
. RCfCI'Cl`lCC p3.g€S

. Current status

. Portability

. Examples

. YAQ database management

. YAQ components

. Basic data structures

. Terms and scope

. Introduction

Contents

to transparently access equipment in a distributed heterogeneous networking environment
access protocols. It includes tools for maintaining the equipment database and C libraries
package provides a unihed way to access devices worhng under different equipment
This note describes Version 2.0 of YAQ (Yet Another eQuipment access package). The gw 5‘S2‘$ OCR Output

Abstract

Insitute for High Enugy Phsics, Protvino, Russia

E.A. Jarkov, V.I. Kovaltsov

U1· ci
{pi"

YAQ - Yct Another cQuipmcnt access package

September3, 1994

CERN-PS

caravan swrrzauw "*°"'“°-*°”**

’‘;—£—*—* c0LLAB0RAT10N 0N UNK c0N·rn0Ls §L,$,,.!,,2,,·:

EUROPEAN LABORATORY FOR PARTICLE PHYSICS
CERN

VIHCTVITYT QVIBHKVI BHCOKVIX SHFZPFMVI

.......ygrStrin 23 OCR Output

yrLog 23

........
v1·Code

yqLocateDevice . . . 22

yqLocateAction . . . 22

yqRegisterAction . .
yqRegisterDevice . . 19

yqRegisterFa1nily . . 15)

yqRegisterProtocol . IS)

yqRegisterServer . . I?)

ISyq(.`all

17

v<lFe1rh 17

16

I6v,l{r’,.

HivdClose

16Reference Pages

15Current status

14Portability

136.4 An example with protocol speciiic data

126.3 A client example with the yqR.egister subroutines
. . .

116.2 A simple device server example
6.1 A simple client example . 10

Examples 10

...........52 dbrtgen 10

5.1 The DBRT control file . .

YAQ database management

4.6 NCVT

4.5 YM

..........
4.3 YR

..........
42 YH

..........41 YQ
YAQ components

Basic data structures

Terms and scope

Introduction

Contents

device is not covered by YAQ, it is competely up to the author of the device server. OCR Output
program and return back the result. The way how a device server communica.tes with a
by the device server to decode the equipment call message coming from the application

YAQ is used by the application program to make a call to a. device. YAQ is used
program and the device server is called equipment access protocol or simply protocol.

A set of a.greements on the device presentation in a. da.ta.ba.se. inside the application
to a family. All the devices of one family have the same set of actions.
database. for example). A device is accessed by means of actions. Each device belongs

A device is a piece of hardware (power supply. for example) or a so[`tweu·e object (a

The YAQ context diagram is shown in Figure l.

2 Terms 3Ild SCOp€

suggestions. etc. are greatly welcomed and should be sent to ezharkov··tl>;<‘··ru.¤·t~r11.cli.
of this document is in dxcern.cer11.ch1/u/pz/ezharkoy/yaq/doc/yaq.ps. ;\uy t‘t1IlllI`lP11l~S.

YAQ sources can be found in dxcerncern.ch:/u/pz/ezharkoy/yaq. A postscript. copy

be used in the UNK controls infrastructure.

different equipment access protocols which are in use at CERN and which probably will
completely new. The code has been rewritten with an aim to make it more suita.ble for
V\·`l1ile Version 2.0 is almost backward compatible with Version 1.0, the source code is
the beginning of 1993 and is used by the UNK control teams a.t CERN and in Protviuo.
[1] a11d CERN SPS—LEP [2] equipment access packages. Version 1.0 has been developed in
Version 2.0 is based on Version 1.0. which is in one’s turn based on ideas of the CERN PS

1 Introduction

List of Tables

Structure of DBRT

The YQ subroutines

YAQ components

YAQ basic data structures
YAQ package context

List of Figures

29Ncvt

28yh\Nait .

26yhPr0t0c0l .

25y1‘SetM0de .

25y1‘SetHa11dler

types of calls an applications program makes. the first one is to create a device and an OCR Output
An a.pplication program mainly deals with YQ (Section 4.1). There are basically two

it possible in principle to use both packages in one applica.tion.
Eqp. YD — Dbrt. YR — Err. i.e. exactly as in [1). and the reason for changing was to make
subroutines inluded) changed in Yersion 2. The YQ component was previously called
components as shown in Figure 3. The names of the components (and the names of

Physically YAQ is built as one library - libyaq. logically it consists of a. number of

4 YAQ components

transparently to a device server.
Protocol specific data are normally defined in an equipment database. selected and sent
dress A protocol specific structure need not to be defined at the time Y.e\Q is Iinill.
specific structure can include. for example. the member number [3) or a field bus and
YAQ need not to be rebuild when a specific structure is changing. .\ rleviru pi-..n»t·t»|
family format. device format and action format fields in the protocol description.
mon for all protocols. and protocol specific. The protocol specific parts are defined by the

Family. device and action structures consist of two parts. mandatory. which is com·

server. and there is no need to send device and action names to the device server.

([1. 3]) numbers are used for the device and action identification on the level of the device
program or the device server. the structures can be somewhat different. For example. in
view of the structures. Physically. in the equipment database. inside the application
YAQ basic data structures and their relationships are shown in Figure 2. This is a logical

3 Basic data structures

Figure 1: YAQ package context

ORACLE

YAQ YAQ Swpiv

Nzrwonx

APPLICATION mzvicz smvmz Bm Logger Pvwcr

DBRT

EQUIPMENT

database. A Register subroutine creates a data structure on the ba.se of information OCR Output
subroutine creates a data structure on the base of information, located in the equipment
is also divided into two subgroups, the Locate and Register subroutines. A Locate
another to make an a.ctual call to a device (see Figure 4). The first group i11 0116,5 turn

YQ consists basically of two groups of subroutines, one to create a YQ”s data structure.
An application program mainly deals with YQ.

4.1 YQ

All possible erroneous situations are handled by a call to YR (Section 4.3).

message a.11d send it to the application program.
Wilien protocol module finishes its job. control returns to YH again. YH forms the result

protocols).
an appropriate protocol module (one server can support devices working under different

a message the server decodes it. fills up an interface structure and passes control to
program. A message first comes to YM. then to YH (section Section 4.2). llaviug received

A device server is basically in an infinite loop waiting for a message from an application

(Section 4.5).
the message to network representation using N CVT and sends it over network using YM

vVl1€11 an equipment call is made. YQ forms a message to a device server. converts
YQ converts them to host representation using NCVT (Section 4.6).
YD (Section 4.4) to select data from DBRT. Data in DBRT are in network representation.
first checks whether the data requested by the user are already in the cache. lf not. it calls
time database (DBRT. see Section 5). YQ itself maintains a cache of description data, it

The device and action descriptions are normally (but not necessarily) stored in a run

action data structures, the second one is an actual call to a device.

Figure 2: YAQ basic data. structures

sexvenddzeu I mae:

sewunme I dur, Protocol speci:

Field Name I C Type S°“'°‘“'”‘° I dm °

char *Action format Famllv name I char *

Device format Dm, um, I ch., ·DEVICE SERVER
chu, ,.Family format Reid Name I C Type
short

Protocol qciic
Pmweol ID

DEVICE
Pmlncol nme chu' Promeolm I shon

Pmilv nune I char *Edd Name I C Type Protocol specmc
FiddNm» ICT

Ncvttm-ma: I char*

Familv name I char *PROTOCOL
Acdon name I char *FA@Y

Held Name | C Type

ACTION

sent automatically to the application program. OCR Output
Errors are handled by a call to YR. In case of error the error code and error string are

structure to return the result.

appropriate protocol module. VVhen the protocol module exits. it uses the interfacing
equipment call. it fills up at number of fields in this structure a.nd passes control to the

YH interacts with the protocol modules using a C structure. Vlfhen YH receives an

subroutine (see yhWait Reference Page).
enters an infinite loop waiting for an equipment message. This is done bv the yhwait
terProtocol Reference Page). Once all protocol modules are registered. the device server
must be registered. This is do11e by the yhRegisterProtoco]. subroutine (see iilililegis

YH supports one or more protocol modules in one device server. Each protocol module

application program.
taking control over all the communication problems between the device server and tlie
Tl1e idea of YH library comes from Message Handler YH easies writing device s¤·i·v<·rs.

4.2 YH

Page for the complete description of the YQ subroutines.
Refer to yqLocate Reference Page. yqR.egister Reference Page a.nd yqCall Reference

ll. 2.
specific subroutines. Protocol specific subroutines are included for compatibility with
directly supplied by the user. Each of these groups consists of general and protocol

Figure 3: YAQ components

DEVICE SERVERAPPLICATION

Module

Protocol

; I I \

_ . _
coms

C\f1' · N l ’· ' \ INCVTI K I CODE

R " "~_ I _¢I ;/ I |
._-_. ,,

UsmzYR l:``~
YD | Q;| YR

"

Database

RunTime

macro from the previous example can be redefined to something like: OCR Output
very often errors are subdivided into categories by severity: warning, fatal, etc. The

Macros allow to switch quite easily to a different wa.y of error handling. For instance.

"Name Ze is too long. Buffer size Zd", name, size)
#def ine xyzERROR_NameTooL0ug(name , size) yrL0g1H(xyzERRNO_NameTooLong , \

where xyzERROR.r’Wa11ieTooLo11g is defined in an include file as:

if (st:r:1en(name) >= bufsize) xyzERROH_NameTooLong(na1ne, bufsize);

like:

Error handling in YAQ is based on use of C` macros. For example. a call lu YR may look

4.3 YR

Figure 4: The YQ subroutines

eb

eBvNarn

eBvName

eBvEM

mmandBvName

eBvFM

Protocol specificyqL0c¤1¢ByID

lspccmc
yqkegrster cuon

.ezisterFamil‘

epsterservereAction

te yqRegisterProtocol

GeneralGeneralG¢¤¢¤ll

RegisterLocate

callsdatastructures

Equipment

The I..i`bEQP subroutines

Refer to N cvt Reference Page for the complete description of the NCVT subroutines. OCR Output

NCVT also supports conversion of variable C-call argument list.
variable a.rrays, structures. etc.

is based on ideas of the DTM package As distinct from DTM, NCVT supports pointers,
chine representation (host representation) to network representa.tion and vise versa. NCVT
(network representation). The NCVT subroutines are to convert data from the local ma
to ea.ch 0tl1er computers must use a common machine independent representation of data
ferent representation and alignment rules of theirs ba.sic data types. To be able lu speak
Different computers in the distributed heterogeneous networking environment ltare dif

4.6 NCVT

sockets etc.. presently it works via the [TDP sockets.

YM can work on the top of different software interfaces. (`ERN RPC`. UDP sockets. 'l`(`le’
of subroutines to open a connection and to send/receive a block of data over ut·twt»rk.
plication program or a device server programmer. it is used internally by YQ. lt rottsists
YM is the communication component. YM is not supposed to be used directly b_v an ap

4.5 YM

pages for detailed information.
ydStore to put a record to the gdbm based DBRT. Refer to the corresponding reference

YD consists of ydOpen to open a DBRT database, ydFetch to get a record from DBRT.

directly.
tion 5.2) to create a gdbm based DBRT. and it can also be used by an a.pplication program
YD is used by YQ to get a device description from DBRT, by the dbrtgen program (Sec

4.4 YD

Refer to YR reference pages for detailed information.

up his own error handler.
log the error information to the errlog archive. In addition to the mode, a user can set.
modes are PR.INT - print error message, EXIT - exit on receiving an error call. LOG

VVhen control passes to YR, its behaviour is defined by the mode currently set. the

#define XyzERR_NameTooLong(name,size) yrLog1(xyzERR1I0_HameTooLong, name, size)

national languages. The xyzERROR.NameTooLong macro takes the form:
messages separately from the source code allows to have different message files for several
messa.ge files, and selected from these files using the error code as a key. Keeping error

The error strings in YAQ can be kept separately from the source code, in a sort of

"Name %s is too long. Buffer size %d", name, size)
#defiue xyzERR_HameTooLong(name,size) yrLog1H(xyzERR!0_IameTooLong, FATAL, \

of these statements has the following syntax: OCR Output
structure and the way data are extracted from ORACLE (or from an ASCII file). Each
For ea.ch DBRT record type there is a statement in the control file that defines the record

5.1 Tl1e DBRT control Hle

be changed or rebuilt.
to DBRT. or modifying the structure of an old one does not require the dbrtgen code to

Figure 5: Structure of DBRT

APPLICATTON

GDBM

umm

mmmmmm

Hhs

onus

The structure of DBRT is shown in Figure 5. In most cases adding new record type

which contains information on what and how is to be selected from ORACLE.

The dbrtgen and dbrtora programs are driven by a special control file (Section 5.1).
da.tabase (of course it can select data from a gdbm database too).
called dbrtora, made as an ordinary device server, selects data directly from an ORACLE
representation. The more universal way is to have a DBRT server. In YAQ such a server.
via NFS, but all these machines should be compatible from the point of view of data
data directly from a gdbm file. A gdbm file can be accessed from a number of machines

In case of gdbm an application program can be linked with the gdbm library and read
ORACLE database (or from a set of ASCII files) by the dbrtgen program (Section 5.2).
storage built on the base of GNU gdbm. A gdbm·based database is created from an

A DBRT database can be organized directly under ORACLE, or in an intermedia.te
database. As an alternative to ORACLE ordinary ASCII files can be used too.
information is in network format. Primary source of data. is normally in an OR.ACLE
of records are stored in the database with a key prefixed by the record type. All the
(DBRT), which can be considered as a one-table single-key database. Different types
The device and a.ction description in YAQ is normally stored in at run time database

5 YAQ database management

include files and avoid explicit specification for keyid and ncvt. OCR Output
The control file is normally passed through the C preprocessor, this allows to use

int device_id;

char *server_name;

char *family_name;

struct {

"zzi". that corresponds to the (` structure:
gdbm will be "device.mydeyice", The structure of this record is defined by the ncyt st ring
by the string "device". For instance. if the device name is "mydeyice" then the l<<·y in
stored i11 DBRT with a key equal to name (the first item in the sqlgen select list yl. prt-lixvtl
In this example the record type is "device by name". all the records of this type will be

file "device.dat"

"where name='%s’";

"from equip.device

sqlget "select iami1y_uame, server_name, device_id

"from equip.device ";

sqlgen "select name, fami1y_name, server_name, device_id

ncvt ”zzi";

keyid "device";

comment "Device By name"

record {

Consider an example:

file is a name of an ASCII file (if any) containing data to be put to gdbm.

sqlget is a SQL statement used by dbrtora server to directly select da.ta from ORACLE;

sqlgen is a SQL statement used by the dbrtgen program to select da.ta. from ORACLE:

to network representation;
ncvt is an ncvt forma.t string, that detines the record format and is used to convert data

keyid is a record type;

where:

tile "string";

sqlget "string";

sqlgen "string"

ncvt "string";

keyid "string" or number;

comment "string";

record {

`\ D OCR Output

printf("Result = Zd, Zd, Xd, %d\n",sum,difference,product,quotient);
yqCal1(ca1cu1ator, div, item1, item2, tquotient);
yqCal1(calcu1ator, mul, item1, item2, tproduct);
yqCall(calcu1ator, sub, item1, item2, tdifference);
yqCall(ca1culator, add, item1, item2, tsum);
div = yqLocateActi0n("Div", "Ca1culator_¢amily");
mul = yqLocateAction("Hul", "Calculator_fami1y");
sub = yqLocateAction("Sub", "Calculator_family");
add = yqLocateAction("Add", "Calculator_fami1y");
calculator = yqLocateDevice("Calculator");
yqActi0n_t *add, *sub, *mu1, *div;

yqDevice_t *calcu1ator;

int item1 = 4, item2 = 2;

int sum, difference, product, quotient;

main() {

#include <yaqh.h>

#include <stdio h>

or $01116 other l'€?lSOI]S. So one Can 1`€\\'1`lt€ the above example as follows:
ternally calls yqLocateDevice and yqLocateAction. This may be not good by])€l'l.O1`1llE\.11(`€
ln the example above device and action are specified by name, the yqCall subroutine in

printf("Result = Zd, Zd, Zd, %d\n",sum,diiference,product,quotient);
yqCal1("Calcu1ator", "Div", item1, item2, tquotient);
yqCa11("Ca1cu1ator", "Hul", item1, item2, tproduct);
yqCa11("Ca1cu1acor", "Sub“, item1, item2, tdifterence);
yqCa1l("Calcu1ator", "Add", item1, item2, &sum);

:2;int item1 = 4, item2

int sum, difference, product, quotient;

main() {

#iuc1ude <yaqh.h>

#inc1ude <stdio.h>

like:
is able to add, subtract, multiply and divide integer numbers, a client program may look
are in an equipment database. Consider, for example, a device called "Calcula.tor", which
The simplest case for equipment access client is when the device and actio11 descriptions

6.1 A simple client example

6 Examples

ORACLE or from an ASCII files.

(Section 5.1). Depending on the description in the control file it selects data. either from
The dbrtgen program generates a gdbm based DBRT. dbrtgen is driven by a. control file

5.2 dbrt gen

11 OCR Output

else yrLog("Uuknovn action");
else if (strcmp(a—>uame, "Div") == O) div(p—>i1, p—>i2, p->res);
else if (strcmp(a—>name, "Hu1") == O) mul(p->i1, p—>i2, p->res);
else if (strcmp(a->name, "Sub") == O) sub(p->i1, p->i2, p->res);
if (strcmp(a->name, "Add") == 0) add(p·>i1, p—>i2, p->res);
int *res; } *P = (struct params *)h->arg;

int i2;

int il;

struct params {
yhActi0n_t *a = h->acti0n;

calculator(yhHeader_t *h) {

return yrLog("Unknown device");
if (strcmp(h—>device—>name,"Calculator") == O) return calculator(h);

int myprotoc0l(yhHeader_t *h) {

yhUa1t(O,1000);
yhRegisterProtoc0l(myprotocol, 1, FLAGS, NULL,NULL,NULL);
yhRegisterServer(ymCHT_UDP,&srvaddr);
yrSetHode(yrHODE_PRINT|yrHODE_EXIT);

main() {

int mypr0toco1();

static ymUDP_t srvaddr = { NULL, 1994 };
#derine FLAGS yqPF_ARGHOST|yqPF_HHDEVNAHIyqPF_HHACTNAHIyqPF_HHACTFMT

#include <yaqh.h>

#include <yaqq.h>

#include <yaqm.h>

#include <yaqr.h>

#include <stdi0.h>

pointer to a data type corresponding to the action`s parameter list.
parameters to be converted automatically to host representation. VVe just cast the h->arg
questing the action format string to be sent from the client to the server and the action

Wie register our protocol with the yqPF.MI-IACTFMT and yqPF..ARGHUST flags, thus re
parUcuku‘proCedure.
names we check if this is a right device and we make a switch by the action name to a
family, device and action names are not sent to a server). Having the device and action
questing the device and action names to be sent from the client to the server (by default

We register our protocol with the yqPF.MHDEVNAM and yqPF.M1-IACTNAM flags, thus re

subroutine.

nor action, this is specified by the NULL pointers in the call to the yhRegisterProtocol
We define our protocol as not having specific data for neither family, nor device.

fact, is not used by the yhRegisterServer subroutine).
by a structure of type ymUDP.t consisting of a hostname and a UDP port (hostname, in
Our server works via the UDP sockets. ln case of the UDP sockets the address is specified

6.2 A sin1ple device server example

19 OCR Output

printf("Resu1t = Zd, Zd, Zd, %d\x1",sum,difference,product,quotient);
yqCall("Calculator", "D1v", item1, item2, tquotient);
yqCa1l("Calculator", "Hu1", item1, item2, tproduct);
yqCa11("Calculat0r", "Sub", item1, item2, ldifference);
yqCall("Calculator", "Add", item1, item2, tsum);

yqReg1sterAction("Div", "Calculator_£amily", "<1i >*1", NULL);
yqReg1sterAction("Hul", "Calculator_fam1ly", "<ii >#i", NULL);
yqRegisterAction("Sub", "Calculator_fam1ly", "<ii >*1", NULL);
yqReg1sterAction("Add", "Calculator_family", "<ii >*i", NULL);
yqReg1sterDev1ce("Calculator", "Calculator_fam1ly", "myserver", NULL);

yqRegisterFamily("Calculator_family“, "myprotocol", NULL);
yqReg1sterProtocol("mypr0t0col", 1, FLAGS, NULL, NULL, NULL);
yqReg1sterServer("myserver", ymCMT_UDP, &srvaddr);

yrSetHode(yrMODE_PRINTIyrHDDE_EXIT);

int item1 = 4, item2 = 2;

int sum, difference, product, quotient;

ma1n() {

static ymUDP_t srvaddr = { "localhost", 1994 };
#def1ne FLAGS yqPF_ARGHOST|yqPF_HHDEVNAHIyqPF_HHACTNAHIyqPF_HHACTFHT

#1nc1ude <yaqh.h>

#inc1ude <yaqq.h>

#1nclude <yaqm.h>

#1nc1ude <yaqr.h>

#1nc1ude <stdio.h>

other).
server example above (this is a must for a client and a. server tha.t want to speak to each

VVe use the same parameters for yqRegisterServer and yqRegisterProtocol as in the

example with the yqLocate subroutines is less easy to run because it require a. database.
provide below can be easily compiled, linked and hopefully it will even work. The above
a.t least one interesting moment in using of the yqR.egister subroutines - the example we
specified by the user in the form of parameters to the yqRegister subroutines. There is
descriptions in an equipment database. Altematively all this info1·rna.ti0n can be directly
I11 Section 6.1 we showed an example of a. simple client which locates device and a.ct.i0n

6.3 A client example with the yqRegister subroutines

11/ 12; }d1v(1nt 11, 1nt 12, 1¤t *r•s) { *1·as

11 * 12; }mu1(int 11, int 12, int ·•·res) { ·•·res

11- 12; }sub(int 11, int 12, int *res) { ·•=res

11 + 12;}a.dd(int 11, int i2, int ·•=1·es) { ·•·res

return O;

1Q OCR Output

#inc1ude <yaqq.h>

#include <yaqm.h>

#include <ncvt.h>

#include <yaqr.h>

#inc1ude <stdio.h>

/* A server example with protocol specific data */

printf("Resu1t = Kd, Zd, Zd, %d\n",sum,difference,product,quotient);
yqCall("Ca1cu1ator", "Div", item1, item2, "ient);
yqCall("Ca1cu1ator", "Hul", item1, item2, &product);
yqCall("Calculator", “Sub", item1, item2, kdifference);
yqCall("Calculator", "Add”, item1, item2, tsum);

yqRegisterActi0n("Div", "Calculator_family", "<ii >*i", &divid);
yqRegisterAction("Hul", "Calculator_family", "<ii >*i", kmulid);
yqRegisterAction("Sub", "Calculator_family“, "<ii >*i", &subid);
yqRegisterAction("Add", "Calculator_family", "<ii >*i", &addid);
yqRegisterDevice("Calculator", "Calculator_family“, "myserver", &devid);

yqRegisterFami1y("Ca1culator_family", "myprotocol", NULL);
yqRegisterProtocol("myprotoco1", 1, FLAGS, NULL, "i", "i");
yqRegisterServer("myserver", ymCHT_UDP, tsrvaddr);

yrSetHode(yrHODE_PRINTIyrHODE_EXIT);

int item1 = 4, item2 = 2;

int sum, difference, product, quotient;

main() {

} addid = { 1 }, subid = { 2 }, mulid = { 3 }, divid = { 4 };

int id;

struct protocol_specific_action {

} david = { 1 };

int id;

struct protocol_specific_device {

static ymUDP_t srvaddr = { "localhost", 1994 };
#define FLAGS yqPF_ARGHOSTIyqPF_HHACTFHT

#include <yaqh.h>

#include <yaqq.h>

#include <yaqm.h>

#include <yaqr.h>

#inc1ude <stdio.h>

/* A client example using protocol specific data */

device or action. Device and action names are not sent to a server.

protocol, each device and action has an additional parameter, an integer identifier for the
and action. ln the example below we use a bit different protocol. According to this
In the above examples we use a protocol without protocol specific data for family. device

6.4 An example with protocol specific data

TA OCR Output

• SunOS V4.x

• IBM AIX Risc System/6000

• DEC Ultrix V4.3

YAQ has been ported and tested in one or other way on the following])lH-tl.OI`1l]SZ

7 Portability

return NcvtCall(act1ons[id—1], h·>arg, a—>format);
1f (id < 1 II 1d > 4) return yrL0g("Unknown action");

int id = a->id;

MyActi0n_t *a = (MyAct1on_t *)h—>act1on;

calcu1ator(yhHeader_t *h) {

int (*act1ons[])() = { add, sub, mul, div };

d1v(int i1, int 12, int *res) { *res = 11 / 12; }
mul(1nt 11, int 12, int *res) { *res = i1 * 12; }

sub(1nt 11, int 12, int *res) { *res = 11 - 12; }
add(int 11, int 12, int *res) { *res = 11 + 12; }

return yrLog("Unknewn device");
if (device->1d == 1) return ca1cu1ator(h);
MyDevice_t *device = (HyDevice_t *)h->dev1ce;

int myprotoco1(yhHeader_t *h) {

yhWa1t(O,1000);
yhRegisterProtoc0l(myprotocol, 1, FLAGS, HULL,"1",“1");
yhReg1sterServer(ymCHT_UDP,&srvaddr);
yrSetH0de(yrMODE_PRIHTIyrHODE_EXIT);

ma1n() {

} HyAct1on_t;

int id;

char *f0rmat;

char *uame;

typedef struct {

} HyDev1ce_t;

int id;

char *name;

typedef struct {

int mypr0toc01();

static ymUDP_t srvaddr = { HULL, 1994 };
#def1ue FLAGS yqPF_ARGHOSTIyqPF_HHACTFHT

#include <yaqh.h>

ia OCR Output

Procedure Call (NC/RPC). LEP Controls note 97. May 1989.
P.Anderson. \’.Fl`€‘1l1Ill€l`}`. G.l\Iorpurgo. liser Guide to the Network (ilOlII]>ll<Jl` lteniote[Bl

Julian Lewis. Distributed shared memory Table Manager. PS/(YO.l4l

1993.

A.Elin et. al., (.`ontrol protocols for the INK control system. l(c`ALEPS`9Z§. lierliii.li?]

H<‘])l(‘llll)€l` 1993.
"SL-EQlllP package". .S'0ffu·r11‘r user manual (.‘v'li.l[}. SL/Note 98-80 ((`()l. l`l‘illN.
Pierre (ilharrue. Accessing Equipment in the SPS-LEP (`ontrols liiI`ras1i·u··1nrc: `IlicI?]

.$'pcc1;/{cations. Ycrsiorz 3. PS/CO/Note 93-87 (Spec.). CERN. February 1994.
Franck Di Maio. Alessandro Risso. The CERN —PS Equipment Access Library. .5'cgf?uwi·zlil

References

and retransmission in case of error is not vet done.
• Only cominuiiication via the UDP sockets is currently supported. Packet splitting

• The protocol specific subroutines is not implemented.

8 Current status

directives.

usually require to pay some attention to these data types and to add a. number of #ifdef
listed above (except of floats or doubles for Alpha./ OSF), but porting to a. new system
and structures passed by value. All these data types are supported for tl1e pla.ti`o1·ms
of code will be easily ported to a new system it is better to avoid using Boats. doubles

The least portable part in YAQ is the NcvtCall subroutine. T0 be sure that a piece

MS Windows 3.1

MSDOS

VAX / VMS

Alpha / VMS

LynxOS/MGSK

Alpha/OSF

in OCR Output

yrLog(3l). yr(`ode(3l). yrString(3l)

See Also

specific error code is available via yrCode.
Upon successful completion. a O is returned. Otherwise. a -1 is returned. and more

Return values

The ydClose subroutine closes the DBRT databa.se opened by yd0pen or ydCreate.

The ydCreate creates a new DBRT database in a local file with the name name.

"w” Open for writing (this works only for a local file)

"r" Open for reading

The mode is a character string having one of the following values:
sible via the gdbm library, or to a remote host with a DBRT device server running.
or DBRTHOST environment variables, that corresponds to either a loca.] file. acces·
The ydOpen subroutine opens a DBRT database specified by either the DBRTFILE

Description

ydClose()

ydCreate(char *name)

ydOpen(int mode)

#inc1ude <yaqd.h>

Syntax

ydOpen, ydCreate, ydClose — subroutines to open and close a DBRT database

Name

17 OCR Output

yd()pen(3l). yd(`treate(3l). yr(c'o<le(£ll). yrHtring(3l)

See Also

error code is available via vrC`ode.

llpon successful completion. a O is returned. Otherwise. a »l is returned. and the

R€tlIf1l values

dafasizc is the size of re to be stored.

r/ata is a pointer to at buffer containing the record to be stored.

under this key by ydStore.
ydFetch subroutine to find a record in the database. The record is placed

ribr/key is at pointer to O—terminated string containing a key. The key is used by

buf Before a call to should contains the size of the record to be stored.
datasize After a call to ydF etch contains the number of bytes actually placed to

bufsisc is the size of buf

buf is a. pointer to a buffer the selected record is placed to.

Arguments

The ydSto1·e stores a record to the DBRT database opened by ydDpe11 or ydC1·eate.

ydOpen. If the DBRT database is not opened, ydFetch makes a call to ydllpen.
The ydFetch subroutine fetches a record from the DBRT database opened by

Description

int ydStore(char *dbrtkey, void *data, int datasize)

int ydFetch(char *bujQ int bufsizc, int *datasi:c, char *dbrtkey)

#include <yaqd.h>

Syntax

ydFetch, ydStore — get / put a record from/ to fa DBRT database

Name

12 OCR Output

yqRegister(3l). yqLocate(3l). yrCode(3l). yrString(3l)

See Also

detailed information about the error is accessible via yrCode.
Upon succesful completion, a 0 is returned. Otherwise a ~1 is returned and more

Action or yqLocateAction.
action is at pointer to the action name or to the structure returned by yqR.egister

Device or yqLocateDevice.
device is a pointer to the device name or to the structure returned by yqRegister—

Afgll1l1€11tS

with the action specified by action.
The yqCa.ll subroutines performs an equipment call to the device specified by device

Description

int yqCalI(void *device, void *acti0n [, arg])

#include <yaqq.h>

Syntax

yqCall —— equipment access call

Name

10 OCR Output

protocol is assigned the name name that must be unique for a given application. The
The yqRegiste1·Px·otocol subroutine registers an equipment access protocol. The

structure that can be later used in subsequent calls to yqRegiste1‘Device.
Upon successful completion yqRegisterServer returns a pointer to an opaque

} ymUDP_t;
unsigned short port;

char *hostname;

typedef struct {

address is represented by a structure of type vml.lDP-t:
ferent for different communication types. For the UDP sockets the (`Ol`lll1HIIIl<`iIl-l()ll
Cl\lT-TCP). CERN RPC (ymC`l\IT-C`ERN-RPC`). Communication address is dif
(`ommunication types are the UDP sockets (ymC`MT_UDP). the TCP sockets (yin
is assigned the na.me name. The name must be unique for a given applivatioii.
nninication type cmnnzfypc and the communication address ru/r/r+.ss. The server
The yqReg:Lste1·Serve1· subroutine registers the device server speciliwl by thc conu

access devices not described in the equipment database.
These subroutines are normally used by the application program that wants to

Description

mat, void *specifZc)
yqAction.t *yqRegisterActi0n(char *name, yqFamily_t *family, char *f0r

ver-t *scrver, void *specifZc)
yqDevice.t *yqRegisterDevice(char *name, yqFamily.t *family, yqSer——

*specific)
yqFamily.t *yqRegisterFamily(char name, yqProtocol-t *pr0t0col, void

ily.f01‘mat, char *device.f0rmat, char *acti0n.f0rmat)
yqProtocol.t *yqRegisterProtocol(char *name, int id, int flags, char *fam

yqServer.t *yqRegisterServer(char *name, int commtype, void *acId*re.ss)

#include <yaqq.h>

#include <yaqm.h>

Syntax

isterAction — register a server, a protocol, a family, a device, an action
yqRegisterServer, yqRegisterProtocol, yqRegisterFamily, yqR.egisterDevice. yqR.eg

Name

on OCR Output

tion about the error can be found via yI'COd€.
On failure. all these subroutines return a NULL pointer. A more detailed informa

structure that can be later used in subsequent equipment calls.
Upon successful completion yqReg:LsterAction returns a pointer to an opaque da.ta

data.

the specifc argument of yqRegi.sterFa.mi.ly points to this action`s protocol specific
action parameters. lf the protocol defines protocol specific action data structure.
format is a pointer to an ncvt conversion string that describes th·· forma.! of the
The yqReg1sterAct1on subroutine registers the action num: of fkuuilv 4/mu//y. The

structure that can be later used in subsequent equipment calls.
Upon successful completion yqRegisterDevice returns a pointer to au opaque data

protocol specific data.
data structure. the speci/ic argument of yqHeg1s1;erFamily points to this deri<·e`s
family. controlled bv the server ssr1·er. lf the protocol defines prot ovivl ~|··~ci|i·· device
The yqRegisterDev1ce subroutine registers the device identified by noun. ()l·l`?t111ll}`

or yqRegisterAction.

da.ta structure that can be la.ter used in subsequent calls to yqRegisterDevice
Upon successful completion yqReg:Lste1·Fami1y returns a pointer to an opaque

mily points to this family`s protocol specific data.
fines protocol specific family data structure. the specific argument of yqReg:Lste1·Fa—
yqRegisterP1·otocol or a name of an already registered protocol. If the protocol de
under protocol protocol. The protocol argument is either a. pointer returned by
The yqReg1ste1·Fam1ly subroutine registers the family -nun1.e of devices. working

data structure that can be later used in subsequent ca.lls to yqRegisterFa1nily.
Upon successful completion yqRegis·t:erProtoco1 returns a pointer to an opaque

verts result to network representation.
ule) converts action parameters to host representa.tion a.nd a.fter the ca.ll con

yqPF-/XRGHOST a device server automa.tically (before ca.lling a. user protocol mod

yqPF.MHACTFMT action format is sent to a device server.

yqPF.MHACTNAM action name is sent to a device server.

yqPF .MHDEV NAM device name is sent to a device server.

yqPF-MHFAMNAM family name is sent to a device server.

The flags argument is formed by ORing of the following values:

must be set to a NULL value.

this structure. lf the protocol specific data are not defined, the corresponding pointer
tion.f0r·mat argument points to a null-terminated ncvt format string. that desribes
for family, device, action. than the corresponding family.f0rmat. dei·z'cr-fo-i·-nrat. ac
an equipment call is made. If the protocol defines a protocol specific data structure
ld argument is an integer protocol identifier that is sent to the device server when

01 OCR Output

yqCall(3I), Ncvt(3l), yrC0dc(3l), yrString(3l)

See Also

oo OCR Output

yqC`all(3l). yqRegister(3l). y1‘(.`ode(Zil). yrString(3l)

See Also

Diagnostics

On failure. a NULL pointer is returned.

program is returned.
Upon successful completion a pointer to an opaque data structure inside the calling

Return values

reference returned by yqRegiste1‘Fam:i.ly.
database. The family parametes pointer to the name of a family or to a family
lf this is a new action, the description of the action is located in the equipment
for the family specified by family is already registered in the calling prog1·am`s cache.
The yq_LocateAct:Lon subroutines checks first whether the action specified by name

description of the device is located in the equipment database.
is already registered in the calling progranfs local cache. If this is a new device, the
The yqLoc:at eDevice subroutine checks first whether the device specified by name

Description

yqAction-t *yqLocateAction(char *name, void *family)

yqDevice.t *yqLocateDevice(char *name)

#include <yaqq.h>

Syntax

equipment database
yqLocateDevice, yqLocateAction — locate description of a device or an action in a.n

Name

0*2 OCR Output

argument and the errcode value is always set to -1.
The yrLog subroutine is similar to yrLog1M. except that in does not ha.ve the crrcodc

this is completely up to the user to decide what it stands for.
rrrcodef is also sent to the errlog server. There is no predefined usage for r·r·rc0dr2,
internal variable. that can later be accessed using the yrCode2 subroutine. The
additinal e·r·rc0def2 argument. Like errcode. €7‘7`COd€}2 is also sa.ved in an errlog`s
The y1·Log2 subroutines are similar to the yrLog1 ones. except that they have the

have its own message file(s). that can be specified by the y1·SetMsgfile.
this can be chosen by the y1·SetLa.nguage subroutine. An application proguvuii can
environment variable. There may be message files in different national languages.
key. Message files are normally found in directories specified by the YAQl<I’ATll
parameter. The format string is selected from a message file. using n·i-mi/· as a
The yrL0g1 subroutine is similar to yrLog1M. except that it does not have |l1··'/}»1·n1u/

processing as it is specified by the yrLog mode.
value causes no additional actions to be taken. otherwise yrLog1M ¢·ontinut—s ·~rroi
user handler. Upon return from the handler. the return value is checked. A (I rt—turn
lf an user error handler is set (see yrSe’cI-Iandler). the yrL0g1M subroutine calls the

and yI`S`l3I'iD.g subroutines.
then stored in errlog`s internal variables. that can be accessed later via the yCode
format and all successive arguments. A pointer to the error string and cr·rc0de· are
The yrLog1M subroutine first forms an error message string using tl1e printf—style

Description

int yrString()

int yrC0de2()

int yrCode()

int yrLog2(int errcode int errc0de2, [,a1·g]

int yrLog2M(int crrcode, int errcode2, char *fm·mizt [,a1·g]

int yrLog1(int crrcode [,arg]

int yrL0g1M(int errcode, char *f01·mat [,arg]

int yrL0g(char *format [,arg]

#include <yaqr.h>

Syntax

yrLog, yrLog1, yrL0g1M, yrLog2, yrLog2M — error ha.ndling subroutines

yrLog

ml OCR Output

yrC0de(3l), yrC0de2(3l), yrString(3l) yrSetHa.ndler(3l), yrSetM0de(3l)

See Also

A 0 is returned if the user error handler have returned 0. Otherwise a. —l is returned.

Return values

on OCR Output

yrLog(3l)

See Also

handler.

called in the case error occurs. It returns the address of the previously set user
The y1‘SetHa.ndler subroutine specifies the user error handler routine, that will be

mode.

ErrMODE-LOG Send error information to the error log server. This is default

ErrMODE-EXIT Exit on receiving an error call.

ErrMODE-PRINT Print error message on stderr.

old value of mode. The mode is formed by ORing of the following values:
The yrSetMode subroutines sets the errlog mode to the value mode and returns the

Description

yrHandler yrSetHandler(int (*handler)())

int yrSetMode(int mode)

#include <yaqr.h>

Syntax

yrSetMode, yrSetHandler — set errlog mode and handler

yrSet

9R OCR Output

access protocol. If so, the desirable data type can be set by casting. For example:
structures, that may contain protocol specific fields, depending O1] the equipment.
The device, family, action fields in the yhHeade1‘.t structure are. in fact, pointers to

} yhAction_t;

char *ncvt_format;

char *name;

typedef struct {

} yhFamily_t;

char *name;

typedef struct {

} yhDev1ce_t;

char *name;

typedef struct {

where vl1Device-t. \`l1F&1l`1ll\`-l and \'l1r\(`liO11-l are:

} yhHeader_t;

1nt mode:

1nt resbuisize;

ress1ze;1nt

*res;cha:

args1ze;int

tags;cha.:

yhAction_t *action;

yhFamily_t *!amily;

yhDevice_t *device;

typedef struct {

address. The vhHeader-t structure is deiined as follows:
enfry subroutine is called with one pau‘armeter. at structure of type yl1Hea,der.t. by
Ou receiving an equipment call to a. device working under protocol pr0f0c0I.id, the

point.

terProtocol, additinally is has the entry parameter, a user protocol module eiitry
The yhRegiste1·P1·otocol subroutine is similar to the clie11t`s subroutirie yqRegis

Description

nmt)
c0I.id, int flags, char *famiIy.f0rmat, char *devicc.f0·rmaf, char *acfi012.f0r—

yhPr0t0col.t *yhRegisterP1·otocol(int (*ent1·y) (yhHeader-t*), int profo

#include <yaqh.h>

Syntax

yhR.egiste1·P1·0t0c01 — register a protocol module entry point

Name

97 OCR Output

yqR.egisterProtocol(3l), Ncvt(3l), yrCode(3l)

See Also

module should put the actial result size into ressize.
result can be put to, the resbufsize is the size of this block. On exit. the protocol
At tl1e time a user protocol module starts, the rcs points to a block of memory.

yqPF-ARGHOST flags is set. The mjqsizc is the size of arg.
rameters of the action. The parameters are in network representation unless the
Other fields in the yhHeader-t structure are: arg is a pointer to the input pa

HyAction_t *actiou = (HyAction_t*) h->action;
HyFami1y_t *iami1y = (HyFami1y_t*) h—>£ami1y;
HyDcvicc_t *d•vice = (HyDevic¤_t*) h—>device;

int my_pz·otoc01_,m0du1o(yhHaador_t *h) {

02 OCR Output

yhRegisterProtocol(3l). yqCa.ll(3l). yrCode(3l)

See Also

an incoming equipment call message and the equipment call result.

l0c-si:c is the size of a memorv buffer to be allocated. This buffer is used to store

yl1TRAC`E-ERRORS. Print error messages.

vhTRACE-ACTION Print action.

yhTRACE-CALL Print a message like “‘Equipment call received"

debugging purpose. The mode is formed by ORing the following values;
mode specifies the level of verbosity for the device server. this is used mainly for

APglI1I1€I]tS

protocol module is called.
an equipment call, the protocol identifier is decoded, and the corresponding user
The yhwait subroutine listens for an equipment call from a client. Upon received

Description

yhWait(int mode, int I0c-sizc)

#include <yaqh.h>

Syntax

yhVVait — wait for an equipment call

Name

90 OCR Output

10. Structures are specified by °{}`. For example, the structure:
Arrays are specified by the formaf "i[10]" stands for an a.rray of integers of size

means `unsigned int`.
A simple item can be preceded by `u`. that stands for ’unsigned`. For example, `ui`

char c; }

float f;

1nt 1;

struct {

"ilc" corresponds to the structure:
int. long. float and double C` data type. respectively. For example. the i`ornr:¤1 string
blanks. Simple items are `c`. `s` `l` `d`. that correspond to the char. short.
<·onrersion specification is composed of a number of items possibly separatwl by
<`(lIl\`(‘l`l~S. The forma! is a charater string. containing a conversion sp<·cili<·at ion. A
The _/`nrma! argument controls how each of these subroutines calculates sizes and

Description

int NcvtCall(void *func, void *aIist, char *format);

int NcvtVaToHost(void *dest, char *format, va-list va-a1ist);

int NcvtFGetHostSize(int *si:c, char *f01·maf)

int NcvtFGetNetworkSize(int *size, char *fov·maf)

int NcvtToHost(void *h0stptr, char *fm··mat, void *nctpt1·)

int NcvtGetHostSize(int *si:e, char *fo-rnzat, void *netph·)

int NcvtToNetwork(void *netpt·r, char *f0*rmat, void *h0stph·)

int NcvtGetNetworkSize(int *si:c, char *f0·z·mat, void *h0stpt1·)

int NcvtResTOHost(void *h0stptr, char *f0r·mat, void *·ncfpt1·)

int NcvtResToNetwork(void *nctptr, char *format, void *hostph·)

int NcvtGetResNetworkSize(int *size, char *f0rmat, void *h0sipf-r)

int NcvtArg'I`oHost(void *hostptr, char *f0rmat, void *netph·)

int NcvtGetArgHostSize(int *sizc, char *f0rmat, void *nefph·)

int NcvtArg'I`oNetw0rk(void *netptr, char *f0rmat, void *lz0stpt·r)

int NcvtGetArgNetworkSize(int *size, char *f01~mat, void *hostpt1·)

#include <ncvt.h>

Syntax

Ncvt — subroutines to convert data to and from network representation

Name

QH OCR Output

oue_1tem := 1o_attr1bute const data_spec1ficat1on

I convers1on_spec1i1cat1on one_1tem

’’I convers1on_spec1i1cat1on
convers1on_spec1f1cat1on := one_1tem

ification.
The following diagram contains a formal syntax description ofthe conversion spec

/* The format is "<11 >*1" #/

my_add(arg1, arg2, tres);

1nt res;

1nt arg2 = 20;

int argl = 10;

remains valid until the next specification is found.
routines. output data by the NcvtRes subroutines. An input/out put sp¤~<·iIica.tion
assumed. Input data are included into network representation by the N<;vtArg sub
string by the symbols `<`. `>`. `=` and respectively. lf not Ining is s|»··<·iIi<··I. `=` is
El-11Cl output. neither input nor output. These categories are specitiwl in the I/brnml
Data to be converted can be of one of four following categories: input. output. input

ified by `z`.
A special kind of variable length array is a U—terminated charater string. it is spec

/* The format is "1[10] *1[10] *(1[10])" */

examp1e.po1nter_to_array = array;

} example;
int *po1nter_to_array;

int *array_o1_pointers[10];
int array[10];

struct {

int array[10];

Note that the `()’ brackets are mandatory, the following example shows why:

1nt 1; }

double *d;

struct {

ture:

Variable arrays are specified somewhat like ”*(dIi])”, that corresponds to a C struc

resentation of ”i’ and ’*****i’, for example, is the same.
no impact on network represeritation, they are not sent OV€1` network. network rep
Pointers are specified by ’*’, ”*i stands for a pointer to a.n integer. Pointers have

be omitted).
is described by the format ” {i{fc}}”, or simply ”i{fc}” (the outermost brackets may

char c; }}

float f;

struct {

int 1;

struct {

Q1 OCR Output

tha.t they process output da.ta instead of input ones.
routines are similar to the NcvtGetA1·gNetwo1·kSize and NcvtResToNetwork. except
using the NcvtGetResNetworkSize and NcvtResToNetwo1·k subroutines. These sub
to the client. To be sent the output data are converted to network representation
requested by the client. On return from that procedure the server must send result
Once input da.ta are converted to host representation. the server can ca.ll a procedure

including pointers and data that are not input ones.
lmsfptr. The NcvtArgToI-lost 1`€‘··Cl'€E\i€$ the exact copy of clients data st i·nt·tni·e.
to by netptr to host representation and places output in a buffer pointed to by
formal control string. The NcvtA1·gTo}-lost subroutine converts input data pointed
to st.ore host representation of client data pointed to by nctpfr and describtd by the
Ncv1:GetA1‘gHostSi.ze subroutine returns the size of an intermediate buffer i·t~qttii·<·<.l
resentation using the Ncvt:GetArgHostSize and NcvtArgToHost subrontint·s. The
Upon receiving input data from the client. the server must convert them In host wp

representation and places output in a buffer pointed to by netpfr.
NcvtA1:gToNetwo1·k subroutine converts input data pointed to by hosipfr to network
tion of input data pointed to by hostpfr and described by the format string. The
returns the size of an intermediate buffer required to store network representa
work representation will be placed to. The NcvtGetArgNetworkSize subroutine
representation. The conversion usually requires an intermediate buffer data in 11€i··
Before any data can be sent over network, they must be converted to network

parameters to the client.
server. The client sends input parameters to the server, the server returns output
ing context: a client application wants a remote procedure to be executed on a
To make the description of the Ncvt subroutines more clear consider the follow

digit 0l1I2I3I4lsl6!‘r|8ls
const digit

const digit

array_simp1e_type :81 I xi; I rl;

’*’ array_data_spocification

const

array_simp1e_typearray_data_specification

io_attributa array_data_spociticationarray_spoci!ication

:81 I ai: I 11;

{conversi0u_spacification}
’u’ sigucd_simp1e_type
signed_singl•_type

oc: I sf: I 1d: I 121

simp1o_typo ’[’ array_specitication ’]’
n0u_p0inter_type simple_type

’*’ comp1ex_type

n0u_p0iutsr_typecomp1sx_typc

’*’ poi¤ter_to_c¤mp1cx_type

poi¤tez_tc_comp1ex_type ’*' ’(’ comp1ex_typo ’)’
data_spaciiication ccmp1ex_typc I pointar_to_complex_type

I :<»‘ :=s I r>: I 1*:

29

yrCode(3l), yrString(3l)

See Also

and a. more detailed information can be obtained via yrCode.
Upon successful completion all these routines return 0. On failure a -1 is returned.

Return values

pointed to by alist and described by format.
The NcvtCall subroutine calls the subroutine specified by func with the parameters

m-alist to a.n ordinary structure and places the result in a buffer pointed to by dest.
The NcvtVaToHost subroutine converts a C variable argument list. pointed to by

pointers, when size can be calculated using the format only.
ones without G, except that these work only for simple data. structures. without

The NcvtFGetNetwo:ckS ize and NcvtFGetHostSize subroutines are similar to the

i0-attribute is not specified.
a context when data are not subdivided into input/output categories. i.e. the
GetHos1:Size and NcvtArgToI-lost subroutines. Normally they should be used in
just other names for the NcvtArgGetNotworkSize, Ncv1:A1‘gToNetwork. NcvtA1·g
The NcvtGetNetwo1·kSize, NcvtToNetwo1·k, NcvtGetHostSize a.nd Ncvt’I`oHost are

data structure that was used in NcvtA1·gToNetw¤rk.
to by hostptr. Our client have to specify the hostptr as a. pointer to exactly the same
to by netptr to host representation and places output into a data structure pointed
host representation. The NcvtResToHost subroutine converts output data pointed
Having received output data from the server, the client must convert them back to

