameters to the yqRegister subroutines. There is
at least one interesting moment in using of the yqRegister subroutines - the example we
provide below can be easily compiled, linked and hopefully it will even work. The above
example with the yqLocate subroutines is less easy to run because it require a database.

We use the same parameters for yqRegisterServer and yqRegisterProtocol as in the
server example above (this is a must for a client and a server that want to speak to each

other).

#include
#include
#include
#include
#include

<stdio.h>
<yaqr.h>
<yaqm.h>
<yaqq.h>
<yagh.h>

#define FLAGS yqPF_ARGHOST|yqPF_MEDEVNAM|yqPF_MHACTNAM|yqPF_MHACTFMT
static ymUDP_t srvaddr = { "localhost", 1994 };

main() {

int sum, difference, product, quotient;
int iteml = 4, item2 = 2;

yrSetMode (yrMODE_PRINT|yrMODE_EXIT);

yqRegisterServer("“myserver', ymCMT_UDP, &srvaddr);
yqRegisterProtocol("myprotocol™, 1, FLAGS, NULL, NULL, NULL);
yqRegisterFamily("'Calculator_family", “myprotocol™, NULL);

yqRegisterDevice("'Calculator", "Calculator_family", "myserver", NULL);
quegisterAction("Add“, “"Calculator_family", "<ii >*i", NULL);
yqRegisterAction("Sub”, "Calculator_family", "<ii >*i", NULL);
yqRegisterAction("Mul", "Calculator_family”, "<ii >*i", NULL);
yqRegisterAction("Div", "Calculator_family", "<ii >*i", NULL);

yqCall("Calculator", "Add", iteml, item2, &sum);
yqCall("Calculator", "Sub", itemi, item2, &difference);
yqCall("Calculator", "Mul", itemi, item2, &product);
yqCall("Calculator", "Div", iteml, item2, "ient);
printf("Result = %d, %d, %d, %d\n",sum,difference,product,quotient);

19

6.4 An example with protocol specific data

In the above examples we use a protocol without protocol specific data for family. device
and action. In the example below we use a bit different protocol. According to this
protocol, each device and action has an additional parameter, an integer identifier for the
device or action. Device and action names are not sent to a server.

/* A client example using protocol specific data */
#include <stdio.h>

#include <yaqr.h>

#include <yaqm.h>

#include <yaqq.h>

#include <yagh.h>

#define FLAGS yqPF_ARGHOST)|yqPF_MHACTFMT
static ymUDP_t srvaddr = { "localhost", 1894 };

struct protocol_specific_device {
int id;
} devid = { 1 };

struct protocol_specific_action {
int id;
} addid = { 1 }, subid = { 2 }, mulid = { 3 }, divid = { ¢4 };

main() {
int sum, difference, product, quotient;
int iteml = 4, item2 = 2;

yrSetMode (yrMODE_PRINT | yrMODE_EXIT);

yqRegisterServer('myserver', ymCMT_UDP, &srvaddr);
yqRegisterProtocol("myprotocol”, 1, FLAGS, NULL, "i", "i");
yqRegisterFamily("Calculator_family", "myprotocol", NULL);

yqRegisterDevice("Calculator", "Calculator_family", "myserver", &devid);
yqRegisterAction("Add", "Calculator_family", "<ii >*i", &addid);
yqRegisterAction("Sub", "Calculator_family', "<ii >*i'", &subid);
yqRegisterAction("Mul", "Calculator_family", "<ii >*i", &mulid);
yqRegisterAction("Div", "Calculator_family", "<ii >*i", &divid);

yqCall(Calculator”, "Add”, iteml, item2, &sum);
yqCall("Calculator', "Sub", iteml, item2, &difference);
ygCall(Calculator", "Mul", iteml, item2, &product);
yqCall("Calculator"”, "Div", iteml, item2, "ient);

printf("Result = %d, %d, %d, %d\n",sum,difference,product,quotient);

/* A server example with protocol specific data */
#include <stdioc.h>
#include <yaqr.h>
#include <ncvt.h>
#include <yagm.h>
#include <yaqq.h>

1

#include <yagh.h>

#define FLAGS yqPF_ARGHOST|yqPF_MHACTFMT
static ymUDP_t srvaddr = { NULL, 1994 };

int myprotocol();

typede? struct {
char *name;
int id;

} MyDevice_t;

typedef struct {
char *name;
char *format;
int id;

} MyAction_t;

main() {
yrSetMode (yrMODE_PRINT | yrMODE_EXIT);
yhRegisterServer (ymCMT_UDP,&srvaddr) ;
yhRegisterProtocol(myprotocol, 1, FLAGS, NULL,"i","i");
yhWait(0,1000);

}

int myprotocol(yhHeader_t *h) {
MyDevice_t *device = (MyDevice_t *)h->device;
it (device->id == 1) return calculator(h);
return yrLog("Unknown device");

}

add(int i1, int i2, int *res) { *res = il + i2;
sub(int i1, int i2, int *res) { *res = i1 - i2;
mul(int i1, int i2, int *res) { *res = il * i2;
div(int i1, int i2, int *res) { *res = i1 / i2;

L e

int (*actions(])() = { add, sub, mul, div };
calculator(yhHeader_t *h) {
MyAction_t *a = (MyAction_t *)h->action;
int id = a->id;
if (id < 1 || id > 4) return yrLog("Unknown action");
return NcvtCall(actions[id-1], h->arg, a->format);

}

7 Portability

YAQ has been ported and tested in one or other way on the following platforms:
e DEC Ultrix V4.3
e IBM AIX Risc System/6000
e SunOS Vix

14

Alpha/OSF
LynxOS/M63K
Alpha/VMS
VAX/VMS

e MSDOS

e MS Windows 3.1

The least portable part in YAQ is the NcvtCall subroutine. To be sure that a piece
of code will be easily ported to a new system it is better to avoid using floats. doubles
and structures passed by value. All these data types are supported for the platforms
listed above (except of floats or doubles for Alpha/OSF), but porting to a new system
usually require to pay some attention to these data types and to add a number of #ifdef
directives.

8 Current status

e The protocol specific subroutines is not implemented.

e Only communication via the UDP sockets is currently supported. Packet splitting
and retransmission in case of error is not yet done.

References

[1] Franck Di Maio. Alessandro Risso. The CERN-PS Equipment Access Library, Software
Specifications. Version 3. PS/CO/Note 93-87 (Spec.). CERN. February 1994.

[2] Pierre Charrue. Accessing Equipment in the SPS-LEP Controls Infrastrinctnre: The
“SL-EQUIP package™. Software user manual (SUM). SL/Note 93-36 (('O). CERN.
September 1993,

(3] A.Elin et al.. Control protocols for the UNK control system. ICALEPS™93. Berlin,
1993,

[4] Julian Lewis. Distributed shared memory Table Manager. PS/('O.

(5] P.Anderson. V.Fremmery. G.Morpurgo. User Guide to the Network Compiler Remote

Procedure Call (NC/RPC). LEP Controls note 97, May 1939.

Name
ydOpen, ydCreate, ydClose - subroutines to open and close a DBRT database

Syntax
#include <yaqd.h>

ydOpen(int mode)
ydCreate(char *name)
ydClose()

Description

The ydOpen subroutine opens a DBRT database specified by either the DBRTFILE
or DBRTHOST environment variables, that corresponds to either a local file, acces-
sible via the gdbm library, or to a remote host with a DBRT device server running.
The mode is a character string having one of the following values:

“1r" Open for reading

"w” Open for writing (this works only for a local file)

The ydCreate creates a new DBRT database in a local file with the name name.

The ydClose subroutine closes the DBRT database opened by ydOpen or ydCreate.

Return values

Upon successful completion. a 0 is returned. Otherwise, a -1 is returned. and more
specific error code is available via yrCode.

See Also
vrLog(31), vrCode(31). yrString(3l)

1A

Name
ydFetch, ydStore — get/put a record from/to a DBRT database

Syntax

#include <yaqd.h>

int ydFetch(char *buf, int bufsize, int *datasize, char *dbrtkey)
int ydStore(char *dbrtkey, void *data, int datasize)

Description

The ydFetch subroutine fetches a record from the DBRT database opened by
ydOpen. If the DBRT database is not opened, ydFetch makes a call to ydOpen.

The ydStore stores a record to the DBRT database opened by ydOpen or ydCreate.

Arguments

buf is a pointer to a buffer the selected record is placed to.

bufsize is the size of buf.

datasize After a call to ydFetch contains the number of bytes actually placed to
buf. Before a call to should contains the size of the record to be stored.

dbrtkey is a pointer to O-terminated string containing a key. The key is used by
ydFetch subroutine to find a record in the database. The record is placed
under this key by ydStore.

data is a pointer to a buffer containing the record to be stored.

datasize is the size of re to be stored.

Return values

Upon successful completion. a 0 is returned. Otherwise. a -1 is returned. and the
error code is available via yvr(ode.
See Also

vdOpen(3l). vdCtreate(3l). vrCode(3l). yvrStrimg(3l)

Name
yqCall - equipment access call

Syntax
#include <yaqq.h>

int yqCall(void *device, void *action [, arg] ...)

Description

The yqCall subroutines performs an equipment call to the device specified by device
with the action specified by action.

Arguments
device is a pointer to the device name or to the structure returned by vqRegister-
Device or yqLocateDevice.
action is a pointer to the action name or to the structure returned by yvqRegister-

Action or yqLocateAction.

Upon succesful completion, a 0 is returned. Otherwise a —1 is returned and more
detailed information about the error is accessible via yrCode.

See Also
vqRegister(3l). vqLocate(3]). yrCode(3l). yrString(3l)

1R

Name

vqRegisterServer, yqRegisterProtocol, yqRegisterFamily, yqRegisterDevice. yqReg-
isterAction - register a server, a protocol, a family, a device, an action

Syntax

#include <yagm.h>
#include <yaqq.h>

yqgServer_t *yqRegisterServer(char *name, int commtype, void *address)

yqProtocol_t *yqRegisterProtocol(char *name, int id, int flags, char *fam-
ily_format, char *device_format, char *action_format)

yqFamily t *yqRegisterFamily(char name, yqPretocol_t *protocol, void
*specific)

ygDevice_t *yqRegisterDevice(char *name, yqFamily_t *family, yqSer—
ver_t *server, void *specific)

yqAction_t *yqRegisterAction(char *name, yqFamily_t *family, char *for-
mat, void *specific)

Description

These subroutines are normally used by the application program that wants to
access devices not described in the equipment database.

The yqRegisterServer subroutine registers the device server specified by the com-
munication type commtype and the communication address address. The scrver
i~ assigned the name name. The name must be unique for a given application,
(‘fommunication types are the UDP sockets (vmCMT_UDP). the TCP sockets (yvin-
CMT.TCP). CERN RPC (vymCMT_CERN_RP(). Communication address is dif-
ferent for different communication tvpes. For the UDP sockets the commiunication
address is represented by a structure of tvpe vmUDP_t:

typedef struct {
char *hostname;
unsigned short port;
} ymUDP_t;

Upon successful completion yqRegisterServer returns a pointer to an opaque
structure that can be later used in subsequent calls to yqRegisterDevice.

The yqRegisterProtocol subroutine registers an equipment access protocol. The
protocol is assigned the name name that must be unique for a given application. The

10

id argument is an integer protocol identifier that is sent to the device server when
an equipment call is made. If the protocol defines a protocol specific data structure
for family, device, action, than the corresponding family_format, device_format, ac-
tion_format argument points to a null-terminated ncvt format string. that desribes
this structure. If the protocol specific data are not defined, the corresponding pointer
must be set to a NULL value.

The flags argument is formed by ORing of the following values:

yqPF_MHFAMNAM family name is sent to a device server.
ygPF_MHDEVNAM device name is sent to a device server.
yqPF_MHACTNAM action name is sent to a device server.
yqPF MHACTFMT action format is sent to a device server.

yqPF_ARGHOST a device server automatically (before calling a user protocol mod-
ule) converts action parameters to host representation and after the call con-
verts result to network representation.

Upon successful completion yqRegisterProtocol returns a pointer to an opacue
data structure that can be later used in subsequent calls to yqRegisterFamily.

The yqRegisterFamily subroutine registers the family name of devices, working
under protocol protocol. The protocol argument is either a pointer returned by
yqRegisterProtocol or a name of an already registered protocol. If the protocol de-
fines protocol specific family data structure. the specific argument of yqRegisterFa-
mily points to this familyv's protocol specific data.

Upon successful completion yqRegisterFamily returns a pointer to an opaque
data structure that can be later used in subsequent calls to yqRegisterDevice
or yqRegisterAction.

The yqRegisterDevice subroutine registers the device identified by name. of family
family. controlled by the server server. If the protocol defines protocol specilic device
data structure. the specific argument of yqRegisterFamily points to tns device's
protocol specific data.

Upon successful completion yqRegisterDevice returns a pointer to an vpaque data
structure that can be later used in subsequent equipment calls.

The yqRegisterAction subroutine registers the action name of tannly fumily. The
format is a pointer to an ncvt conversion string that describes the format of the
action parameters. If the protocol defines protocol specific action data structure.
the specific argument of yqRegisterFamily points to this action’s protocol specific
data.

Upon successful completion yqRegisterAction returns a pointer to an opaque data
structure that can be later used in subsequent equipment calls.

On failure, all these subroutines return a NULL pointer. A more detailed informa-
tion about the error can be found via yrCode.

N

See Also
vqCall(3l), Ncvt(31), yrCode(3l), yrString(31)

21

Name

yqLocateDevice, yqLocateAction — locate description of a device or an action in an
equipment database

Syntax

#include <yaqq.h>
yqDevice_t *yqLocateDevice(char *name)

yqAction_t *yqLocateAction(char *name, void *family)

Description

The yqLocateDevice subroutine checks first whether the device specified by name
is already registered in the calling program’s local cache. If this is a new device, the
description of the device is located in the equipment database.

The yqlLocateAction subroutines checks first whether the action specified by name
for the family specified by family is already registered in the calling program'’s cache.
If this is a new action, the description of the action is located in the equipment
database. The family paramnetes pointer to the name of a family or to a family
reference returned by yqRegisterFamily.

Return values

Upon successful completion a pointer to an opaque data structure inside the calling
program is returned.

On failure. a NULL pointer is returned.
Diagnostics

See Also
vqCall(3l). vqRegister(3l). vrCode(31). yvrString(31)

99

yrLog
vrLog, yrLogl, yrLoglM, yrLog2, yrLog2M - error handling subroutines

Syntax
#include <yaqr.h>

int yrLog(char *format [,arg] ...)

int yrLoglM(int errcode, char *format [,arg] ...)
int yrLogl(int errcode [,arg] ...)

int yrLog2M(int errcode, int errcode2, char *format [,arg] ...)
int yrLog2(int errcode int errcode2, [,arg] ...)

int yrCode()
int yrCode2()
int yrString()

Description

The yrLog1iM subroutine first forms an error message string using the printf-style
format and all successive arguments. A pointer to the error string and errcode are
then stored in errlog’s internal variables, that can be accessed later via the yCode
and yrString subroutines.

If an user error handler is set (see yrSetHandler). the yrLogiM subroutine calls the
user handler. Upon return from the handler. the return value is checked. A 0 return
value causes no additional actions to be taken. otherwise yrLogiM continmies error
processing as 1t is specified by the vrLog mode.

The yrLogi subroutine is similar to yrLog1M. except that it does not have the formal
parameter. The format string is selected from a message file. using ¢ rrcode as a
kev. Message files are normally found in directories specified by the YAQRIATH
environment variable. There may he message files in different national langnages.
this can be chosen by the yrSetLanguage subroutine. An application program can
have its own message file(s). that can be specified by the yrSetMsgfile.

The yrLog2 subroutines are similar to the yrLogl ones. except that they have the
additinal errcode? argument. Like errcode. errcode? is also saved in an errlog’s
mternal variable. that can later be accessed using the yrCode2 subroutine. The
errcode? is also sent to the errlog server. There is no predefined usage for errcode?,
this is completely up to the user to decide what it stands for.

The yrLog subroutine is similar to yrLog1M, except that in does not have the errcode
argument and the errcode value is always set to -1.

22

Return values

A 0 is returned if the user error handler have returned 0. Otherwise a -1 is returned.

See Also
yrCode(3l), yrCode2(3l), yrString(3l) yrSetHandler(31), yrSetMode(3l)

24

yrSet
yrSetMode, yrSetHandler - set errlog mode and handler

Syntax

#include <yaqr.h>

int yrSetMode(int mode)
yrHandler yrSetHandler(int (*handler)())

Description

The yrSetMode subroutines sets the errlog mode to the value mode and returns the
old value of mode. The mode is formed by ORing of the following values:

ErrMODE_PRINT Print error message on stderr.
ErrMODE_EXIT Exit on receiving an error call.
ErrMODE_LOG Send error information to the error log server. This is default

mode.

The yrSetHandler subroutine specifies the user error handler routine, that will be
called in the case error occurs. It returns the address of the previously set user
handler.

See Also
vrLog(3l)

25

Name

yhRegisterProtocol - register a protocol module entry point
Syntax

#include <yagh.h>

yhProtocol.t *yhRegisterProtocol(int (*entry)(yhHeader_t*), int proto-
col_id, int flags, char *family_format, char *device_format, char *action_for-
mat)

Description

The yhRegisterProtocol subroutine is similar to the client’s subroutine yqRegis-
terProtocol, additinally is has the entry parameter, a user protocol module entry
point.

On receiving an equipment call to a device working under protocol protocol_id, the
entry subroutine is called with one parameter, a structure of type vhHeader_t by
address. The yhHeader_t structure is defined as follows:

typedef struct {
yhDevice_t *device;
yhFamily_t *family;
yhAction_t *actionm;

char *arg,;

int argsize;
char *res;

int ressize;
int resbufsize;
int mode ;

} yhHeader_t;
where vhDevice_t. vhiFamilv_t and vhiAction_t are:

typedef struct {
char *name;
} yhDevice_t;

typedef struct {
char *name;
} yhFamily_t;

typedef struct {

char *name;

char *ncvt_format;
} yhAction_t;

The device, family, action fields in the yhHeader_t structure are. in fact, pointers to
structures, that may contain protocol specific fields, depending on the equipment
access protocol. If so, the desirable data type can be set by casting. For example:

A

int my_protocol_module(yhHeader_t *h) {
MyDevice_t *device = (MyDevice_t*) h->device;
MyFamily_t *family = (MyFamily_t=*) h->family;
MyAction_t *action = (MyAction_t*) h->action;

now ot

Other fields in the yhHeader_t structure are: arg is a pointer to the input pa-

rameters of the action. The parameters are in network representation unless the
yqPF_ARGHOST flags is set. The argsize is the size of arg.

At the time a user protocol module starts, the res points to a block of memory.
result can be put to, the resbufsize is the size of this block. On exit. the protocol
module should put the actial result size into ressize.

See Also
vqRegisterProtocol(3l), Ncvt(31), yrCode(3l)

Name

vhWait - wait for an equipment call
Syntax

#include <yaqh.h>

yhWait(int mode, int loc_size)

Description

The yhWait subroutine listens for an equipment call from a client. Upon received
an equipment call, the protocol identifier is decoded, and the corresponding user
protocol module is called.

Arguments

mode specifies the level of verbosity for the device server. this is used mainly for
debugging purpose. The mode is formed by ORing the following values:

yhTRACE_CALL Print a message like “Equipment call received”.
vhTRACE_ACTION Print action.
yhTRACE_ERRORS. Print error messages.

loc_size is the size of a memory buffer to be allocated. This buffer is used to store
an incoming equipment call message and the equipment call result.

See Also
vhRegisterProtocol(3l). vqCall(31). yrCode(3l)

IR

Name

Ncvt - subroutines to convert data to and from network representation
Syntax

#include <ncvt.h>

int NcvtGetArgNetworkSize(int *size, char *format, void *hostptr)
int Ncvt ArgToNetwork(void *netptr, char *format, void *hostptr)
int NcvtGetArgHostSize(int *size, char *format, void *netptr)

int NcvtArgToHost(void *hostptr, char *format, void *netptr)

int NcvtGetResNetworkSize(int *size, char *format, void *hostptr)
int NcvtResToNetwork(void *netptr, char *format, void *hostptr)
int NcvtResToHost(void *hostptr, char *format, void *netptr)

int NcvtGetNetworkSize(int *size, char *format, void *hostptr)
int NcvtToNetwork(void *netptr, char *format, void *hostptr)
int NcvtGetHostSize(int *size, char *format, void *netptr)

int NcvtToHost(void *hostptr, char *format, void *netptr)

int NcvtFGetNetworkSize(int *size, char *format)
int NcvtFGetHostSize(int *size, char *format)

int NevtVaToHost(void *dest, char *format, va_list va_alist);

int NcvtCall(void *func, void *alist, char *format);

Description
The format argument controls how each of these subroutines calculates sizes and
converts. The format s a charater string. containing a conversion specification. A\

conversion specification is composed of a number of items possibly separated hy
blanks. Simple items are ¢’ s i, 1" Uf7. 'd'. that correspond to the char. short.
int. long. float and double (" data type. respectively. For example. the format string
“if¢” corresponds to the structure:

struct {
int 1;
float f;
char c; }

A simple item can be preceded by 'u’. that stands for 'unsigned’. For example, 'ui’
means unsigned int .

Arrays are specified by '[]". the format "i{10]” stands for an array of integers of size
10. Structures are specified by '{}". For example, the structure:

2Q

struct {
int i;
struct {
float £;
char ¢; }}

is described by the format ”{i{fc}}”, or simply i{fc}” (the outermost brackets may
be omitted).

Pointers are specified by '*’, ”*i stands for a pointer to an integer. Pointers have
no impact on network representation, they are not sent over network. network rep-
resentation of i’ and "*****{’| for example, is the same.

Variable arrays are specified somewhat like "*(d[i])”, that corresponds to a (' struc-
ture:

struct {
double *d;
int i; }

Note that the ()’ brackets are mandatory, the following example shows why:

int array[10];
struct {
int array[10];
int *array_of_pointers[10];
int *pointer_to_array;
} example;
example.pointer_to_array = array;
/* The format is "i[10] *i[10] #*(i[10])" =*/

A special kind of variable length array is a 0-terminated charater string,. it is spec-
ified by 'z’

Data to be converted can be of one of four following categories: input. output. input

and output. neither input nor output. These categories arc specitied in the format
string by the svibols "<’ "> "="and "# . respectively. If nothing is specilied, "="1s
assumed. Input data are included into network representation by the NevtArg sub-
routines. output data by the NevtRes subroutines. An input/ontpnt specilication

remains valid until the next specification is found.

int argl = 10;
int arg2 = 20;
int res;

my_add(argl, arg2, &res);
/* The format is ''<ii >=*i' =/

The following diagram contains a formal syntax description of the conversion spec-
ification.
conversion_specification := one_item

conversion_specification ’ '’
conversion_specification one_item
io_attribute const data_specification

one_item :

mn

' 1 I Y= | ry? | W

complex_type | pointer_to_complex_type
"% 7 (’ complex_type ’)’

'#’ pointer_to_complex_type
non_pointer_type

‘%’ complex_type

simple_type

simple_type ’'[’ array_specification ’]’
’e? | L & | d’ ' rz?
signed_single_type

’u’ signed_simple_type
{conversion_specification}

’g? | ’40 | 'y

io_attribute array_data_specification
array_simple_type

io_attribute :
data_specification :
pointer_to_complex_type :

complex_type
non_pointer_type :

simple_type :

signed_simple_type :
array_specification :
array_data_specification :

| const
| ’*’ array_data_specification
array_simple_type := ’s’ | ’i’ | '1’
const := digit
| const digit
digit :=0 1112131415616 7181l@9

To make the description of the Ncvt subroutines more clear consider the follow-
ing context: a client application wants a remote procedure to be executed on a
server. The client sends input parameters to the server, the server returns output
parameters to the client.

Before any data can be sent over network, they must be converted to network
representation. The conversion usually requires an intermediate buffer data in net-
work representation will be placed to. The NcvtGetArgNetworkSize subroutine
returns the size of an intermediate buffer required to store network representa-
tion of input data pointed to by hostptr and described by the format string. The
NcvtArgToNetwork subroutine converts input data pointed to by hostptr to network
representation and places output in a buffer pointed to by netptr.

Upon receiving input data from the client. the server must convert them to host rep-
resentation using the NcvtGetArgHostSize and NcvtArgToHost subroutines. The
NcvtGetArgHostSize subroutine returns the size of an intermediate buffer required
to store host representation of client’s data pointed to by netptr and describod by the
format control string. The NcvtArgToHost subroutine converts input data pointed
to by netptr to host representation and places output in a buffer pointed to by
hostptr. The NcvtArgToHost re—creates the exact copy of client’s data strincture.
including pointers and data that are not input ones.

Once input data are converted to host representation. the server can call a procedure
requested by the client. On return from that procedure the server must send result
to the client. To be sent the output data are converted to network representation
using the NcvtGetResNetworkSize and NcvtResToNetwork subroutines. These sub-
routines are similar to the NcvtGetArgNetworkSize and NcvtResToNetwork. except
that they process output data instead of input ones.

N

Having received output data from the server, the client must convert them back to
host representation. The NcvtResToHost subroutine converts output data pointed
to by netptr to host representation and places output into a data structure pointed
to by hostptr. Our client have to specify the hostptr as a pointer to exactly the same
data structure that was used in NcvtArgToNetwork.

The NcvtGetNetworkSize, NcvtToNetwork, NcvtGetHostSize and NcvtToHost are
just other names for the NcvtArgGetNetworkSize, NcvtArgToNetwork, NcvtArg-
GetHostSize and NcvtArgToHost subroutines. Normally they should be used in
a context when data are not subdivided into input/output categories. i.e. the
io_attribute is not specified.

The NcvtFGetNetworkSize and NcvtFGetHostSize subroutines are similar to the
ones without G, except that these work only for simple data structures. without
pointers, when size can be calculated using the format only.

The NcvtVaToHost subroutine converts a C variable argument list. pointed to by
va_alist to an ordinary structure and places the result in a buffer pointed to by dest.

The NcvtCall subroutine calls the subroutine specified by func with the parameters
pointed to by alist and described by format.

Return values

Upon successful completion all these routines return 0. On failure a -1 is returned,
and a more detailed information can be obtained via yrCode.

See Also
vrCode(3l), vrString(3l)

©

