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Non-linear chromaticity correction with sextupole families.
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Abstract

The correction of the non-linear chromaticity with sex-
tupoles families is explained by means of a smple per-
turbation theory. The advantages and limitations of such
systems are shown, as well as the constraints they put on
machine optics.

1 INTRODUCTION

The non-linear chromaticity of the LEP machine at CERN
has been successfully corrected with sextupolefamiliesfor
alargevariety of different lattices. It works actually sowell
that the subtleties in this correction have been completely
forgotten.

Asthistype of correction was proposed along time ago,
itis presently felt that more modern systems are better. At
the Washington conference in 1993, it was stated that non-
linear chromaticity correction of the B-factory PEP2 project
with sextupol e families was not possible[1]. In fact such a
statement might mean that the machine lattice was ssimply
not suitable for such a correction or that the sextupol e fam-
ilies were wrongly chosen.

Inwhat follows, the computation of the second derivative
of thetunewith respect to momentumisrecalled first. Then
the contribution of periodic chromatic perturbationsare es-
timated. Finally practica applications on how to use sex-
tupole families as well as tolerances concerning the optics
to make this use possible are given.

2 SECOND DERIVATIVE OF THE TUNE
WITH RESPECT TO MOMENTUM.

When low-3 insertions sit at places where the dispersion
function is zero, alocal correction of their chromaticity is
not possible. Consequently an off-momentum mismatch of
theinsertionsappears. For certain tunevalues, thismakes a
very large second order derivative of the tune with respect
to momentum [2].

2.1 General expression of the second order tune
derivative.

Itisrelatively straightforward to compute the chromatic de-
pendence of the linear optics parameters by computing the
one-turn 2x 2 transfer matrix of a machine perturbed by
chromatic effects. The calculation is based on the change
of the transforms of the g-function due to gradient pertur-
bations, which make it possible to express easily the one-

turn transfer matrix. This has been shown in aprevious ac-
celerator conference [2]. We call u the phase advance for
one super-period inthe machine u = 27 Q if Q isthe super-
period tune. The’ indicates the derivative with respect to
therelative momentum deviation. The second derivative of
1 with respect to momentum deviation § isgiven by :
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(Notethat in reference [2], there was amiss-print in the p”/

formula: therewas onetermin excess. The correct formula
istheabove one). Inthisformula, thetermson thefirst line
come from thefirst order tune-shift formula applied to the
second order chromatic perturbation per element, i.e. their
value is of the same order as the natural /. « and 3 are
the standard TWISS parameters [ 3] taken at an arbitrary ori-
gininthelattice. It isassumed that we are able to compute
thetransformsof these parameters takinginto account chro-
matic perturbations.

For the computation of the term containing squares,
which is the important one, what is needed is the first
derivative of the transform of the 3-function with respect
to 6. Thisisan important point which had been suspected
a long time ago [4, 5] but only formalized only recently
[2]. This first derivative is obtained from the derivatives
with respect to § of the integrated gradients at the points of
index i, which are 2ili - We obtain [4] :
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Taking the derivative of thisexpression with respect to the
longitudinal coordinate, we obtain :
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These two expressions are exactly what is needed to com-
putetheimportant termsin formula(1). It isessentia tore-
cal that 8’ and o' are not the derivatives of the opticsfunc-
tionswithrespect tod, but they arerelated (not needed here).

In reference [2], the emphasis was put on the contribu-
tionsof thelow-3 quadrupoleswhichmake Q" large. Itwas
simply mentioned that the contributions of periodic cdls
was negligible. We examine it now.
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bations to the second order tune derivative.
To obtain these contributions, we merely compute the sums
in equation (1) for 2%ili constant, i.e. not depending on the
index :. Weobtainreadily, keeping only theimportant term,
i.e. that one with coty :
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The periodicity of the chromatic perturbation appearsinits
phase u; whichisgiven by :

i = po + (3 — )pe

1o being the phase of thefirst perturbation and . the phase
between two successive perturbations. The sum of trigono-
metric functions can be done easily, we obtainfinally for n
periodic perturbations:
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Such contributionsto u’ produced for instance by the arc
guadrupoles and sextupoles are very small compared with
that of the low-3 quadrupoleswhichis[2] :

p' ~ —(KIB)% cot (4)

i ]2 associated with the quadrupoles or
the sextupoles of the regular cells is usualy smaller than
(K1B8)? by two order of magnitude and sin ny. is smaller
than one. Obvioudy thisonly istrue as long as sin p. is
non zero. This is the case when the chromaticity is cor-
rected with one sextupolefamily per planeinperiodiccdls,
provided the cell phase advance is different from .

as the term [ 2!

3 MAKING SEXTUPOLE FAMILIES.

From the preceding argument, we see that if the periodic-
ity of the gradient perturbationis amultiple of , the frac-
tion % isequal ton, so that their contributionis multi-
pliedby nZ?. If n isof the order of 10, we see that two order
of magnitude can be gained. This can be achieved by forc-
ing the sextupol e periodicity to be an odd multipleof x. To
make thispossible, 1. must be an odd multipleof =, where
k isasmall integer different from 1. Thenit is possibleto
assign the same strength to sextupol es separated by & cells,
i.e. to build up & sextupole families and to force the sex-
tupol eperiodicity to be « by assigning different strengthsto
thefamilies. Under those conditions, sextupolefamiliesare
an efficient way of making large higher order tune deriva
tives, especialy in large machines thanks to the factor n2.
For the particul ar case whereitispossibletodistributethe
sextupolesin familieswith equal numbersof members, their

contriputionto g, TOrgetting the quaarupol e contrioutions,
isgivenby :
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with: Xi = k;l]DJ,B, (5)

7 istheindex of the sextupol e familieswhich contain n sex-
tupoles each, D; is the value of the dispersion function at
the sextupolelocationsand po, isthe phase of the first sex-
tupole of each family. For ku. multiple of =, we find the
factor n2 in front of the formula. For x; independent of ,
the sums of trigometric functions are zero.

Thisformulagivesagood idea on the mechanism of sec-
ond order chromaticity correction with sextupole families.
For a practica correction of the non-linear chromaticity,
it is necessary to go to a higher order expansion. In fact
other perturbation formalisms have been developed for a
long time, as[6]. Nevertheless the above formulae tells us
that it isimportant to compensate the first order derivatives
of the B-functionswhen such a correction of the higher or-
der tune derivativesis computed.

4 TOLERANCE ON THE PHASE
ADVANCE PER CELL FOR PERIODIC
SEXTUPOLE FAMILIES.

4.1 Genera conditions

If the phase advance per cell is not an odd multiple of 7
wherek isany integer, thefactor n? disappears. Thisiswhat
happensfor instanceif thephase of theregular cellsareused
to adjust the tunes. The sextupole families have been con-
structed for a certain value of the phase advance of theregu-
lar and this phase advance per cell is subsequently “dightly
changed”. As a consequence, nku. may become close to
amultipleof «, ku. being not amultipleof «, and the sex-
tupolefamiliesloose completely their efficiency astheirim-
portant contributionto the non-linear chromaticity becomes
closeto zero.

4.2 The LEP example

A first good example of non working periodic sextupole
familiesisthat of thefirst LEP lattice[7]. In asuperperiod
of thismachine there was one arc with 30 FODO cellswith
dipolesand one low-3 insertion. The phase advance of the
arc cellswas“about 60° ”. It wasin fact exactly 60° in the
horizontal planebut it wascloseto 55° inthevertical plane.
The number of cells between two successive sextupolesin
agiven family was set to 3 because of the “about 60° " per
cell. This makes 10 sextupoles per family. Then, for the
vertical plane, nku. is550° whichisvery closeto 3x. The



factor [% - becomes 3.7 instead of 100, which an-
nihilates the effect of the sextupole familiesin the vertica
plane. Thiswas noticed at the time of the first LEP study
and non periodic sextupol efamilieswere used to correct the
non-linear chromaticity of thislattice.

A second good example isthat of the second LEP lattice
[8]. The horizontal phase advance per cell was 60° and the
vertical onewas 62.1°. Thelatteriscloser to 60° thaninthe
first design, which made it possibleto use periodic families
with five sextupoles per family (12 familiestotal).

These cases of phase advances per cell dightly different
from 60° for the case of 10 sextupole per family isinstruc-
tive. For phase of 57.3° or 62.7°, a factor two islost in
the contribution of the sextupole families. This makes sex-
tupolesincrementstwiceaslargefor correcting the same ef -
fect. Consider acase where theincrements of the sextupole
strength of the family which has to be increased are about
30% with a60° phase advance. For 57.3°, they haveto be
increased by 30% more, which makes the dynamic aperture
decrease substantially. For the case of 55° quoted above,
thefactor % isso largethat the correction of the non-linear
chromaticity becomes marginal even for alargeincrease of
the sextupole strengths, with the consequence that the dy-
namic aperture becomes dramaticaly low [7].

4.3 Number of sextupoles per family

From formula (5), it is clear that the larger the number of
sextupol es per family, the smaller thetol erance on the phase
advance per cell to make the correction of the non-linear
chromaticity possible. For instance, for 100 sextupol es per
family and a phase advance per cell close to 60° , the effi-
ciency, defined for instance by theratio 2>>£<, goesto zero
for a phase advance per cell of 59.4°. Such afi ght tolerance
can be avoided by increasing arbitrarily the total number of
sextupolefamiliesin the case where the number of cellsper
superperiod islarge.

Ontheopposite, for asmall number of cells, thetolerance
on the phase advance is much relaxed. For three sextupoles
per family, the efficiency of the system loosesisreduced by
10% for a phase of about 55°!

5 SEXTUPOLE FAMILIES FOR OUT OF
PHASE CELLS

For a case where there it is absolutely necessary to have a
phase advance per cell incompatiblewith periodic families,
non-periodic families can be a solution. The best example
knowntotheauthor isthat of thefirst LEP design[7] quoted
above. For thiscase, thefamiliesarrangement islike:

12x1221x2112312313213....

where 1to 3refer to thefamily number and x toamissing
sextupole. Such an arrangement has been obtained by in-
specting the modulation of the 3, function at the sextupole
| ocation on an off-momentum closed orbit and assigning the
sextupoles with the same modulation to the same family.
An additional ruleto obtain a satisfactory system isto make
pairs of sextupoles separated by about = phase advance, in

oraer Not to proauce oo much geometric adberralions. 1t 1s
clear that such a system works only for a given phase ad-
vance once it is built, which reduces the | attice flexibility.

6 CONCLUSION

Caorrecting thenon-linear chromaticity with sextupol efami-
liesiseasy and powerful when amachineisdesigned witha
number of regular cells having a phase advance equal to an
odd number of T where k is any integer. On top of the de-
signed correction, they provide a simple knob to adjust ex-
perimentally the second order tune derivative. Depending
on the number of sextupolesper super-period, thereismore
or lessflexibility for changing the machine tune by means of
the quadrupolesin theregular cells. The best lattice design
to fully exploit the the potentialities of sextupole families
isaways to make tunable insertionsto avoid changing the
machine tune with the quadrupolesin the regular cells.

With the phase advance per cell chosen as specified
above, the second order geometric aberrations are automat-
ically zero provided there is an even number of sextupoles
per family and the same phase advance in both planes[9].
The remaining problem is then the anharmonicities. From
the experience with LEP, thisis a serious problem only for
strong focusing lattices. Some examples can be found at
thisconference [10].
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