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Abstract

In his classical paper “Radiation Effects in Circular Accelera
tors’” K.W. Robinson has shown that the damping partitionsin a
circular machine cannot be changed by a radio-frequency field.
The proof given thereis quitegeneral and valid for any RF-field,
provided it is not so strong that it changes the equilibrium orbit
appreciably. However, the physical mechanisms which prevent
the possibility to alter the damping partitionsis not very trans-
parent. Asaconsequence, so-called “damping cavities’ are still
proposed from time to time. Here we want to illustrate the un-
derlying physica principlesby goingin detail through the beam
dynamicsfor thesimple case of acavity operatingin adipole(de-
flecting) mode and whichislocated inaregionof finitedispersion
in astoragering.

I. INTRODUCTION

In hisfamous classical paper on radiation damping [1], K.W.
Robinson gives a general proof that the radiation damping par-
tition numbers Jg, J,, J, of the three modes of oscillation of
particlesinacircular accelerator cannot be changed with an RF-
fidd. Thisisshownin avery genera way in the Appendix of
his paper, with theonly restriction that theradio frequency fields
should not be so strong that they change the equilibriumorbit ap-
preciably. The proof isso €l egant and compl etethat not much can
be added. However, just dueto thisgenerdlity, itisalso not very
transparent as far as the underlying physical principles are con-
cerned. Probably for thisreason, proposa sfor so-caled “ damp-
ing cavities’ are till made from time to time. K.W. Robinson
himself told one of us that he once found such a cavity already
in the design stage on the drawing board during a visit to an ac-
celerator laboratory.

The effect of such cavities in linear accelerators and proton
synchrotrons has also been investigated by H.G. Hereward [2].

Toillustrate clearly the mechanisms which prevent the change
of damping partition numbers by RF-fields, we consider here a
simple RF cavity operating in adipole mode. Such acavity pro-
duces a longitudinal electric field with a transverse gradient as
showninFig. 1. Weassumethat itisplaced at apositionwith fi-
nite horizontal dispersion D , and therefore particles of different
energy deviation & will traverseit at different horizontal offsets

6&
xr=D e De
Here &, isthe nomina particle energy, and the relative energy
deviation e = 6& /&, has been introduced to make some | ater ex-
pressions more compact. Since the longitudinal cavity field de-
pends on the distance z from the axis, particles of different en-
ergy will thus gain different amounts of energy in onetraversal.
However, thereis a'so amagnetic field associated with this cav-
ity mode. This leads to a transverse deflection which changes

the path length of aparticlein onerevolution. Wewill show that
these two actions of the cavity, i.e. acceleration and deflection,
cancel each other as far astheir effect on the damping partitions
is concerned.

Thetreatment will not berigorousor general, but should better
illustratethe mechanisms involved. The exact and general proof
has aready been given by K.W. Robinson.

I1. The dipole mode cavity

For acceleration of particlesby an RF-field, one normally uses
acavity which oscillatesin the so-called monopol e mode (m=0).
Such a mode has alongitudinal dectric field £/, whichis-toa
good approximation - homogeneous close to the axis.

Onecan dso operateacavity inadipolemode (m=1), having a
longitudinal dectric fidd with agradient such that its strengthin-
creases withtransverse distancefromthe axisas shownin Fig. 1.
Intheneighborhood of theaxis, theincreaseisapproximately lin-
ear and can be written

£, = ) cos(wgt) =

08 coswat)
" 837:aL‘coswd .

Here w, isthefrequency of the cavity oscillation which we will
chooseto beaharmonic of therevolutionfrequency inthestorage
ring, and a isan effectivecavity radius. We can get theassociated
magnetic field from Maxwell’s equation

1
B=—-culE — B= B, = o 9r sin(wqt).
Wqg O

D

First we calculate the energy gain dueto the electric field, and
the defl ection due to the magnetic field, of a particle with charge
e whichis going through such acavity of length ¢. Bothwill de-
pend on the distance x from the axisand on thetime of traversal
t. We phase the cavity such that the synchronous particle with
nominal energy &, passes through the dipole mode cavity at the
synchronoustimet, , whentheeectricfield gradient isat itsmax-
imum and the magnetic field goes through zero. Since it ison-
axisand synchronous, it will experience neither accel eration nor
deflection. Another particle, with a different energy, is now as-
sumedtotraversethecavity at thedistancer = De fromtheaxis,
at atimewhichdeviatesby - = ¢ —t, fromthe synchronousone.
Therelative energy gain for thisparticleis

(E
Ae= (;To cos(wqT).
We assume now that the bunch length is much smaller than the
wave length of the cavity oscillation, i.e. w 7 < 1 and approx-
imate the cosine by unity to obtain
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Figure. 1. Dipolemode cavity. Top: The€dectricfield athesyn-
chronous time and the magnetic field a quarter oscillation later.
Bottom: Situation of the fields around the synchronous time.

wherewe used V = (E = a0V /dx and
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Next we calculate the deflection angle Az’ due to the magnetic
field of the cavity.

elByc
g

With the rel ation between the el ectric and magnetic field (1) this
can be expressed as

Az’ =

_L &CT =—Ker
&o o ’
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c¢ 6—V sin(wqr) &

Ar' = -5
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[11. Longitudinal beam dynamicsin an electron
storage ring

First we recapitul ate some basic longitudinal beam dynamics
considerations for a circular accelerator without a dipole mode
cavity. For thiswe consider amodel storage ring consisting of
two 180° arcs with some focusing structure, and an accelerating
cavity operating in the monopole mode. We locate this cavity in
adispersion free region in order to avoid any synchro-betatron
coupling effects. The accelerating cavity hasapesk voltage Vi »
, and oscillates with frequency wgrr = hwgy, where h isthe har-
monic number and wg the revolution frequency. The focusing
structure in the arcs creates a momentum compaction factor «.
which determines the relative change of the revolutiontime 75

AT _ AT
To  To

= Q€.

The energy gain per revolution of a particle going through the
RF-cavity at thetimet = ¢, + 7 isgiven approximately by

eVr

0

Ae = £ [sin(hwots) + cos(hwots)hwoT].

The deviation = from the synchronoustime, is assumed to
be small such that hwor < 1. It isconvenient to introduce the
“synchronousphaseangle’ ¢, = hwot, , whichfor electronrings
must lie between 90° and 180° (cos ¢, < 0) for stability.

We further include the effect of synchrotron radiation which
produces an energy loss proportional to the squares of the par-
ticle energy and of the magnetic field in the dipoles of the ring
U o« £2B?. Caling U, the energy loss of a particle with nom-
inal energy, we get the loss for a particle with a small relative
energy deviation ¢

2U,
€.
&o

Putting these equationstogether, thisyiddsfor therdativeen-
ergy change per revolution

U:Us+

hwot — Us _
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For the synchronous particler = ¢ = 0, but for equilibriumwe
should al'so have Ae = 0, which givesthe condition

U, = eVgp sin ¢,.

We assume that the changesin ¢ and ~ are small over onerevolu-
tion, such that they can be described by adifferential form. We
use ¢ & Aewy /27 and 7 = Arwg /27 to get the equations
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which have as solution a damped oscillation
e(t) = e™* cos(wyt + ).

with the synchrotron frequency w, and the damping rate o

haceVRF coS ¢ wo Us
Wy Zw\| —————  a= — —.
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(4)

In this derivation, approximations have been made assuming
w, K wp and a, € wy.

IV. Effects of the dipole mode cavity

We now include the effects of a dipole mode cavity on beam
dynamics. Thiscavity issupposed to be located in astraight sec-
tion, which may be oppositeto the accel erating cavity, and where
thedispersion D isnonzero. Aswe have seen before, such acav-
ity will give both an energy increase (2) and a deflection (3)

Ar' = —Ker with & = =

Ae=K —_—
e= Kz | 2



The deflection has also a longitudina effect which is impor-
tant. The angle Az’ , which is created by the cavity, leads to
a horizontal orbit distortion, and therefore to a change of the
path length L of thetragjectory of aparticle travelling around the
ring[3]. Since thiswell known effect is an essentia part of the
mechanism under investigation here, we shall give its detailed
derivation in the following.

We study the trgjectory of a particle which passes at aradia
distance = from the equilibrium orbit through a bending magnet
with radiusof curvature p . Dueto the deflection by the magnetic
fidd, itspath length will increase by an amount A L over that of
a particle on the equilibrium orbit

AL:/ Lds.
o P

We will make use of the differentia equations for the betatron
trgjectory z(s) and for the dispersion D = D, (s)

1
' +krx=0, D'4+kD="
p

wherethez’ = dz/ds, x" = d*xz/ds? and k = k(s) isthe hor-
izontal focusing function. With these expressionswe can rewrite
theintegral for the path length

AL:/ fdsz/ (D" + k D)xds
0

P 0
D// 1 5
v ds—/ Dz'"ds.
k 0
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Introducing for short the quantity ¢ = D'z — Dz’, and thusg’ =
D"z — Dz" , weobtain

i
/ Dz /D”xds—l—/ g'ds
0

—/ Dot kyds + s = ol
0

sincex’ +k x = 0. Thereforetheincrease of path lengthisgiven

by

AL =[D'x — Da'ls — [D'e — D2']o.

Animportant application of thisexpression islengthening of the
closed orbit due to a deflection by an angle ¢ at the origin. The
transversedeflectionthereisz(, = #.+6¢, wherez/, isthedeflec-
tion after one turn around aring with circumference C' = 27 R.
Since the closed orhit is stationary, we should have Dy = D¢
and z; = z¢. The path lengthening due to a stationary deflec-
tion at alocation with dispersion D becomes
AL=(D'x — Dz')¢ — (D'x — Dz')o =
= Do(x6 — xlc) = D6.

The lengthening of the orbit vanishes for D = 0, except for
higher order effects in § which we have neglected.

We now apply thisto the deflection 6 = Az’ by the dipole
mode cavity. We assume again that the synchrotron motion is
slow and changes the orbit distortion only adiabatically, and thus

we neglect synchro-betatron coupling. In thiscase we get for the
orbit lengthening in good approximation
AL = DAz’ = —DKer and A1 = E = —KDr
C
Since the orbit islonger thereisan increase AT = AL/e.

Combining the energy and the path length changes caused by
the dipole mode cavity, we get for the differential equations
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Seeking solutionsof theforme™ we cal cul ate the determinant
2U,

s (~L 4 KD) —r

o
and get the characteristic equation

22 rﬂ —2U;
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We seethat inthe central term, whichisresponsiblefor the damp-

ing, thetwo effects of the dipole mode cavity cancel. Wefind the
solutionr = —ay & iwsq With adlightly changed synchrotron

frequency

wo
wsd:\/wg—az—i—ﬁ

However, the damping rate
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is exactly the same as for the case without dipole mode cavity

given by (4). Combining the two rootswe can write the solution
intheform

Qg =

“cos(ws + @).
where ¢ istheinitial relative energy spread.

€= ¢e” cos(wsq + @) m ™
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