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1 Introduction

The basic ideas of the non-commutative geometry were developed in [1, 2],

and in the form of the matrix geometry in [3, 4]. The applications to physical

models were presented in [2, 5], where the non-commutativity was in some

sense minimal: the Minkowski space was not extended by some standard

Kaluza-Klein manifold describing internal degrees of freedom but just by two

non-commutative points. This led to a new insight on the SU(2)L
N
U(1)R

symmetry of the standard model of electro-week interactions. The model was

further extended in [6] inserting the Minkowski space by pseudo-Riemannian

manifold, and thus including the gravity. Such models, of course, do not

lead to UV-regularization, since they do not introduce any space-time short-

distance behaviour.

To achieve the UV-regularization one should introduce the non-commuta-

tivity into the genuin space-time manifold in the relativistic case, or into

the space manifold in the Euclidean version. One of the simplest locally

Euclidean manifolds is the sphere S2. Its non-commutative (fuzzy) analog

was described by [7] in the framework of the matrix geometry. More general

construction of some non-commutative homogenous spaces was described in

[8] using coherent states technique.

The �rst attempt to construct �elds on a truncated sphere were presented

in [9] within the matrix formulation. Using more general approach the clas-

sical spinor �eld on truncated S2 was investigated in detail in [10-11].

In this article article we shall investigate the quantum scalar �eld � on the

truncated S2. We shall explicitely demonstrate that the UV-regularization
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automatically appears within the context of the non-commutative geometry.

We shall introduce only necessary notion of the non-commutative geometry

we need in our approach. In Sec. 2 we de�ne the non-commutative sphere

and the derivation and integration on it. In Sec. 3 we introduce the scalar

self-interacting �eld � on the truncated sphere and the �eld action. Further,

using Feynman (path) integrals we perform the quantization of the model in

question. Last Sec. 4 contains a brief discussion and concluding remarks.

2 Non-commutative truncated sphere

A) The in�nite dimensional algebra A1 of polynomials generated by x =

(x1; x2; x3) 2 R3 with the de�ning relations

[xi; xj] = 0;
3X

i=1

x2i = �2 (1)

contains all informations about the standard unit sphere S2 embedded in R3.

In terms of spherical angles � and ' one has

x� = x1 � ix2 = �e�i' sin � ; x3 = � cos � : (2)

As a non-commutative analogue of A1 we take the algebra AN generated

by x̂ = (x̂1; x̂2; x̂3) with the de�ning relations

[x̂i; x̂j] = i�"ijkx̂k ;
3X
i=1

x̂2i = �2 : (3)

The real parameter � > 0 characterizes the non-commutativity (later on it

will be related to N). In terms of X̂i =
1
�
x̂i ; i = 1; 2; 3, eqs. (3) are changed
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to

[X̂i; X̂j] = i"ijkX̂k ;
3X

i=1

X̂2
i = �2��2 ; (4)

or putting X� = X1 � iX2 we obtain

[X̂3; X̂�] = X̂� ; [X̂+; X̂�] = 2X̂3 ; (5)

and

C = X̂2
3 +

1

2
(X̂+X̂� + X̂�X̂+) = �2��2 : (6)

We shall realize eqs. (4), or equivalently eqs. (5) and (6), as relations

in some suitable irreuducible unitary representations of the SU(2) group. It

is useful to perform this construction using Wigner-Jordan realization of the

generators X̂i ; i = 1; 2; 3, in terms of two pairs of annihilation and creation

operators A�; A
�
�; � = 1; 2, satisfying

[A�; A�] = [A�
�; A

�
�] = 0 ; [A�; A

�
�] = ��;� ; (7)

and acting in the Fock space F spanned by the normalized vectors

jn1; n2i =
1p

n1!n2!
(A�

1)
n1(A�

2)
n2 j0i ; (8)

where j0i is the vacuum de�ned by A1j0i = A2j0i = 0. The operators X̂�,

and X̂3 take the form

X̂+ = 2A�
1A2 ; X̂� = 2A�

2A1 ; X̂3 =
1

2
(N1 �N2) ; (9)

whereN� = A�
�A� ; � = 1; 2. Restricting to the (N+1)-dimensional subspace

FN = fjn1; n2i 2 Fg ; (10)
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we obtain for any given N = 0; 1; 2; ::: , the irreducible unitary representa-

tion in which the Casimir operator (6) has the value

C =
N

2

�
N

2
+ 1

�
; (11)

i.e. the � and N are related as

���1 =

s
N

2

�
N

2
+ 1

�
: (12)

The states jn1; n2i are eigenstates of the operator X3, whereas X+ and

X� are rising and lowering operators respectively

X3 jn1; n2i =
n1 � n2

2
jn1; n2i ;

X+ jn1; n2i = 2
q
(n1 + 1)n2 jn1 + 1; n2 � 1i ;

X� jn1; n2i = 2
q
n1(n2 + 1) jn1 � 1; n2 + 1i : (13)

Since Xi : FN ! FN , we have

dimAN � (N + 1)2 : (14)

B) As a next step we extend the notions of integration and derivation to

the truncated case. The standard integral on S2

I1(F ) =
1

4�

Z
d
F (x) =

1

4�

Z +�

��
d'

Z �

0
sin �d�F (�; ') (15)

is uniquely de�ned if it is �xed for the monomials F (x) = xl+x
m
�x

n
3 . It is

obvious that I1(x
l
+x

m
�x

n
3) = 0 for l 6= m, and that xl+x

l
�x

n
3 = �2l+nsin2l�cosn�

is a polynomial in cos � = x3. An easy calculation gives

I1(x
2n+1
3 ) = 0 ; I1(x

2n
3 ) =

�2n

2n + 1
;
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for n = 0; 1; 2; ::: . Putting � = ��1x3 = cos � we see that

I1(�
n) =

1

2

Z +1

�1
d� �n : (16)

These relations algebraically de�ne the integration in A1.

In the non-commutative case we put

IN(F ) =
1

N + 1
Tr[F (x̂)] (17)

for any polynomial F (x̂) 2 AN in x̂i; i = 1; 2; 3, where the trace is taken in

FN . Again, the integrals I(x̂
l
+x̂

m
� x̂

n
3) = 0 for l 6= m since

x̂l+x̂
m
� x̂

n
3 jn1; n2i � jn1 + l �m;n2 +m� li :

Similarly as before, x̂l+x̂
l
�x̂

n
3 can be expressed using eqs. (5) and (6) as a

polynomial in x̂3. The equation

x̂n3 jn1; n2i = (�
n1 � n2

2
)n jn1; n2i (18)

gives

IN(x̂
n
3 ) =

NX
k=0

�n

N + 1
�nk ; (19)

where �k =
q

N

N+2
(2k
N
� 1). The formula (19) can be rewritten as a Stieltjes

integral with the stair-shape measure �(�) in the interval (-1,+1) with steps

in the points �k

IN(�
n) =

Z +1

�1
d�(�)�n =

NX
k=0

1

N + 1
�nk : (20)

Obviously, IN(x̂
2n+1
3 ) = 0, and

IN(x̂
2n
3 ) =

�2n

(N
2
)n(N

2
+ 1)n(N + 1)

NX
k=0

(
2k �N

2
)2n :
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Using the known formula (see e.g. [12], p. 597, eq. (16))

NX
k=0

(k + a)m =
1

m+ 1
[Bm+1(N + 1 + a)�Bm+1(a)] ;

where Bm(x) are Bernoulli polynomials, we obtain

IN(x̂
2n
3 ) =

�2n

2n+ 1
C(N;n) : (21)

Here,

C(N;n) =
B2n+1(

N

2
+ 1)�B2n+1(�N

2
)

(N
2
)n(N

2
+ 1)n(N + 1)

(22)

represents a non-commutative correction. Since the Bernoulli polynomials

are normalized as

Bm(x) = xm + lower powers ;

we see that

C(N;n) = 1 + o(1=N) ; (23)

i.e. in the limit N !1 we recover the commutative result.

The scalar product in A1 can be introduced as

(F1; F2)1 = I1(F
�
1F2) ; (24)

and similarly in AN we put

(F1; F2)N = IN(F
�
1F2) : (25)

C) The vector �elds describing motions on S2 are linear combinations

(with the coe�tiens from A1) of the di�erential operators acting on any

F 2 A1 as follows

JiF =
1

i
"ijk xj

@F

@xk
: (26)
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In particular,

Jixj = i "ijk xk : (27)

The operators Ji; i = 1; 2; 3, satisfy in A1 the su(2) algebra commutation

relations

[Ji; Jj] = i"ijkJk ; (28)

or for J� = J1 � iJ2 they take the form

[J3; J�] = �J� ; [J+; J�] = 2J3 : (29)

The operators Ji are self-adjoint with respect to the scalar product (24).

In the non-commutative case the operators Ji act on any element F from

the algebra AN in the following way

JiF = [Xi ; F ] : (30)

In particular,

Jix̂j = i "ijk x̂k : (31)

The operators Ji satisfy su(2) algebra commutation relations and are self-

adjoint with respect to the scalar product (25).

The functions

	ll(x̂) = cl x̂
l
+ ; (32)

are the highest weight vectors in AN for l = 0; 1; :::; N , since

J+	ll(x̂) = �l [X̂+; X̂
l
+] = 0 : (33)

For all l > N is x̂l+ = 0 in AN . The normalization factor cl is �xed by the

condition

1 =k 	llk2 = (	ll;	ll)N = jclj2IN(x̂l�x̂l+) ;
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and is given by the formula ([12], p.618, eq. (36))

�2lc2l =
(2l + 1)!!

(2l)!!

(N + 1)N l(N + 2)l(N � l)!

(N + l+ 1)!
: (34)

The second factor on the right hand side represents a non-commutative cor-

rection. For N ! 1 it approaches 1. The other normalized functions

	lm;m = 0;�1; :::;�l, in the irreducible representation containing 	ll are

given as

	lm =

vuut (l+m)!

(l�m)!(2l)!
J l�m
� 	ll : (35)

The normalization factor on the right hand side is the standard one inde-

pendent of N . The functions 	lm are eigenfunctions of the operators J2
i and

J3:

J2
i 	lm = l(l+ 1)	lm ;

J3	lm = m	lm : (36)

We see that AN contains all SU(2) irreducible representations with the

"orbital momentum" l = 0; 1; :::; N . The l-th representation has the dimen-

sion 2l + 1, and consequently

dimAN �
NX
n=0

(2l + 1) = (N + 1)2 : (37)

Comparing this with eq. (14) we see that AN contains no other representa-

tions, i.e.

AN =
MN

l=0
A(l) ; (38)

whereA(l) denotes the representation space of the l-th representation spanned

by the functions 	lm;m = 0;�1; :::;�l. In particular, dimAN = (N + 1)2.
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3 Scalar �eld on the truncated sphere

A) The Euclidean �eld action for a real self-interacting scalar �eld � on a

standard sphere S2 is given as

S[�] =
1

4�

Z
S2
d
[(Ji�)

2 + �2(�)2 + V (�)]

= I1(�J
2
i � + �2(�)2 + V (�)) ; (39)

where

V (�) =
2KX
k=0

gk�
k ; (40)

is a polynomial with g2K � 0 (and we explicitely indicated the mass term).

The quantum mean value of some polynomial �eld functional F [�] is

de�ned as the functional integral

hF [�]i =
R
D�e�S[�]F [�]R
D�e�S[�]

; (41)

where D� =
Q
x d�(x). Alternatively, we can expand the �eld into spherical

functions

�(x) =
1X
l=0

+lX
m=�l

almYlm(x) (42)

satisfying

J2
i Ylm = l(l + 1)Ylm :

Here the complex coe�cients alm obey

al;�m = (�1)ma�lm ; (43)

what guarantees the reality condition ��(x̂) = �(x̂). We can put D� =Q
l dal0

Q
lm dalmda

�
lm , l = 0; 1; :::; N , m = 1; :::; l. Both expressions for D�

9



are only formal. The measure in the functional integral can be mathemati-

cally rigorously de�ned (see e.g. [13]) but we shall not follow this direction.

Such problems do not appear in the non-commutative case, where the

scalar �eld �(x̂) is an element of the algebra AN , and consequently it can be

expanded as

�(x̂) =
NX
l=0

+lX
m=�l

alm	lm(x̂) ; (44)

where 	lm(x̂) satisfy in AN the equation

J2
i 	lm = l(l + 1)	lm ;

and are orthonormal with respect to the scalar product (25). The coe�cients

alm are again restricted by the condition (43).

The action in the non-commutative case is de�ned as

S[�] = IN(�J
2
i � + �2(�)2 + V (�)) ; (45)

and it is a polynomial in the variables alm; l = 0; 1; :::; N; m = 0;�1; :::;�l.
The measure D� =

Q
l dal0

Q
lm dalmda

�
lm ; l = 0; 1; :::; N; m = 1; :::; l, in

the quantum mean value (41) is the usual Lebesgue measure, since now the

product is �nite. The quantum mean values are well de�ned for any analytic

functional F [�].

Under rotations

x̂i ! x̂0i =
X
j

Rij(�; �; )x̂j (46)

speci�ed by the Euler angles �; �; , the �eld transforms as

�(x̂)! �(x̂0) =
NX
l=0

+lX
m=�l

alm	lm(x̂
0) : (47)
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Using the transformation rule for the functions 	lm (see e.g. [15])

	lm0(x̂0) =
X
m0

Dl
m0m(�; �; )	lm(x̂) ; (48)

we obtain the transformation rule for the coe�cients alm

alm ! a0lm0 =
X
m

Dl
m0m(�; �; )alm : (49)

The last equation is an orthogonal transformation not changing the measure

D� (see e.g. [14]).

The Schwinger functions we de�ne as follows

Sn(F ) = hFn[�]i ; (50)

where

Fn[�] =
X

�l1m1:::lnmn
al1m1

: : : alnmn
�
X

�l1m1:::lnmn
(	l1m1

;�)N : : : (	lnmn
;�)N :

(51)

The functions (49) satisfy the following Osterwalder-Schrader axioms:

(OS1) Hermiticity

S�n(F ) = Sn(�F ) ; (52)

where �F is an involution

�Fn[�] =
X

��l1�m1:::ln�mn
(�1)m1+:::mnal1m1

: : : alnmn
:

(OS2) Covariance

Sn(F ) = Sn(RF ) ; (53)

where RF is a mapping induced by Eq. (49).
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(OS3) Reection positivity

X
n;m2I

Sn+m(�Fn 
 Fm) � 0 : (54)

(OS4) Symmetry

Sn(F ) = Sn(�F ) ; (55)

where �F is a functional obtained from F by arbitrary permutation of alm's

in Eq. (51).

Note: The positivity axiom (53) can be rewritten as hF �F i � 0, F =P
n2I Fn. In fact, the standard formulation of (OS3) axiom requires the

speci�cation of the support of the functionals Fn. In our case the axiom

holds in the "strong" sense , i.e. without the speci�cation. We expect,

however, that in the continuum limit (N ! 1) the issue will emerge. We

do not include the last Osterwalder-Schrader axiom - the cluster property,

since the compact manifold requires a special treatment (however, it can be

recovered in the limit when the radius of the sphere grows to in�nity, but

this goes beyond the presented scheme).

B) In many practical applications the perturbative results are su�cient.

Interpreting the term V (�) as a perturbation, we present below as an illus-

tration the Feynman rules for the model in question. We give the Feynman

rules in the (lm)-representation de�ned by the expansios (42) and (43). The

diagrams are constructed from

(i) External vertices assigned to any operator alm appearing in the func-

tional F [�].

(ii) Internal vertices given by the expansion of V (�) in terms of al1m1
:::alkmk

.

12



This gives the following Feynman rules:

(a) Propagator

2halma�l0m0i = 1

l(l+ 1) + �2
�l0l�m0m ; (56)

where the admissible values of l and m for A1 are l = 0; 1; 2; :::; m =

0; 1; :::; l, whereas in the case of AN they are l = 0; 1; :::; N; m = 0; 1; :::; l.

(b) Vertex

Vl1m1;:::;lkmk
= gkI1(Yl1m1

:::Ylkmk
) for A1 ; (57)

Vl1m1;:::;lkmk
= gkIN (Yl1m1

:::Ylkmk
) for AN ; (58)

(c) Finally the summation over all internal indices should be performed.

This procedure leads for A1 �nite Feynman diagrams except the dia-

grams containing the tadpole contribution

T1 �
X
lm

halma�lmi �
1X
l=0

lX
m=�l

1

l(l+ 1) + �2
= 1 :

This divergence is closely related to the divergence of the propagator

G(x; y) =
X
lm

1

l(l+ 1) + �2
Ylm(x)Y

�
lm(y)

in the x-representation at points x = y. This requires, of course, the regular-

ization of G(x; y), which is, in our case, simply a cut-o� in the l-summations.

Indeed, for AN all diagrams are obviously �nite (since all summations are

�nite). In particular the tadpole contribution reads

TN =
NX
l=0

lX
m=�l

1

l(l+ 1) + �2
� lnN :

13



For practical applications an e�ective method for the calculation of vertex

coe�cients Vl1m1;:::;lkmk
is needed, both in the standard and non-commutative

cases. We shall describe the latter one. Since the multiplication by 	lm acts

in the algebraAN as an irreducible tensor operator, we can apply the Wigner-

Eckart theorem. Then the product 	l1m1
(x̂)	l2m2

(x̂) can be expressed as

	l1m1
(x̂)	l2m2

(x̂) =
l1+l2X

l=jl1�l2j

(l1m1; l2m2jlm) (l1l2 k l) 	lm(x̂) ; (59)

where m = �m1 + m2, (l1m1; l2m2jlm) is a Clebsch-Gordon coe�cient,

and the symbol (l1l2 k l) denotes the so called reduced matrix element

(and depends on the particular algebra in question). Introducing the non-

commutative Legendre polynomials Pl(�) = 	l0(x̂); � = ��1x̂3, the previous

equation leads to the coupling rule

Pl1(�)Pl2(�) =
l1+l2X

l=jl1�l2j

(l10; l20jl0) (l1l2 k l) Pl(�) : (60)

The repeated application of (59) then allows to calculate the required vertices.

Note: The well known explicit formula for the usual Legendre polynomials

allows us to calculate the reduced matrix elements

(l1l2 k l) = (l10; l20jl0)

enterring the coupling rule in the algebraA1 in terms of a particular Clebsch-

Gordon coe�cients. Similarly, the explicit formula for the non-commutative

Legendre polynomials presented in the Appendix allows to deduce the re-

duced matrix elements enterring the coupling rule in the algebra AN .
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4 Concluding Remarks

We have demonstrated above that the interacting scalar �eld on the non-

commutative sphere represents a quantum system which has the following

properties:

1) The model has a full space symmetry - the full symmetry under isome-

tries (rotations) of the sphere S2. This is exactly the same symmetry as the

interacting scalar �eld on the standard sphere has.

2) The �eld has only a �nite number of modes. Then the number of

degrees of freedom is �nite and this leads to the non-perturbative UV-

regularization, i.e. all quantum mean values of polynomial �eld functionals

are well de�ned and �nite.

Consequently, all Feynman diagrams in the perturbative expansion are

�nite, even the diagrams containing the tadpole diagram which are divergent

in the model on a standard sphere. Technically, the tadpole is �nite due to

the cut-o� in the number of modes. In our approach the UV cut-o� in the

number of modes is supplemented with a highly non-trivial vertex modi�ca-

tion (compare eqs. (57) and (58)). Moreover, our UV-regularization is non-

perturbative and is completely determined by the algebraAN . It is originated

by the short-distance structure of the space, and does not depend on the �eld

action of the model in question. From the presented point of view, it would

be desirable to analyze a quantization of the models on a non-commutative

sphere S2 containing spinor, or gauge �elds. In the standard case such mod-

els have a more complicated structure of divergencies. It is evident, that

our approach will lead again to a non-perturbative UV-regularization. The
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usual divergencies will appear only in the limit N ! 1. It would be very

interesting to isolate the large N behaviour non-perturbatively. By this we

mean the Wilson-like approach in which the renormalization group ow in

the space of Lagrangeans is studied. This can lead to the better understand-

ing of the origin and properties of divergencies in the quantum �eld theory.

Another interesting direction would consist in making connection with the

matrix models where, from the technical point of view, very similar integral

have been studied. We strongly believe, that qualitatively just the same sit-

uation will repeat on the four-dimensional sphere S4 too. Investigations in

all these directions are under current study.
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Appendix

The truncated Legendre polynomials

Pl(�) = �lal0 + �l�2al1 + ::: ; l = 0; 1; :::; N ;

we de�ne as orthonormal polynomials with respect to the scalar product

(Pl; Pm)N = IN(PlPm) = �lm :
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Here the non-commutative integral is given as (see eq. (19))

IN(�
n) =

NX
k=0

1

N + 1
�nk ;

where �k =
q

N

N+2
(2k
N
� 1). The polynomials Pl(�) can be obtained from the

reccurence relation

Pm+1(�) =
1

am
[�Pm(�)� cmPm�1(�)] ;

where cm = I(�PmPm�1) and am =
q
IN (�2P 2

m)� c2m.

The truncated spherical functions 	lm(x̂) satisfy in AN equation

J2
i 	lm(x̂) = l(l+ 1)	lm(x̂) :

Putting Pl(�) = 	l0(x̂) ; � = x̂3, the last equation reduces to a di�erence

equation for the truncated Legendre polynomials

(1 � �2)
Pl(� + �) � 2Pl(�) + Pl(� � �)

�2

+ 2�
Pl(� + �) � Pl(� � �)

2�
+ l(l+ 1)Pl(�) = 0 ;

where � = 2=
q
N(N + 2). This equation leads to the reccurence relation for

the coe�cients als appearing in the Legendre polynomials:

als = � 1

s(2l � 2s+ 1

s�1X
r=0

alr[(
l�2r
l�2s) � �2 (l�2r+1l�2s+1)] �

2s�2r�2 :

In the limit N ! 1 (or equivalently � ! 0) all formulas reduce to the

standard expressions valid for usual Legendre polynomials.
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