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Abstract

In his classical paper “Radiation Effects in Circular Accelera-
tors” K.W. Robinson has shown that the damping partitions in a
circular machine cannot be changed by a radio-frequency field.
The proof given there is quite general and valid for any RF-field,
provided it is not so strong that it changes the equilibrium orbit
appreciably. However, the physical mechanisms which prevent
the possibility to alter the damping partitions is not very trans-
parent. As a consequence, so-called “damping cavities” are still
proposed from time to time. Here we want to illustrate the un-
derlying physical principles by going in detail through the beam
dynamics for the simple case of a cavity operating in a dipole (de-
flecting) mode and which is located in a region of finite dispersion
in a storage ring.

I. INTRODUCTION
In his famous classical paper on radiation damping [1], K.W.

Robinson gives a general proof that the radiation damping par-
tition numbers JE ; Jx; Jy of the three modes of oscillation of
particles in a circular accelerator cannot be changed with an RF-
field. This is shown in a very general way in the Appendix of
his paper, with the only restriction that the radio frequency fields
should not be so strong that they change the equilibrium orbit ap-
preciably. The proof is so elegant and complete that not much can
be added. However, just due to this generality, it is also not very
transparent as far as the underlying physical principles are con-
cerned. Probably for this reason, proposals for so-called “damp-
ing cavities” are still made from time to time. K.W. Robinson
himself told one of us that he once found such a cavity already
in the design stage on the drawing board during a visit to an ac-
celerator laboratory.

The effect of such cavities in linear accelerators and proton
synchrotrons has also been investigated by H.G. Hereward [2].

To illustrate clearly the mechanisms which prevent the change
of damping partition numbers by RF-fields, we consider here a
simple RF cavity operating in a dipole mode. Such a cavity pro-
duces a longitudinal electric field with a transverse gradient as
shown in Fig. 1. We assume that it is placed at a position with fi-
nite horizontal dispersionD , and therefore particles of different
energy deviation �E will traverse it at different horizontal offsets

x = D
�E

E0
= D �

Here E0 is the nominal particle energy, and the relative energy
deviation � = �E=E0 has been introduced to make some later ex-
pressions more compact. Since the longitudinal cavity field de-
pends on the distance x from the axis, particles of different en-
ergy will thus gain different amounts of energy in one traversal.
However, there is also a magnetic field associated with this cav-
ity mode. This leads to a transverse deflection which changes

the path length of a particle in one revolution. We will show that
these two actions of the cavity, i.e. acceleration and deflection,
cancel each other as far as their effect on the damping partitions
is concerned.

The treatment will not be rigorous or general, but should better
illustrate the mechanisms involved. The exact and general proof
has already been given by K.W. Robinson.

II. The dipole mode cavity
For acceleration of particles by an RF-field, one normally uses

a cavity which oscillates in the so-called monopole mode (m=0).
Such a mode has a longitudinal electric field Ez which is - to a
good approximation - homogeneous close to the axis.

One can also operate a cavity in a dipole mode (m=1), having a
longitudinal electric field with a gradient such that its strength in-
creases with transverse distance from the axis as shown in Fig. 1.
In the neighborhoodof the axis, the increase is approximately lin-
ear and can be written

Ez =
x

a
Ê cos(!dt) =

@Ê

@x
x cos(!dt):

Here !d is the frequency of the cavity oscillation which we will
choose to be a harmonic of the revolutionfrequency in the storage
ring, and a is an effective cavity radius. We can get the associated
magnetic field from Maxwell’s equation

_B = �curlE ! B = By =
1

!d

@Ê

@x
sin(!dt): (1)

First we calculate the energy gain due to the electric field, and
the deflection due to the magnetic field, of a particle with charge
e which is going through such a cavity of length `. Both will de-
pend on the distance x from the axis and on the time of traversal
t. We phase the cavity such that the synchronous particle with
nominal energy E0 passes through the dipole mode cavity at the
synchronous time ts, when the electric field gradient is at its max-
imum and the magnetic field goes through zero. Since it is on-
axis and synchronous, it will experience neither acceleration nor
deflection. Another particle, with a different energy, is now as-
sumed to traverse the cavity at the distancex = D� from the axis,
at a time which deviates by � = t�ts from the synchronous one.
The relative energy gain for this particle is

�� =
e`Ê

aE0
cos(!d� ):

We assume now that the bunch length is much smaller than the
wave length of the cavity oscillation, i.e. !d� � 1 and approx-
imate the cosine by unity to obtain

�� �
e`Ê

aE0
x =

e

E0

@V̂

@x
x = Kx; (2)
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Figure. 1. Dipole mode cavity. Top: The electric field a the syn-
chronous time and the magnetic field a quarter oscillation later.
Bottom: Situation of the fields around the synchronous time.

where we used V̂ = `Ê = a@V̂ =@x and

K =
e

E0

@V̂

@x
:

Next we calculate the deflection angle �x0 due to the magnetic
field of the cavity.

�x0 = �
e`Byc

E0
:

With the relation between the electric and magnetic field (1) this
can be expressed as

�x0 = �
ec

E0!d

@V̂

@x
sin(!d� ) � �

e

E0

@V̂

@x
c� = �Kc�: (3)

III. Longitudinal beam dynamics in an electron
storage ring

First we recapitulate some basic longitudinal beam dynamics
considerations for a circular accelerator without a dipole mode
cavity. For this we consider a model storage ring consisting of
two 1800 arcs with some focusing structure, and an accelerating
cavity operating in the monopole mode. We locate this cavity in
a dispersion free region in order to avoid any synchro-betatron
coupling effects. The accelerating cavity has a peak voltage V̂RF
, and oscillates with frequency !RF = h!0, where h is the har-
monic number and !0 the revolution frequency. The focusing
structure in the arcs creates a momentum compaction factor �c
which determines the relative change of the revolution time T0

�T

T0
=

��

T0
= �c�:

The energy gain per revolution of a particle going through the
RF-cavity at the time t = ts + � is given approximately by

�� �
eV̂RF

E0
[sin(h!0ts) + cos(h!0ts)h!0� ] :

The deviation � from the synchronous time ts is assumed to
be small such that h!0� � 1. It is convenient to introduce the
“synchronous phase angle”�s = h!0ts , which for electron rings
must lie between 900 and 1800 (cos�s < 0) for stability.

We further include the effect of synchrotron radiation which
produces an energy loss proportional to the squares of the par-
ticle energy and of the magnetic field in the dipoles of the ring
U / E2B2. Calling Us the energy loss of a particle with nom-
inal energy, we get the loss for a particle with a small relative
energy deviation �

U = Us +
2Us
E0

�:

Putting these equations together, this yields for the relative en-
ergy change per revolution

�� =
eV̂RF sin�s

E0
+

eV̂RF cos�s
E0

h!0� �
Us

E0
�

2Us
E0

�:

For the synchronous particle � = � = 0 , but for equilibrium we
should also have �� = 0 , which gives the condition

Us = eV̂RF sin�s:

We assume that the changes in � and � are small over one revolu-
tion, such that they can be described by a differential form. We
use _� � ��!0=2� and _� = ��!0=2� to get the equations

_� = �
!0

2�

2Us

E0
�+ !2

0

heV̂RF cos �s

2�E0
�

_� = �c�

which have as solution a damped oscillation

�(t) = e��t cos(!st + �):

with the synchrotron frequency !s and the damping rate �

!s = !0

s
�
h�ceV̂RF cos�s

2�E
; � =

!0

2�

Us

E0
: (4)

In this derivation, approximations have been made assuming
!s � !0 and �c � !s.

IV. Effects of the dipole mode cavity
We now include the effects of a dipole mode cavity on beam

dynamics. This cavity is supposed to be located in a straight sec-
tion, which may be opposite to the accelerating cavity, and where
the dispersionD is nonzero. As we have seen before, such a cav-
ity will give both an energy increase (2) and a deflection (3)

�� = Kx ; �x0 = �Kc� with K =
e

E0

@V̂

@x
:



The deflection has also a longitudinal effect which is impor-
tant. The angle �x0 , which is created by the cavity, leads to
a horizontal orbit distortion, and therefore to a change of the
path lengthL of the trajectory of a particle travelling around the
ring[3]. Since this well known effect is an essential part of the
mechanism under investigation here, we shall give its detailed
derivation in the following.

We study the trajectory of a particle which passes at a radial
distance x from the equilibrium orbit through a bending magnet
with radius of curvature � . Due to the deflection by the magnetic
field, its path length will increase by an amount �L over that of
a particle on the equilibrium orbit

�L =

Z s

0

x

�
ds:

We will make use of the differential equations for the betatron
trajectory x(s) and for the dispersion D = Dx(s)

x00 + k x = 0 ; D00 + kD =
1

�

where the x0 = dx=ds; x00 = d2x=ds2 and k = k(s) is the hor-
izontal focusing function. With these expressions we can rewrite
the integral for the path length

�L =

Z s

0

x

�
ds =

Z s

0

(D00 + kD)xds

= �

Z s

0

(D00 + kD)
x00

k
ds = �

Z s

0

D00x00

k
ds�

Z s

0

Dx00ds:

Introducing for short the quantity g = D0x�Dx0, and thus g0 =
D00x�Dx00 , we obtain

�L = �

Z s

0

D00x00

k
�

Z s

0

D00xds+

Z s

0

g0ds

= �

Z s

0

D00

k
(x00 + k x)ds+ gjs

0
= gjs

0
:

since x00+k x = 0. Therefore the increase of path length is given
by

�L = [D0x�Dx0]s � [D0x�Dx0]0:

An important application of this expression is lengthening of the
closed orbit due to a deflection by an angle � at the origin. The
transverse deflection there isx0

0
= x0C+�, wherex0C is the deflec-

tion after one turn around a ring with circumference C = 2�R.
Since the closed orbit is stationary, we should have D0 = DC

and x0 = xC . The path lengthening due to a stationary deflec-
tion at a location with dispersion D becomes

�L = (D0x�Dx0)C � (D0x�Dx0)0 =

= D0(x
0

0
� x0C) = D�:

The lengthening of the orbit vanishes for D = 0, except for
higher order effects in � which we have neglected.

We now apply this to the deflection � = �x0 by the dipole
mode cavity. We assume again that the synchrotron motion is
slow and changes the orbit distortion only adiabatically, and thus

we neglect synchro-betatron coupling. In this case we get for the
orbit lengthening in good approximation

�L = D�x0 = �DKc� and �� =
�L

c
= �KD�

Since the orbit is longer there is an increase �� = �L=c.
Combining the energy and the path length changes caused by

the dipole mode cavity, we get for the differential equations

_� =
!0

2�

�
�
2Us
E0

+KD

�
�+ !2

0

heV̂RF cos�s
2�E0

�

_� = �c��
!0

2�
KD�

Seeking solutions of the form ert we calculate the determinant�����
!0
2�

�
�2Us

E0
+KD

�
� r !2

0

heV̂RF cos�s
2�E0

�c �!0
2�
KD � r

����� = 0

and get the characteristic equation

r2 � r
!0

2�

�
�2Us

E0
+KD �KD

�

+!2

s +
�!0

2�

�2�2Us

E0
+KD

�
KD = 0:

We see that in the central term, which is responsible for the damp-
ing, the two effects of the dipole mode cavity cancel. We find the
solution r = ��d � i!sd with a slightly changed synchrotron
frequency

!sd =

s
!2
s � �2 +

!0

2�

�
�
Us

E0
+KD

�
KD

However, the damping rate

�d =
!0

2�

Us

E0

is exactly the same as for the case without dipole mode cavity
given by (4). Combining the two roots we can write the solution
in the form

� = �̂e��t cos(!sd + �) � �̂e��t cos(!s + �):

where �̂ is the initial relative energy spread.
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