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1. Introduction

Seiberg and Witten [1,2] have investigated N=2 supersymmetric gauge theories,

with gauge group G = SU(2), and solved for their exact non-perturbative low energy

effective action. Their construction has been generalized to arbitrary SU(n) gauge

groups in [3,4]. A detailed analysis from the viewpoint of large n was presented in [5].

The relation to special geometry was discussed in [6]. More recently, the extension

to SO(2n + 1) was presented in [7], as well as an analysis of the non-local behavior

at the cusp points in moduli space [8]. In addition, SU(n) gauge theories with extra

matter were considered in [9]. There is a considerable overlap between various of these

papers.

The purpose of the present paper is to elaborate on our previous work [3] on

SU(n) N = 2 Yang-Mills theory, with particular focus on G = SU(3); some of the

material has already been presented in a short preview [10].

For arbitrary gauge group G, N = 2 supersymmetric gauge theories without mat-

ter hypermultiplets are characterized by having flat directions for the Higgs vacuum

expectation values, along which the gauge group is generically broken to the Cartan

sub-algebra. Thus, the effective theories contain r = rank(G) abelian N = 2 vector

supermultiplets, which can be decomposed into r N = 1 chiral multiplets Ai plus r

N=1 U(1) vector multiplets Wαi (we will denote the scalar components of Ai by ai).

N = 2 supersymmetry implies that the leading piece (with up to two derivatives) of

the low energy effective lagrangian depends only on a single holomorphic function,

F(A):

L =
1

4π
Im
[ ∫

d4θ
(∑ ∂F(A)

∂Ai
Ai

)
+

∫
d2θ

1

2

(∑ ∂2F(A)

∂Ai∂Aj
WαiWαj

)]
.

The prepotential F describes the geometry of the quantum moduli space MΛ, whose

metric τ gives the complexified gauge coupling constant: τ(a) = ∂2
aF(a) = 1

π θeff(a) +

8πi(geff(a))−2.

An important point is that MΛ has singularities where the local effective action

description breaks down. This is because certain BPS monopoles become massless for

the corresponding vacuum expectation values. For example, forG = SU(2) [1,2], there

are singularities at u = ±Λ2, where Λ is the dynamically generated scale of the theory,

and where u is a gauge invariant coordinate of MΛ (for large u, u ∼ 1
2〈a

2〉). These

singularities correspond to a monopole and a dyon becoming massless, respectively.
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(There is also a singularity in the semi-classical region at u = ∞, but there are no

massless states associated with it.)

Loops in MΛ around these singularities induce non-trivial monodromy, which

acts on the section

π =
(aD

a

)
, aD ≡ ∂

∂a
F(a)

via matrix multiplication. A crucial insight of Seiberg and Witten was to use the

global monodromy properties of π to essentially fix it and thus, via integration, to

find the prepotential F(a). In practice, this was done by viewing π as a vector of

period integrals related to an auxiliary elliptic curve, and τ as period matrix of this

curve.

In section 2, we will review some ideas of Seiberg and Witten about G = SU(2)

Yang-Mills theory, with emphasis on the techniques that we are going to use later. In

section 3, we will first describe some properties of the classical SU(n) gauge theories

as well as their relation to simple singularities, and then discuss their monodromy

properties. In section 4 we will consider the exact G = SU(n) quantum theories,

which are defined in terms of certain hyperelliptic curves. In particular, we will

present some details about the moduli space MΛ and its monodromies. We will also

emphasize the relationship between BPS states and the singular homology of level

surfaces. In section 5 we will derive the Picard-Fuchs equations for G = SU(3),

whose solutions give an alternative representation of the period integrals.

In section 6 we will use these solutions to compute the series expansion of the ex-

act quantum effective action, in both semi-classical and dual magnetic semi-classical

coordinate patches of MΛ. The explicit expressions for the non-perturbative correc-

tions represent the main results of the present paper, and may be viewed as predictions

that may –in principle– be checked by some other sort of computation.

Finally, we will present some conclusions in section 7, and in two Appendices we

give some details about the computation of the period integrals, and present explicit

expressions for the periods.
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2. A quick tour through G=SU(2)

In this section we review and detail some of the results for gauge group SU(2)

[1,2]. The main purpose is to familiarize the reader with the techniques that will be

used later in a more involved context.

By hypothesis, the quantum moduli space MΛ of SU(2) Yang-Mills theory coin-

cides with the moduli space of the elliptic curve

y2 = W 2
A1

− Λ4 = (x2 − u)2 − Λ4 . (2.1)

This curve is equivalent to the curve given in the second paper of Seiberg and Witten

[2], in that it has the same j-function. The prime interest is in the periods,

(̟D

̟

)
=

∂

∂u
π(u) ≡ ∂

∂u

(aD

a

)
∼
(∮

β∮
α

)
· dx

y(x, u)
, (2.2)

since the prepotential can be obtained directly from them by integration: F =
∫

a
aD(a). The periods (2.2) are largely fixed by their monodromy properties around

the singularities of MΛ, which just reflect the monodromy properties of the basis

homology cycles α and β. Specifically, denoting the the four zero’s of p(x) = y2(x)

by e+1 = −
√
u+ Λ2, e−1 = −

√
u− Λ2, e−2 =

√
u− Λ2 and e+2 =

√
u+ Λ2, we define

the basis for the homology cycles as in Fig.1.

e�1 e�2 e+2e+1
� �

Fig.1: The definition of the cuts and cycles for the elliptic curve
(2.1) in the x-plane. This picture correspond to the choice of the
basepoint u0 > Λ2 real.
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The singularities in the quantum moduli space are given by the the zeros of the

discriminant of (2.1), ∆Λ = (2Λ)8(u2 −Λ4), and describe the following degenerations

of the elliptic curve:

i+) u→ +Λ2, for which (e−1 → e−2 ), i.e., the cycle ν+Λ2 = β degenerates,

i−) u→ −Λ2, for which (e+1 → e+2 ), i.e., the cycle ν−Λ2 = β − 2α degenerates,

ii) Λ2

u → 0, for which (e+1 → e−1 ) and (e+2 → e−2 ). As two pairs of zero’s coincide

simultaneously, one has a “non-stable” degeneration. With some care (see below) one

can conclude: ν∞ = 2α.

Is is now easy to see that, for example, a loop γ+Λ2 around the singularity at

u = Λ2 makes e−1 and e−2 rotate around each other, so that the cycle α gets transformed

into α − β, c.f., Fig.2 (one can investigate the monodromy around u = −Λ2 in an

analogous way). Note that the zeros exchange along a certain path that shrinks as

e−1 → e−2 . Such paths are called vanishing cycles, and play an important rôle because

they directly determine the monodromies; this will be explained in section 4.2.

Paths in the u� plane Corresponding vanishing cycles in the x� planeu0��2 +�2

1
+�2
��2 e+1 e�1 e+2e�2 e+2e+1 e�1 e�2���2 = � � 2�

�+�2 = �
Fig.2: Monodromy paths and cycles that vanishes as one moves
towards the degeneration point.
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To obtain the monodromy around Λ2

u → 0, one can compactify the u−plane to

IP1 with homogeneous coordinates (u : Λ2), and get the monodromy at infinity from

the consistency condition M∞ = M+Λ2M−Λ2 (Fig.2). One may also compute the

monodromy at Λ2

u
→ 0 directly. To obtain a stable situation with a single vanishing

cycle, one can employ a projective transformation x 7→ a x+b
c x+d that may be fixed by

requiring: (e+1 → ∞, e−1 → −1, e−2 → 1), plus, for example:

e+2 → ũ =
uΛ2

√
u2 − Λ4

. (2.3)

For u
Λ2 → ∞, ũ → 1 i.e. the α-cycle vanishes, but since (ũ− 1) ∼ Λ2

2u2 + O(Λ8

u4 ) this

correspond only to half a loop in the u−plane i.e. the vanishing cycle for the curve

(2.1) is ν∞ = 2α. One also needs to take into account a factor −1 contributed by the

form dx
y

, as well as the fact that the monodromy obtained in this way corresponds to

the degeneration point being encircled counter clockwise, ie., the monodromy will be

given by M∞
−1.

In summary, one obtains the following monodromies:

M∞ = M+Λ2M−Λ2 =

(
−1 4
0 −1

)
, M+Λ2 =

(
1 0
−1 1

)
, M−Λ2 =

(
−1 4
−1 3

)
,

(2.4)

which generate Γ0(4) ⊂ SL(2ZZ). These monodromies are consistent with the one-loop

β-function of the weakly coupled SU(2) theory, with the β-function of the magnetic

dual U(1) theory coupled to a massless monopole of charges (g, q) = (1, 0), and with

the β-function corresponding to a massless dyon of charge (1,−2), respectively [2].

In order to obtain the effective action explicitly, one needs to evaluate the periods

(2.2). Instead of directly computing the integrals, one may use the fact that the

periods form a system of solutions of the Picard-Fuchs equation associated with (2.1).

One then has to evaluate the integrals only in leading order, just to determine the

correct linear combinations of the solutions. More precisely, the PF equations satisfied

by the periods (̟D(u), ̟(u)) ≡ (∂uaD, ∂ua) are given in terms of the second order

differential operator L = (Λ4 − u2)∂2
u − 2u∂u − 1

4 . In terms of the dimensionless and

Z8 invariant variable α = u2

Λ4 , this turns into (θα = α∂α)

L = θα(θα − 1

2
) − α(θα +

1

4
)2 , (2.5)
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which constitutes the hypergeometric system F ( 1
4 ,

1
4 ; 1

2 ;α). It is also possible to derive

a second order differential equation for the section π ≡ (aD, a) directly. In fact, one

easily verifies that L∂u = ∂uL̃ with
†

L̃ = θα(θα − 1

2
) − α(θα − 1

4
)2 , (2.6)

and this form the hypergeometric system F (−1
4
,−1

4
; 1

2
, α). One may also verify di-

rectly that
∮
λ with λ = i

√
2

4π
2x2 dx

y
satisfies this equation.

The solutions of L̃ π = 0 in terms of hypergeometric functions, and their analytic

continuation over the complex plane, are of course well known. For |u| > |Λ| a system

of solutions to the Picard-Fuchs equations is given by w0 and w1 with

w0(u) =

√
u

Λ

∑
c(n)(

Λ4

u2
)n , c(n) =

( 1
4 )n(−1

4 )n

(1)2n

and

w1(u) = w0(u) log(
Λ4

u2
) +

√
u

Λ

∑
d(n)(

Λ4

u2
)n ,

where

d(n) = c(n)
(
2(ψ(1)− ψ(n+ 1)) + ψ(n+

1

4
) − ψ(

1

4
) + ψ(n− 1

4
) − ψ(−1

4
)
)

and where (a)m ≡ Γ(a +m)/Γ(a) is the Pochhammer symbol. Matching the asymp-

totic expansions of the period integrals one finds

a(u) =
Λ√
2
w0(u) , aD(u) = − iΛ√

2π
(w1(u) + (4 − 6 log(2))w0(u)),

which transform under counter-clockwise continuation of u along γ∞ (c.f., Fig.1)

precisely as in (2.4). These expansions correspond to particular linear combinations

of hypergeometric functions, the most concise form of which are

aD(α) =

∮

β

λ =
i

4
Λ(α− 1) 2F1

(3

4
,
3

4
, 2; 1− α

)

a(α) =

∮

α

λ =
1

1 + i
Λ(1 − α)1/4

2F1

(
− 1

4
,
3

4
, 1;

1

1 − a

)
.

(2.7)

† The fact that the operator L∂u has the alternative factorization, ∂uL̃, means that (aD, a)

transform irreducibly under monodromy. In the massive case this will no longer be case, and

the three solutions (aD, a, const) will mix under monodromy.
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From these expressions, the prepotential in the semi-classical regime (near infinity

in the moduli space) can readily be obtained to any given order. Inverting a(u) as

series for large a/Λ yields for the first few terms u(a)
Λ2 = 2

(
a
Λ

)2
+ 1

16

(
Λ
a

)2
+ 5

4096

(
Λ
a

)6
+

O(
(

Λ
a

)10
). After inserting this into aD(u), one obtains F by integration w.r.t. a as

follows:

F =
i a2

2π

(
2 log

a2

Λ2
− 6 + 8 log 2 −

∞∑

k=1

Fk

(
Λ

a

)4k
)
.

Specifically, the first few terms of the instanton expansion are:

k 1 2 3 4 5 6 7 8

Fk
1

25

5

214

3

218

1469

231

4471

234 · 5
40397

243

441325

247 · 7
866589165

264

One can treat the dual semi-classical regime is an analogous way. Near the point

u = Λ2 where the monopole becomes massless, we introduce z = (u− Λ2)/(2Λ2) and

rewrite the Picard-Fuchs operator as

L = z(θz −
1

2
)2 + θz(θz − 1) (2.8)

At z = 0, the indices are 0 and 1, and we have again one power series

w0(z) = Λ2
∑

c(n)zn+1, c(n) = (−1)n ( 1
2
)2n

(1)n(2)n
(2.9)

and a logarithmic solution

w1(z) = w0(z) log(z) +
∑

d(n)zn+1 − 4 , (2.10)

with

d(n) = c(n)
(
2(ψ(n+

1

2
) − ψ(

1

2
)) + ψ(1) − ψ(n+ 1) + ψ(2)− ψ(n+ 2)

)
.

For small z one can easily evaluate the lowest order expansion for the integrals (2.7)

and thereby determine the analytic continuation of the solutions from the weak cou-

pling to the strong coupling domain:

aD = 2

∫ e−

2

e−

1

λ = iΛ(z + . . .) = iΛw0(z)

a = 2

∫ e−

1

e+
1

λ =
Λ

2π
(4 + z(1 + 4 log(2)) − z log(z) + . . .)

= − Λ

2π
(w1(z) − (1 + log(2))w0(z)) .
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This exhibits the monodromy of (2.4) along the path γ+Λ2 . Inverting aD(z) yields

z(aD) = −2ãD + 1
4
ã2

D + 1
32
ã3

D + O(ã4
D), with ãD ≡ iaD/Λ. After inserting this into

a(z) we integrate w.r.t. aD and obtain the dual prepotential FD as follows:

FD =
iΛ2

2π

(
ã2

D log
[
− i

4

√
ãD

]
+

∞∑

k=1

FD k ã
k
D

)
,

where the lowest threshold corrections FD k are

k 1 2 3 4 5 6 7 8

FD k 4 −3

4

1

24

5

29

11

212

63

216

527

218 · 5
3129

224

Now slightly changing direction, remember that in the first paper of Seiberg

and Witten [1], an elliptic curve different from the one in the second paper [2] was

considered. This “isogenous” curve has the form

y2 = (x− Λ2)(x+ Λ2)(x− ũ) , (2.11)

and leads to the monodromy group Γ(2). The motivation for introducing the Γ0(4)

curve (2.1) was to have a more convenient electrical charge normalization, and ac-

cording to [2], the difference between the curves (2.11) and (2.1) just accounts for

this. This poses, however, a paradox: by comparing the Weierstraß normal forms,

one finds that the parameters u in (2.1) and ũ in (2.11) are related as follows:
†

u =
ũ√

ũ2 − Λ4
Λ2 . (2.12)

This means, however, that the semi-classical regions near infinity and near the finite

points are exchanged for the two curves, which also means that the electric and

magnetic sectors are exchanged. How can this be reconciled with the statement that

the two curves just differ the normalization of the electric charge ?

The point is that (2.12) represents a (ZZ2-valued) duality transformation. That

is, even though π and F(a),FD(aD) transform in a complicated way under

I : α −→ α̃ ≡ α

α− 1
, α ≡ u2

Λ4
, (2.13)

† This is exactly the SL(2) transformation (2.3).
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the physical gauge and dual gauge couplings, τ and τD, behave in a simple way. More

precisely, we find that one can compactly write the periods ∂uπ as follows:

̟D(α) =
i
√

2

4π

∮

β

dx

y
= (

i

2Λ
)2F1

(1

4
,
1

4
, 1; 1− α

)

̟(α) =
i
√

2

4π

∮

α

dx

y
=

1

2Λ(1 − i)
(1 − α)−1/4

2F1

(1

4
,
1

4
, 1;

1

1 − α

)
.

(2.14)

In this particular representation, the arguments of the hypergeometric functions sim-

ply exchange under the transformation (2.13), and one finds for expansions around

(1 − α) ∈ IR− that

τ(α) ≡ ̟D(α)

̟(α)
= −2

̟(α̃)

̟D(α̃)
≡ 2 τD(α̃)

= τ̃D(α̃) .

(2.15)

Here, τ̃D(α̃) is the dual coupling corresponding to the Γ(2) curve (2.11). (For ex-

panding around the fixed point, α = 0, one has to take into account that because of

(1 − α) 6∈ IR− one picks up an extra overall phase, ie., τ(u ∼ 0) = (i + 1) + O(u) =

−2iτD(ũ ∼ 0).) We thus see that rescaling the electric charges, performing the isogeny

map I (exchanging the curves) and exchanging the electric and magnetic sectors is

the identity map. In fact, (2.13) can be viewed as the effect of the transformation

I : τ → − 2
τ on the Γ0(4) modular function u. This is not to be confused with the

SL(2,ZZ) S-duality transformation S : τ → − 1
τ
, under which the period matrix is

invariant:

τ(α) = τD(α̂) , α̂ =
(3

√
α− 1 +

√
α)

2

8 (
√
α(α− 1) + α− 1)

. (2.16)

Note that since (2.15), (2.16) act non-trivially on the physical moduli space, these

transformations are not a symmetries of the theory, but rather relate the different

semi-classical regimes to each other.

3. Semi-classical Yang-Mills theory

3.1. Classical moduli spaces and Simple Singularities

Before we jump in the discussion of the exact quantum theory, we first explain

some properties of the classical and semi-classical (perturbative) theory. Most of these
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features, especially the relation to simple singularities, directly generalize to groups

other than G = SU(n).

The classical potential for the scalar superfield component φ is given by

V(φ) =
1

g2
[φ, φ†]2 . (3.1)

It leads to a continuous family of inequivalent ground states, which constitutes the

classical moduli space M0. In order to characterize M0, note that one can always

rotate φ into the Cartan sub-algebra,

φ =

n−1∑

k=1

akHk (3.2)

with Hk = Ek,k−Ek+1,k+1, (Ek,l)i,j = δikδjl. For generic eigenvalues of φ, the SU(n)

gauge symmetry is broken to the maximal torus U(1)n−1, whereas if some eigenvalues

coincide, some larger, non-abelian group H ⊆ G remains unbroken. Precisely which

gauge bosons are massless for a given background ~a = {ak}, can easily be read off

from the central charge formula,

Zq(a) = ~q · ~a , with m2(q) = 2|Zq|2 , (3.3)

where we take for the charge vectors ~q the roots α ∈ ΛR(G) in Dynkin basis.

The Cartan sub-algebra variables ak are not gauge invariant and in particular

not invariant under discrete Weyl transformations. Therefore, one introduces other

variables for parametrizing the classical moduli space, which are given by Weyl in-

variant Casimirs uk(a). These variables parametrize the Cartan sub-algebra modulo

the Weyl group, ie, {uk} ∼= C
n−1/WAn−1

, and transform under the the anomaly free

global ZZ2n subgroup of U(1)R as uk → eiπk/nuk. More precisely, in order to go to

the Casimir variables uk(a), we first change basis according to

Zα(i,j)
(a) ≡ ei − ej , i 6= j , i, j = 1, n, (3.4)

with
∑
ei = 0. These variables are then related to the Casimir variables uk by a

Miura transformation:

n∏

i=1

(
x− ei(a)

)
= xn −

n−2∑

l=0

ul+2(a) x
n−2−l ≡ WAn−1

(x, u) . (3.5)
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Here, WAn−1
(x, u) is nothing but the simple singularity [11] associated with SU(n),

where
uk(a) = (−1)k+1

∑

j1 6=... 6=jk

ej1ej2 . . . ejk
(a)

≡ 1

k
Tr〈φk〉 + products of lower order Casimirs

(3.6)

are the symmetric polynomials. These are manifestly invariant under the Weyl group

WAn−1
∼= S(n), which acts by permutation of the ei. Specifically, in terms of the

original variables ak, one has for the bottom and top Casimirs:

u2(a) = 1
2n

∑

positive
roots α

(Zα)2 = 1
2
~at · C · ~a un(a) = (−1)n+1

∏

fund. rep
weights λ

Zλ(a) , (3.7)

where C is the Cartan matrix of SU(n). In addition, let us note for later reference

that for G = SU(3):

u(a1, a2) ≡ u2 = a1
2 + a2

2 − a1a2

v(a1, a2) ≡ u3 = a1a2(a1 − a2)

a1(u, v) ≡ e1(u, v) = ξ+ + ξ−

a2(u, v) ≡ −e2(u, v) = e−2πi/6ξ+ + e2πi/6ξ− , where

ξ±(u, v) ≡ 2−1/3 3

√
v ±

√
v2 − 4

27u
3 ,

(3.8)

and
Z1 ≡ Z(2,−1) = 2a1 − a2 = e1 − e3

Z2 ≡ Z(−1,2) = 2a2 − a1 = e3 − e2

Z3 ≡ Z(1,1) = a1 + a2 = e1 − e2 .

(3.9)

From the above we know that whenever ei = ej for some i and j, there are,

classically, extra massless non-abelian gauge bosons, since Zα = 0 for some root α.

For such backgrounds the effective action becomes singular. The classical moduli

space is thus given by the space of Weyl invariant deformations modulo such singular

regions: M0 = {uk}\Σ0. Here, Σ0 ≡ {uk : ∆0(uk) = 0} is the zero locus of the

“classical” discriminant

∆0(u) =
n∏

i<j

(ei(u) − ej(u))
2 ≡

∏

positive
roots α

(Zα)2(u) , (3.10)
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of the simple singularity (3.5). Specifically, one has up to normalization:
†

SU(2) : ∆0 = u

SU(3) : ∆0 = 4u3 − 27v2

SU(4) : ∆0 = 27 v4 − 4 u3 v2 + 16 u4w − 144 u v2w + 128 u2w2 + 256w3

(3.11)

We schematically depicted these singular loci ∆0(u) = 0 in Fig.3.

M0(SU(2)) M0(SU(3)) M0(SU(4))SU(2) SU(2)
SU(2)SU(3) SU(3) SU(4)

SU(2)
Fig.3: Singular loci Σ0 in the classical moduli spaces M0 of pure
SU(n) N =2 Yang-Mills theory. They are nothing but the bifurca-
tion sets of the type An−1 simple singularities, and reflect all possible
symmetry breaking patterns in a gauge invariant way (for SU(3) and
SU(4) we show only the real parts). The picture for SU(4) is known
in singularity theory as the “swallowtail”.

The discriminant loci Σ0 are generally given by intersecting hypersurfaces of

complex codimension one. On each such surface one has Zα = 0 for some pair of roots

±α, so that there is an unbroken SU(2), and the Weyl group action rα : Zα → −Zα

is singular. On intersections of these hypersurfaces one has, correspondingly, larger

unbroken gauge groups. All planes together intersect in just one point, namely in

the origin, where the gauge group SU(n) is fully restored. Thus, all possible classical

symmetry breaking patterns are encoded in the discriminants of WAn−1
(x, u).

Finally, note that for a general singularity with n variables, the discriminant locus

Σ0 coincides with what is called the level bifurcation set of a singularity W(xi, u),

because on it the level surface

Vu =
{
xi : W(xi, u) = 0, ||x|| ≤ ǫ

}
(3.12)

† We will often denote u2, u3, u4 by u, v, w.
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becomes singular [11]. More specifically, Vu becomes singular in that certain homology

cycles ν ∈ Hn−1(Vu,ZZ) shrink to zero. Such cycles ν are called vanishing cycles. For

the case at hand, the level surface determined by WAn−1
(x, u) = 0 is zero dimensional

and given by the set of points Vu = {ei, i = 1, . . . , n}. This space is singular if

any two of the ei(u) coincide, and indeed, the vanishing cycles are given by the

differences, νi,j = ei − ej , ie., by the central charges Zα. They generate the root

lattice: H0(Vu,ZZ) ∼= ΛR.

What we learn is that the classically massless non-abelian gauge bosons are di-

rectly related to vanishing cycles of level surfaces. This reflects an apparent general

property of BPS states and, as will be explained below, generalizes in particular to

massless magnetic monopoles and dyons in the exact quantum theory, where the

relevant “level” surfaces are given by special Riemann surfaces.

3.2. Classical and semi-classical monodromy∗

Since the map uk → ak is multi-valued and since uk are Weyl group invariant,

closed paths in M0 space will in general be closed in {ak}-space only up to Weyl

transformations. This means that the classical part of the monodromy group is given

by the corresponding Weyl group, which is a well-known fact in the theory of simple

singularities [11]. More precisely, the singular locus Σ0 has various branches that are

the images of the lines Zα = 0 in a-space, and encircling such a branch will induce

a classical monodromy given by a Weyl reflection corresponding to the root α. In

addition, we have monodromy acting on the dual magnetic variables,

aDi ≡ ∂

∂ai
F(a) , (3.13)

which is dual to the monodromy acting on the ai. Hence the total classical monodromy

is (
~aD

~a

)
−→ P (r) ·

(
~aD

~a

)
, where P (r) =

(
(r−1)t 0

0 r

)
, (3.14)

with r ∈ WG. Which specific Weyl transformation actually occurs depends of course

on the specific closed path in M0. It is clear that all possible classical monodromies

* While preparing the manuscript, we received the preprint [7] with results that overlap

with some results of this section.
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can be generated by loops associated with the fundamental Weyl reflections. These

have the following matrix representations:

ri = 11 − αi ⊗ λi , i = 1, ..., n− 1 , (3.15)

where αi, λi are the simple roots and fundamental weights in Dynkin basis.

In addition to the classical monodromy (3.14), there is a semi-classical contribu-

tion (“θ-shift”) from the logarithmic piece of the one-loop effective action. Specifi-

cally, the general formula for the one-loop correction to the gauge coupling constant is

δ( 1
g2 )αβ ∼ Tr(TαTβ log [m2(a)]), wherem2(a) is the vev-dependent mass matrix of the

non-abelian gauge bosons, and Tα denotes a generator in the adjoint representation.

From this one obtains the one-loop correction to the prepotential as follows:

F1 loop(a(u)) =
i

4π

∑

positive
roots α

(Zα)2 log [(Zα)2/Λ2] . (3.16)

The scale parameter Λ is arbitrary and reflects the breakdown of conformal invariance

at the quantum level. Note that the gauge coupling constant, τij = ∂ai
∂aj

F , blows

up logarithmically precisely when ∆0 = 0, ie., whenever there are massless charged

fields in the theory that lead to an IR divergence. Note also that even though F1 loop

is manifestly Weyl group invariant, it does not have a simple form in terms of the

Casimir variables uk.

The effect of F1 loop is to modify the classical monodromy by a perturbative quan-

tum piece. That is, the monodromy around a singular line in M0 that is the image of

some singular line Zα = 0 in weight space, will induce a 2πi phase contribution from

log (Zα)2 in ∂aF1 loop(a(u)). Though there exist in general more complicated paths,

it suffices [7] to consider the following “fundamental” monodromies that generate the

semi-classical monodromy group:

M (ri) = P (ri) · Tαi

−1 (3.17)

with theta-shifts given by
†

Tαi
=

(
11 αi ⊗ αi

0 11

)
. (3.18)

† Note that the off-diagonal terms can be modified at wish by a change of homology basis,

ie., aDi → aDi + hijaj . A different basis was used in the discussion of the semi-classical

monodromy in [3,10].
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For our discussion of the Picard-Fuchs equations, we will be particularly inter-

ested in the monodromy associated with a large loop (around “infinity”) in a given

ul-plane, the other uk being held fixed. Such a monodromy is given by a certain prod-

uct of the generators (3.17), depending on which sub-set of branches of Σ0 is actually

encircled by the large loop. Though the precise monodromy transformation depends

on the chosen basepoint u0, the conjugacy class of the Weyl transformation just de-

pends on the given ul-plane. That is, for large loops ul → e2πitul, where t ∈ [0, 1], the

classical Weyl monodromy is of order l. In particular, for large loops in the u2-plane,

the monodromy at infinity is given by a single Weyl reflection, while for large loops

in the top Casimir plane, un, the monodromy is given by a Coxeter element.

One can also consider monodromy induced by a rotation of the quantum scale Λ.

Indeed, as will be discussed later, one may view Λ as an additional coupling constant

that may be used to compactify the moduli space. A rotation Λ2n → e2πitΛ2n,

t ∈ [0, 1], induces a mere θ-shift, and from (3.16) and (3.7) one obtains the following

matrix representation:

T =

(
11 C
0 11

)
. (3.19)

This may be viewed as “pure” quantum monodromy. Note that from the point of

view of R-symmetry, only θ-shifts associated with T 2 are allowed.

To give an example, we have for G = SU(3) the following semi-classical mon-

odromies, corresponding the three singular lines in M0:

M (r1) =




−1 0 4 −2
1 1 −2 1
0 0 −1 1
0 0 0 1




M (r2) =




1 1 1 −2
0 −1 −2 4
0 0 1 0
0 0 1 −1




M (r3) ≡ M (r2)M (r1)(M (r2))−1 =




0 −1 1 4
−1 0 −2 1
0 0 0 −1
0 0 −1 0




(3.20)

These three singular lines correspond of course to the three ways of embedding

SU(2) →֒ SU(3), and indeed, the matrices appropriately contain the semi-classical
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monodromy in (2.4) of SU(2) Yang-Mills theory as sub-matrices. They are related

via conjugation by the Coxeter element

U =




−1 −1 1 −2
1 0 −2 1
0 0 0 −1
0 0 1 −1


 , U3 = 11 , (3.21)

which represents the global symmetry of ZZ3 rotations acting on u. Since all three

lines cut the v = const.-plane, but only two lines cut the u = const.-plane, we have

two different kinds of monodromies at “infinity”:

u− plane : M (r2)
∞,u ≡ M (r3)M (r2)M (r1) =




1 1 −3 0
0 −1 −6 6
0 0 1 0
0 0 1 −1




v − plane : M (rcox)
∞,v ≡ M (r1)M (r2) =




−1 −1 1 4
1 0 −2 1
0 0 0 −1
0 0 1 −1




(3.22)

(up to conjugation, depending on base point and offset of the chosen plane).

4. Quantum Yang-Mills Theory

4.1. Hyperelliptic curves and quantum moduli spaces

The issue is to construct auxiliary curves C whose moduli spaces give the supposed

quantum moduli spaces of SU(n) Yang-Mills theories. Such curves were found in [3,4]

and are given by:

C : y2 = p(x) =
(
WAn−1

(x, ui)
)2 − Λ2n ≡ (xn −

n∑

i=2

uix
n−i)2 − Λ2n . (4.1)

Since p(x) factors into WAn−1
±Λn, the situation is in some respect like two copies of

the classical theory, with the top Casimir un shifted by ±Λn. Specifically, the points

ei of the classical level surface split,

ei(uk) → e±i (uk,Λ) ≡ ei(u2, , ..., un−1, un ± Λn) , (4.2)
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and become the 2n branch points of the hyperelliptic curve (4.1). The curve can thus

be represented by the two-sheeted x-plane with cuts running between pairs e+i and e−i .

In addition, the “quantum” discriminant, whose zero locus ΣΛ gives the singularities

in the quantum moduli space MΛ, is easily seen to factorize as follows:

∆Λ(uk,Λ) ≡
∏

i<j

(e+i − e+j )2(e−i − e−j )2 = const.Λ2n2

δ+ δ− , where

δ±(uk,Λ) = ∆0(u2, ..., un−1, un ± Λn) ,

(4.3)

is the shifted classical discriminant (3.10). Thus, ΣΛ consists of two copies of Σ0,

shifted by ±Λn in the un direction. Obviously, for Λ → 0, the classical moduli space

is recovered: ΣΛ → Σ0. That is, when the quantum corrections are switched on, a

single isolated branch of Σ0 (associated with massless gauge bosons of a particular

SU(2) subgroup) splits into two branches of ΣΛ (describing massless Seiberg-Witten

monopoles related to this SU(2)).

Specifically, for G = SU(3) the curve is

y2 = p(x) = (x3 − ux− v)2 − Λ6 , (4.4)

and this leads to the following quantum discriminant:

∆Λ = Λ18(4u3 − 27(v + Λ3)2)(4u3 − 27(v − Λ3)2) . (4.5)

The corresponding singular locus ΣΛ of the quantum moduli space is depicted in Fig.4.

Explicit expressions for the branch points e±i (u, v,Λ) can easily be inferred from (3.8)

and (4.2).

The genus of the hyperelliptic curve C (4.1) is equal to g = n − 1, so that its

2n− 2 periods can naturally be associated with

~π ≡
(
~aD

~a

)
. (4.6)

More precisely, on such a curve there are n − 1 holomorphic differentials (abelian

differentials of the first kind) [12] ωn−i = xi−1 dx
y , i = 1, . . . , g, out of which one

can construct n − 1 sets of periods
∫

γj
ωi. (Here γj, j = 1, . . . , 2g, is any basis of

H1(Σg,Z).) All periods together can be combined in the (g, 2g)-dimensional period

matrix

Πij =

∫

γj

ωi . (4.7)
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45
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6u0

Fig.4: Quantum moduli space for G = SU(3) at real v. The six lines
are the singular loci where ∆Λ = 0 and where certain dyons become
massless. Asymptotically, for Λ → 0 the classical moduli space is
recovered. Each of the six pairs of outgoing lines represents a copy
of the SU(2) strong coupling singularities. The various markings of
the lines indicate how the association with particular monodromy
matrices changes when moving through the cusps, and u0 is the
basepoint that defines our monodromies.

If we chose a symplectic homology basis, i.e. αi = γi, βi = γg+i, i = 1, . . . , g, with

intersection pairing
†

(αi ∩ βi) = δij , (αi ∩ αj) = (βi ∩ βj) = 0, and if we write Π =

† We use the convention that a crossing between the cycles α, β counts positively to the in-

tersection (α ∩ β), if looking in the direction of the arrow of α the arrow of β points to the

right.
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(A,B), then τ ≡ A−1B is the metric on the quantum moduli space. By Riemann’s

second relation Imτ ≡ 8π2/g2
eff is positive, which is important for unitarity of the

effective N = 2 supersymmetric gauge theory.

The precise relation between the periods and the components of the section ~π is

given by:

Aij =

∫

αj

ωi =
∂

∂ui+1
aj

Bij =

∫

βj

ωi =
∂

∂ui+1
aDj

(4.8)

(where i, j = 1, . . . , n− 1). From the explicit expression (4.1) for the family of hyper-

elliptic curves, one immediately verifies that the integrability conditions ∂i+1Ajk =

∂j+1Aik, ∂i+1Bjk = ∂j+1Bik are satisfied. It also follows that τij ≡ ∂ai
∂aj

F(a). This

reflects the special geometry of the quantum moduli space, and implies that the com-

ponents of ~π can directly be expressed as integrals over a suitably chosen abelian

differential of the second kind λ:

aDi
=

∫

βi

λ , ai =

∫

αi

λ (4.9)

Indeed, one verifies that e.g.,

λ = const.
1

2πi

( ∂
∂x
WAn−1

(x, ui)
)x dx

y
(4.10)

does the job [4] (as well as the choice of λ given in [3]). The normalization is fixed by

matching ai to the Casimirs uk in the semi-classical limit (c.f. below).

In order to compute the exact quantum effective action F(A), one first needs

to determine the section ~π = (~aD,~a)
t in terms of the coordinates uk. One way to

do this would be to evaluate the integrals (4.9) explicitly. This was done in ref.

[5] to lowest order near the point in moduli space where there are massless dyons.

However, it is rather difficult to perform the period integrals explicitly or, at least, in

a series expansion to higher order. This would be needed for obtaining the instanton

corrections in the effective Lagrangian.

In fact, the integrals
∫

γi
ω, where ω is any abelian diffential of the second kind,

satisfy as functions of the moduli ui a system of partial differental equations, namely

the Picard-Fuchs equations. It turns out that it is relatively straightforward to derive

and solve these equations, and this will be discussed below in section 5. Note, though,

that this will not save us completely from having to evaluate some integrals, because

that will be necessary in order to identify the correct linear combinations of the

solutions. However, for this one needs to compute the integrals only to low order.

This is done in Appendix A, and will be used in section 6.
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4.2. BPS states, vanishing cycles and Picard-Lefshetz monodromy

We will now discuss how one can obtain the quantum numbers of the various

massless BPS dyons, as well as the associated strong coupling monodromies. The basic

point is to relate all quantum numbers and monodromy properties to properties of the

homology cycles ~α, ~β ∈ H1(Σg,ZZ), which are involved in the definition of the periods

~π (4.9). Specifically, we expect certain dyons to be massless on the various branches

of the singular locus ΣΛ in the quantum moduli space. On any such isolated branch,

the surface Σg becomes singular in that a particular homology cycle ν vanishes; for

a schematic sketch, see Fig.5. Now, any such cycle can be expanded in terms of the

basis cycles as follows:

ν = ~q · ~α+ ~g · ~β , qi, gi ∈ ZZ . (4.11)

Since this cycle vanishes, it immediately follows that

0 =

∫

ν

λ =
(
~q

∫

~α

+~g

∫

~β

)
λ

= ~q · ~a+ ~g · ~aD

≡ Z(~q,~g) .

(4.12)

Here, Z is the central charge that enters in the BPS mass formula: m2 = 2|Z|2.
This means that on the branch of the singular locus where some cycle ν as defined in

(4.11) vanishes, a dyon with (magnetic,electric) charges equal to ~ν = (~g, ~q) becomes

massless. Clearly, under a change of homology basis, the charges change as well, but

this is nothing but a duality rotation. What remains invariant is the intersection

number

νi ∩ νj = ~νt · Ω · ~ν = ~gi · ~qj − ~gj · ~qi ∈ ZZ , (4.13)

where

Ω =

(
0 11
−11 0

)
(4.14)

is the standard symplectic metric. Note that (4.13) represents the well-known Dirac-

Zwanziger quantization condition for the possible electric and magnetic charges. The

vanishing of the r.h.s. is required for two dyons to be local with respect to each

other and, in particular, to be able to condense simultaneously [13]. Thus, only

states that are related to non-intersecting vanishing cycles are mutually local, and

can be simultaneously represented by a local effective lagrangian. For example, since

monopoles are associated with β-cycles and the gauge bosons with (combinations of)

α-cycles, these fields can in general not be represented together in a local lagrangian.
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M� � = 0
Fig.5: On the singular locus ΣΛ, the level surface degenerates by
pinching of vanishing cycles ν. The coordinates of any such cycle
with respect to some symplectic basis of H1(C,ZZ) gives the electric
and magnetic quantum numbers of the corresponding massless dyon.

Note that according to (3.9), the electric charges are root lattice vectors in Dynkin

basis, ~q ∈ ΛR. In order for products ~qi~gj to make sense, it follows that ~g are vectors

in the dual, ie., simple root basis, such that ~q ~g ≡ qi〈λi, αj〉gj . The α-cycles can thus

be thought of as to generate the weight lattice and the β-cycles to generate the root

lattice, so that the period lattice can be interpreted as H1(C,ZZ) ∼= ΛW ⊕ τΛR. For

our particular curves (4.1), the α-cycles do not vanish anywhere in the moduli space,

so that the gauge bosons (or any other purely electrically charged states) are never

massless. This means that the Milnor lattice generated by the vanishing cycles is a

sub-lattice of the above period lattice.

If we like to represent both electric and magnetic charges in the same basis, then,

of course, the metric (4.14) changes. For example, we can take the electric charges in

the simple root basis as well, by conjugation with

W =

(
11 0
0 C

)
, (4.15)

where C is the Cartan matrix. In this basis, the semi-classical monodromies (3.17)

and intersection metric are

M
(ri)
W =

(
(r−1)t αi ⊗ λi

0 r

)
, ΩW =

(
0 C

−C 0

)
. (4.16)

− 21 −



This basis corresponds to the one which was used in the first paper of Seiberg and

Witten and is appropriate to the Γ(2) curve (2.11).

We now turn to the monodromies that arise when we loop around the various

branches of ΣΛ. We noted that there is a particular vanishing cycle ν associated with

any such branch. The monodromy action on any given cycle δ ∈ H1(Σg,ZZ) is very

simply determined in terms of this vanishing cycle, by means of the Picard-Lefshetz

formula [11]:

Mν : δ −→ δ − (δ ∩ ν) ν . (4.17)

From this one can find for a vanishing cycle of the form (4.11) the following mon-

odromy matrix [10],

M(g,q) =

(
11 + ~q ⊗ ~g ~q ⊗ ~q
−~g ⊗ ~g 11 − ~g ⊗ ~q

)
∈ Sp(2n− 2,ZZ) , (4.18)

which obeys (~g, ~q)M(g,q) = (~g, ~q). Under a change of basis, one has S−1MνS =

M~ν·S . Also observe that for νi ∩ νj = 0 the corresponding monodromies commute:

[Mνi
,Mνj

] = 0, as it should be for two mutually local states. The actual charges (~g, ~q)

of the SU(n) curves (4.1) will generically be given by root vectors in simple root and

Dynkin bases, respectively.

As far as the semi-classical monodromies are concerned, we already noted that

the α-cycles do not vanish anywhere in the quantum moduli space. However, we can

formally compactify the moduli space by considering Λ as an extra modulus, and study

monodromy around Λ = 0. For Λ → 0, the α-cycles vanish since: e+i → e−i = ei, and

the classical level surface Vu = {ei} is recovered. Under a 2π rotation of Λ2n (which

leaves the curve (4.1) invariant), e+i simply exchanges with e−i , if we take Λ sufficiently

small as compared to un. Accordingly, since the α-cycles correspond to the weights

of the fundamental representation of SU(n), the monodromy corresponding to this

simultaneous braid is ∏

fund. rep
weights λi

M(0,λi) = T

and thus we reproduce the quantum monodromy (3.19) directly from the curves (4.1).

The θ-shifts (3.18) associated with the classical monodromies are similarly given by

Tαi
= M(0,αi).

Note that the Picard-Lefshetz formula (4.17) directly expresses the correct loga-

rithmic monodromy property of the corresponding β-function, and thus automatically
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guarantees a consistent physical picture. That is, near the vanishing of some ν = ~ν ·~γ
(where ~γ ≡ (~β, ~α)), the monodromy shift of the gauge coupling, when expressed in

suitable local variables, is

∆τij = −(γ∗i ∩ ν) ∂

∂πj

∫

ν

λ ≡ −
∑

νk (γ∗i ∩ γk)
∂

∂πj
Zν = −νi νj (4.19)

where Zν ≡ ~ν·~π and γ∗ is the cycle dual to γ. This is indeed the monodromy associated

with the corresponding one-loop effective action near the singular line Σ
(ν)
Λ :

Fν =
1

4πi
Zν

2 log
[Zν

Λ

]
.

4.3. Strong coupling monodromies and dyon charge spectrum for G = SU(3)

We now consider G = SU(3) in some more detail, extending our previous work

discussed in [3,10]. We first need to fix some symplectic basis for the homology cycles.

It turns out that a convenient basis is the one depicted in Fig.6, since it will directly

reproduce the semi-classical monodromies and is adapted to the vanishing cycles.

�1 �2
e+1e�1

e�2e+2 e+3e�3
�2�1

Fig.6: The genus two curve for G = SU(3) is represented as
branched x-plane with cuts linking pairs of roots (4.2) of p(x) = 0.
The locations of the cuts refer to u = 0, Im v = 0, Re v > 1. We
depicted our choice of homology basis that is adapted to the vanish-
ing β-cycles. The cycles αi can be associated with the fundamental
weights, and βi with the simple roots.
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We now consider the monodromies generated by loops around the six singular

lines in the quantum moduli space Fig.4. With reference to results by Zariski and

van Kampen (c.f., [14] and references therein) it suffices to study loops in a generic

complex line through the base point. Across cusps and nodes the monodromies are

related through the “van Kampen relations”. Specifically, we fix a plane in MΛ at

Re(v) = const > Λ3, Im(v) = 0, as well as a base point u0, and consider a family

of loops as given in figure Fig.7. By carefully tracing the effects of loops in moduli

space on the motions of the branch points in the x-plane, we find the corresponding

vanishing cycles to be as depicted in Fig.8.


1 
2 
3
4
5
6u0 r1
r2r3

Fig.7: Loops γi in the u-plane at Re(v) = const > Λ3, Im(v) = 0,
starting from the base point u0 (cf., Fig.4). The composite loops ri

give the semi-classical monodromies (3.20).

According to what we said above, the quantum numbers of the dyons that become

massless at the various singular lines in moduli space can be directly obtained from

Fig.8, by comparing the vanishing cycles with the basis cycles in Fig.6. Our basis is

such that the massless excitations at u = ( 27
4

)1/3Λ2 are pure monopoles with charges

(~g, ~q) equal to (1, 0, 0, 0), and (0, 1, 0, 0), respectively. (For G = SU(n) one can always

choose a basis for the β-cycles so as to have n − 1 massless monopoles with unit

charges at a given node of n− 1 intersecting singular lines.)
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Fig.8: Vanishing cycles νi in the x-plane, associated with the loops
γi in Fig.7. We have depicted here only the paths on the upper sheet,
and not the return paths on the lower sheet.

The quantum numbers of the other massless dyons then simply follow from the

global ZZ3 symmetry U (3.21). More precisely, the charges νi ≡ (~gi, ~qi) and mon-

odromies associated with all the six singular lines in MΛ are given by matrices (4.18)

with

Mν1
= M(1,0,−2,1) ≡




−1 0 4 −2
1 1 −2 1
−1 0 3 −1
0 0 0 1




Mν2
= M(1,0,0,0) ≡




1 0 0 0
0 1 0 0
−1 0 1 0
0 0 0 1




Mν3
= M(0,1,0,0) ≡




1 0 0 0
0 1 0 0
0 0 1 0
0 −1 0 1



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Mν4
= M(0,1,−1,2) ≡




1 −1 1 −2
0 3 −2 4
0 0 1 0
0 −1 1 −1




Mν5
= M(−1,−1,2,−1) ≡




−1 −2 4 −2
1 2 −2 1
−1 −1 3 −1
−1 −1 2 0




Mν6
= M(−1,−1,1,−2) ≡




0 −1 1 −2
2 3 −2 4
−1 −1 2 −2
−1 −1 1 −1


 .

(4.20)

They form indeed two orbits under conjugation by U , and even form a single orbit

under

A =




−1 −1 2 −1
0 1 −1 2
−1 −1 1 −1
0 −1 0 −1


 ≡ U−1V −1 , (4.21)

with A2 = U and A6 = U3 = V 2 = 11. These global R-symmetries act simultaneously

on the moduli space in Fig.4 and on the vanishing cycles in Fig.8. That is, U rotates

the moduli space by e2πi/3 and V represents v → −v. In fact, A is the generalization

of the global ZZ4 symmetry of G = SU(2) [1]. Note that these matrices do not belong

to the monodromy group.

From (4.20) we see that the magnetic and electric quantum numbers of the mass-

less dyons are indeed given by root vectors (in simple root and Dynkin bases, re-

spectively). This is in accordance with semi-classical stability [15]. Though the above

quantum numbers can formally be changed via monodromy to other points in the root

lattices, one expects [1,5] dyons with higher charges to become unstable when crossing

lines of marginal stability. Nevertheless, from a group theoretical point of view, the

possible charges are given by root lattices, and this mirrors the special properties of

the lattice generated by the vanishing cycles of the curve (4.4). One may also perform

a basis change via conjugation with W (4.15), under which Mνi
remain integral. The

matrices then contain as sub-matrices the SU(2) strong coupling monodromies in the

basis of [1], which are the monodromies of the isogenous SU(2) curve (2.11). This

suggests that there might be a similar isogenous curve for G = SU(3), or even all

SU(n).
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It has been observed [4]that the charge vectors of each pair of lines that intersect

in the nodes at v = 0 satisfy ~νt
i Ω ~νj = 0, since the cycles do not intersect (these

pairs are given by (~ν1, ~ν6), (~ν2, ~ν3) and (~ν4, ~ν5)). Thus, at any of the three nodes, two

mutually local dyons become massless and both dual U(1)’s are weakly coupled. We

will find below in section 6.2 that the exact beta function of the effective dual theory

indeed reflects two massless monopole hypermultiplets. On the other hand, near the

cusps at u = 0, v = ±Λ3, three dyons become massless simultaneously, though they

are not local with respect to each other. The effective theory near these regions has

recently been discussed in [8].

The strong coupling monodromies (4.20) contain, as expected, the strong coupling

monodromies (2.4) of G = SU(2) embedded as sub-matrices. Also, the monodromies

of the three pairs of lines that go out to v → +∞ reproduce precisely the SU(3)

semi-classical monodromies (3.20):

Mν2
·Mν1

= M (r1)

Mν4
·Mν3

= M (r2)

Mν6
·Mν5

= M (r3) ,

(4.22)

(c.f., Fig.7) and thus: Mν2
Mν1

Mν6
Mν5

Mν4
Mν3

= M
(r3)
∞,u. (For the three pairs that

go out v → −∞ the same is true up to a change of basis). Note that this semi-

classical monodromy is defined by a loop around infinity in the u-plane located at

Im v = 0, Re v > 1, as shown in Fig.4. For the same loop in a u-plane located

at −1 < Re v < 1, the monodromy is different because some of the singular lines

interchange at the cusp at Re v = 1. This monodromy is given by

M̃ (r3)
∞,u = Mν6

Mν1
Mν4

Mν5
Mν2

Mν3
=




0 5 −3 6
−1 −3 6 −3
0 −1 0 −1
1 3 −7 3


 . (4.23)

5. Picard-Fuchs Equations for G = SU(3)

5.1. Derivation

Starting from the SU(3) curve (4.4), we will first derive the system of equations

for the periods
∫

γi
w = ∂vπ. Subsequently, we will obtain the system for ∂u~π as well

as directly for ~π = (~aD,~a)
t itself.
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There is a systematic, though tedious way to set up the Picard-Fuchs equations,

by considering derivatives of ω2 = dx
y

≡ dx√
p(x)

with respect to u and v. These

produce terms of the form φ(x)
yn for some polynomials φ(x). The idea is to reduce the

order of φ(x), to integrate by parts and re-express the result in terms of the abelian

differentials. For this, we will use the fact that the discriminant (4.5) can always be

written in the form [16]

∆ = a(x)p(x) + b(x)p′(x) (5.1)

where, for the SU(3) curve, a and b are polynomials of order four and five, respectively.

These polynomials are straightforwardly determined to be

a(x) =
4∑

i=0

aix
i , b(x) =

5∑

i=0

bix
i

with
a0 = −729Λ6 + 216u3 − 16u6 + 729v2 + 108u3v2

a1 = 9uv(−135Λ6 − 4u3 + 27v2)

a2 = 18u2(−27Λ6 + 4u3 − 27v2)

a3 = 27v(27Λ6 + 4u3 − 27v2)

a4 = 18u(27Λ6 − 4u3 + 27v2)

(5.2)

and
b0 = 2u2v(−81Λ6 + 4u3 − 27v2)

b1 = (−27Λ6 + 4u3 − 27v2)(−9Λ6 + 4u3 + 9v2)/2

b2 = 3uv(243Λ6 + 4u3 − 27v2)/2

b3 = 5u2(27Λ6 − 4u3 + 27v2)

b4 = 9v(−27Λ6 − 4u3 + 27v2)/2

b5 = −3u(27Λ6 − 4u3 + 27v2)

We can thus write under the integral sign:

φ(x)

yn
=

1

∆

aφ+ 2
n−2

(bφ)′

yn−2
. (5.3)

If the order of the polynomial in the numerator is equal to or exceeding the power of

p′(x), we can reduce it by expressing the highest power in terms of p or p′ and lower

powers and integrating by parts. This procedure allows one, after some work, to find
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a set of two second order differential equations that are satisfied by the periods ∂v~π:

L̃i(∂v~π) = 0 with

L̃1 = (27Λ6 − 4u3 − 27v2)∂2
u − 12u2v∂u∂v − 12u2∂u − 21uv∂v − 4u

L̃2 = (27Λ6 − 4u3 − 27v2)∂2
v − 36uv∂u∂v − 36u∂u − 63v∂v − 12

(5.4)

Note that these equations imply (u∂2
v − 3∂2

u)∂v~π = 0, which can also be verified

directly. In fact, (u∂2
v − 3∂2

u) 1
y

= ∂x
WA2

y3 . If we introduce the gauge and Z12 invariant

dimensionless moduli α = 4u3

27Λ6 , β = v2

Λ6 , the Picard-Fuchs equations take the form

L̃1 = α(1 − α)∂2
α − β2∂2

β − 2αβ∂α∂β +
1

3
(2 − 5α)∂α − 5

3
β∂β − 1

9

L̃2 = β(1 − β)∂2
β − α2∂2

α − 2αβ∂α∂β + (
1

2
− 5

3
β)∂β − 5

3
α∂α − 1

9
.

(5.5)

Expressed in terms of the logarithmic derivatives θα = α∂α, θβ = β∂β , the two

differential operators become

L̃1 = θα(θα + c− 1) − α(θα + θβ + a)(θα + θβ + b)

L̃2 = θβ(θβ + c′ − 1) − β(θα + θβ + a)(θα + θβ + b) ,
(5.6)

with a = b = 1
3
, c = 2

3
, c′ = 1

2
. The system (5.6) is in fact the generalized hypergeo-

metric system F4(a, b; c, c
′;α, β) of Appell [17,18]. Unfortunately, not much appears

to be known in the literature about analytic continuation and non-trivial transforma-

tions of its solutions, especially for the present special values of (a, b; c, c′), so that we

have to work out the solutions ourselves.

If we write the differential equations (5.5) in the form L̃i∂v~π = 0, we can pull the

partial derivative operator through to get ∂vLi~π = 0 with

L1 = (27Λ6 − 4u3 − 27v2)∂2
u − 12u2v∂u∂v − 3uv∂v − u

L2 = (27Λ6 − 4u3 − 27v2)∂2
v − 36uv∂u∂v − 9v∂v − 3

(5.7)

and also (u∂2
v − 3∂2

u)~π = 0. When we express this in terms of the variables α, β, we

find that this system (that is satisfied directly by the sections aDi
, ai) is equivalent to

an Appell system of type F4(
1
6
, 1

6
; 1

3
, 1

2
;α, β). Similarly, we can find the Picard-Fuchs

operators also for the periods ∂u~π; they constitute the system

In order to solve the Picard-Fuchs equations, note that they are always Fuchsian

[19,18] and thus have only regular singularities. These can be described as follows [18].

− 29 −



Denote the linear partial differential operators of degree m, defined in a neighborhood

U of a point z of the g dimensional moduli space M by Li =
∑

|p|≤m ap
1(z)

(
d
dz

)p

where we have used the notation
(

d
dz

)p
=
∏g

j=1
∂

∂zj

pj
. They define a left ideal I

in the ring of partial differential operators on U . We now introduce the symbol

of Li: σ(Li) =
∑

|p|=m ap
i (z)ξ

p1

1 · · · ξpg
g , where ξ1, . . . , ξg is a coordinate system in

the fiber of the cotangent bundle T ∗U at z. The ideal of symbols is defined by

σ(I) = {σ(L)|L ∈ I}. The singular locus is then ∆(I) = π(Ch(I) − U × {0}),
where the characteristic variety Ch(I) is the subvariety in T ∗U specified by the ideal

of symbols, and π is the projection along the fiber of T ∗U . The fact that σ(I) is

generated by σ(Li) is a special property of Picard-Fuchs systems, and this is not the

case, for example, for the Appell system F1.

Let us now find the singular locus of the general system F4(a, b; c, c
′;α, β) (5.6),

for which the symbols turn out to be independent of the parameters (a, b, c, c′):

σ1 = α2ξ2α − α(αξα + βξβ)2

σ2 = β2ξ2β − β(αξα + βξβ)2
. (5.8)

It is straightforward to find the discriminant to be ∆(I) : αβ(1 + α2 + β2 − 2(αβ +

α + β)) = 0. This coincides, up to the factor αβ, with the quantum discriminant

∆Λ (4.5) of the SU(3) curve (note that if we had computed the singular locus of the

Picard-Fuchs equations in the form (5.4), we would have gotten the discriminant given

in eq.(4.5) only when taking also into account the vanishing of (u∂2
v − 3∂2

u)∂v~π). The

additional lines α = 0 and β = 0 are due to the change of variables (u, v) → (α, β).

The formalism described in this section applies to every hyperelliptic curve and

can be used to obtain the Picard-Fuchs equations for all SU(n). Let us point out here

some features of the Picard-Fuchs system, which are due to the special symmetries of

our curves and hold for all SU(n). We start by characterizing differential operators,

which are pure second order in the derivatives. These are given by

LSU(n)
p,q,r,s = ∂up

∂uq
− ∂ur

∂us
, with p+ q = r + s

LSU(n)
0 =

n−2∑

k=1

kun−k∂un
∂un−k+1

− n∂u2
∂un−1

, for n > 2
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and follow directly from LSU(n)
p,q,r,s

(
1
y

)
= 0 and LSU(n)

0

(
1
y

)
= ∂x∂un

(
1
y

)
. In general,

exact forms of the type ∂x

(
xrWAn−1

y3

)
lead to differential operators involving first and

second order derivatives, namely

LSU(n)
r =

n−2∑

k=1

kun−k∂un−r+1
∂un−k

− n∂un−r−1
∂u2

+ r∂un+1−r
for r < n− 2 .

For instance, for SU(3) the complete system of PF-operators is given by LSU(3)
0 =

u∂2
v − 3∂2

u and any one of the operators from (5.4). Similarly, for SU(4) the complete

system consists of LSU(4)
2,4,3,3, L

SU(4)
0 , LSU(4)

1 and

L = (64u2w2 − 32uv2w + 9v4 − 64u2)∂2
w + 4v(12u3 − 9v2 + 32uw)∂u∂v+

8u(2u3 + 9v2 + 16uw)∂2
u + 2u(64uw − 9v2)∂w + 108u2v∂v + 64u3∂u36u2,

where we set Λ = 1. Completeness can be checked by calculating the rank of the linear

system of symbols. For generic values of the moduli the rank has to be maximal, while

the rank drops precisely at the principal locus (all ξi 6= 0) of the discriminant.

5.2. Solutions in the semi-classical regime

We will be particularly interested in solving the Picard-Fuchs equations in the

semi-classical regime, to which we so far, somewhat vaguely, referred to as “infinity”

in the moduli space MΛ. We now like to make precise what we mean by this, by

compactifying the moduli space (α, β) ∈ C
2 to IP2, by adding a line γ = 0 at infinity

(where γ ≡ 27Λ6). This makes contact with our discussion of the semi-classical

monodromy around Λ = 0 in section 3.2. In terms of homogeneous coordinates

(α : β : γ) ∈ IP2, we get for the discriminant

∆(I) = αβγ(α2 + β2 + γ2 − 2(αβ + βγ + αγ)) . (5.9)

We have thus three singular lines which intersect with each other in three points Pi,

as well with the discriminant locus ΣΛ in three points Qi. We have sketched the

singular locus of the system F4 in Fig.9.
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Fig.9: The singular locus Σ(I) of the system F4 for the compactifica-
tion of the (α, β)-plane to IP2, with α = 4u3, β = 27v2 and γ = 27Λ6.
The semi-classical regions correspond to the neighborhoods of P2 and
P3, and the magnetic dual semi-classical region to Q1. A full set of
two power series and two logarithmic solutions can be found only in
these regions. The cusp point is mapped to Q2, where the theory is
badly behaved, and Q3 represents the intersection of the six singular
lines with infinity; at the origin, P1, nothing special happens.

We can cover IP2 with three coordinate patches (centered on the points Pi), and

in each such patch there is a set of preferred inhomogeneous coordinates, ie.,

P1 : (
α

γ
:
β

γ
: 1) ≡ (x1 : y1 : 1)

P2 : (
α

β
: 1 :

γ

β
) ≡ (x2 : 1 : y2)

P3 : (1 :
β

α
:
γ

α
) ≡ (1 : x3 : y3) .

(5.10)

We thus have two natural coordinate patches corresponding to semi-classical “infinity”

in the moduli space, one roughly given by large u, the other one by large v, just as

mentioned in section 3.2.

So far we have written the Picard-Fuchs equations in terms of the coordinates

appropriate for P1. In the more interesting two patches at infinity, the Picard-Fuchs
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equations are (θi = xi∂xi
, θ′i = yi∂yi

):

P2 : L1 = y2θ2(θ2 + c− 1) − x2(θ
′
2 − a)(θ′2 − b)

L2 = y2(θ2 + θ′2)(θ2 + θ′2 − c′ + 1) − (θ′2 − a)(θ′2 − b)

P3 : L1 = y3(θ3 + θ′3)(θ3 + θ′3 − c+ 1) − (θ′3 − a)(θ′3 − b)

L2 = y3θ3(θ3 + c′ − 1) − x3(θ
′
3 − a)(θ′3 − b)

(5.11)

with (a, b, c, c′) = (−1
6
,−1

6
, 2

3
, 1

2
). Note that for these equations we have a = b and

1−c, 1−c′, a all distinct and no pair differing by integers. Thus, we can expect them

to be solved by power and logarithmic series ansätze around the origin in each patch:

ωPi
i (xi, yi) =

∑

n,m≥0

ci(n,m)xn+s
i ym+t

i (5.12)

We find the following solutions to the indicial equations:

P1 : (s, t) = (0, 0), (0, 1− c′), (1 − c, 0), (1 − c, 1 − c′)

P2 : (s, t) = (0, a), (0, b), (1 − c, a), (1 − c, b)

P3 : (s, t) = (0, a), (0, b), (1 − c′, a), (1 − c′, b)

(5.13)

With this it is possible to solve the recursion relations for the coefficients ci(n,m) in

(5.12). The solutions in the patch P1 are simply given by four power series, which is

not very interesting. On the other hand, for each of the two semi-classical patches at

infinity, we find two series and two logarithmic solutions, and this is precisely what

one expects on physical grounds.

More precisely, for the power series solutions in the patches at infinity one finds

(we have set a = b but have left a, c, c′ arbitrary and normalized c
(s,t)
i (0, 0) = 1)

P2 : c
(0,a)
2 (n,m) =

(a)n+m (a+ 1 − c′)n+m

(1)n(1)2m(c)n

c
(1−c,a)
2 (n,m) =

(a+ 1 − c)n+m (a+ 2 − c− c′)n+m

(1)n(1)2m(2 − c)n

P3 : c
(0,a)
2 (n,m) =

(a)n+m (a+ 1 − c)n+m

(1)n(1)2m(c′)n

c
(1−c′,a)
2 (n,m) =

(a+ 1 − c′)n+m (a+ 2 − c− c′)n+m

(1)n(1)2m(2 − c′)n
.

(5.14)
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In addition to the above power series solutions, we find logarithmic solutions of

the form

(2πi)ΩPi(xi, yi) =
∑

n,m≥0

di(n,m)xn+s
i ym+t

i + log yi

{ ∑

n,m=≥0

ci(n,m)xn+s
i ym+t

i

}

(5.15)

One verifies that

di(n,m) =
∂

∂ρ
ci(n,m, ρ)|ρ=0

where

c2(n,m, ρ) =
(s+ t+ ρ)n+m(s+ t+ ρ+ 1 − c′)n+m

(1)n(1 + ρ)2m(c+ 2s)n

c3(n,m, ρ) =
(s+ t+ ρ)n+m(s+ t+ ρ+ 1 − c)n+m

(1)n(1 + ρ)2m(c′ + 2s)n
.

With the definition ψ(x) = Γ′(x)/Γ(x) we can write

d2(n,m) = c2(n,m)
{
2ψ(1) − 2ψ(m+ 1) + ψ(n+m+ s+ t) − ψ(s+ t)

+ ψ(n+m+ s+ t+ 1 − c′) − ψ(s+ t+ 1 − c′)
}

d3(n,m) = c3(n,m)
{
2ψ(1) − 2ψ(m+ 1) + ψ(n+m+ s+ t) − ψ(s+ t)

+ ψ(n+m+ s+ t+ 1 − c) − ψ(s+ t+ 1 − c)
}
,

where we have chosen the normalization d(0, 0) = 0.

(5.16)

5.3. Solutions in the magnetic dual semi-classical regime Q1

On the discriminant locus, only the patch Q1 has an easy physics interpretation

in that we can find two series and two logarithmic solutions. This reflects the fact that

on ΣΛ, only near Q1 the theory is weakly coupled, in suitable dual local variables.

The tricky point is to find good variables for which we really do have two series and

two logarithmic solutions. We find that

δ± = (1 − α+ β ± 2
√
β) =

3∏

i<j

(e±i − e±j )2 (5.17)
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(α = 4u3

27Λ6 , β = v2

Λ6 ) are suitable variables, since they vanish precisely on the dis-

criminant (cf., (4.3)), and also incorporate all three intersection points simulta-

neously. In terms of these variables, the Picard-Fuchs operators for the system

F4(−1
6 ,−1

6 ; 2
3 ,

1
2 ;α, β) become:

L1 =
{1

2
δ−(2−δ−−δ+)

∂2

∂2
δ−

+
1

2
(2−δ−−δ+) δ+

∂2

∂2
δ+

− 1

24
(9δ−+7δ+)

∂

∂δ−

− 1

24
(7δ−+9δ+)

∂

∂δ+

+
1

4

(
4δ−−δ−2+4δ+−6δ−δ+−δ+2

) ∂2

∂δ+
∂δ−

− 1

36

}

L2 =
{1

2
δ−(4−δ−−δ+)

∂2

∂2
δ−

+
1

2
(4−δ−−δ+) δ+

∂2

∂2
δ+

+
1

24
(28−9δ−−7δ+)

∂

∂δ−

+
1

24
(28−7δ−−9δ+)

∂

∂δ+

+
1

4

(
8δ−− 16−δ−2+8δ+−6δ−δ+−δ+2

) ∂2

∂δ+
∂δ−

− 1

36

}

(5.18)

The solutions have the general form (5.12),(5.15); though we did not succeed to obtain

them in a closed form, say in terms of F4 functions, we can easily compute them up

to arbitrary order. Specifically, the first terms are:

ωQ1

1 = δ+

{
1 +

1

18
δ++

25

3888
δ+

2 +
7

24
δ−+

377

3456
δ+δ−+

25289

746496
δ+

2 δ−+ ...
}

ΩQ1

1 = ωQ1

1 log δ+ +
{

36 + δ+

+
5

36
δ+

2 − 1

48
δ−

2 +
13

24
δ+δ−+

1609

6912
δ+

2 δ−+ ...
}
.

(5.19)

The remaining solutions, ωQ1

2 and ΩQ1

2 , are given by exchanging δ+ with δ− in (5.19).

Finally, as far as the solutions near the cusp points are concerned, we face the

problem of finding appropriate variables near Q2. We tried various compactifications

of the moduli space, but could only find two series solutions. Actually, the non-

local physics in these regions suggests that one cannot find there two series plus two

logarithmic solutions, and thus a sensible prepotential F , at all.

6. The exact quantum low energy effective action for G = SU(3)

6.1. Semi-classical regime

Let us write and normalize the solutions (5.14), (5.16) of the Appell system
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F4(−1
6 ,−1

6 ,
2
3 ,

1
2 ) in the patch P3 as follows:

( 1√
3Λ

)
ωP3

1 = 22/3y
−1/6
3 F4(−

1

6
,
1

6
,
1

2
, 1; x3, y3)

∼ 22/3y3
−1/6

(
1 − 1

36
y3 + ...

)

( 1√
3Λ

)
ωP3

2 =
1

3
√

3
22/3√x3y3

− 1
6F4(

1

3
,
2

3
,
3

2
, 1; x3, y3)

∼ 1

3
√

3
22/3√x3y3

−1/6
(
1 +

4

27
x3 + ...

)

(6.1)

and

( 1√
3Λ

)
ΩP3

1 = (−1)−1/622/312
√

3π
Γ(1/3)

Γ(1/6)2
F4(−

1

6
,−1

6
,
1

2
,
2

3
;
x3

y3
,

1

y3
)

+
(
(i−

√
3)π + 4 log 2 + 3 log 3 − 5

)
ωP3

1

∼ 22/3y3
−1/6

(
1 +

1

36
y3 + ...

)
+ ωP3

1 log y3

( 1√
3Λ

)
ΩP3

2 = (−1)4/32−1/3 1

3π

√
x3

y3
Γ(1/3)2F4(

1

3
,
1

3
,
3

2
,
2

3
;
x3

y3
,

1

y3
)

+
(
1 + (i+

1√
3
)π + 3 log 3

)
ωP3

2

∼ 1

3
√

3
22/3y3

−1/6√x3

(
1 +

22

27
x3 + ...

)
+ ωP3

2 log y3 ,

where x3 ≡ 27v2

4u3 and y3 ≡ 27Λ6

4u3 . Here, we introduced the Appell function F4, which

is defined in terms of a generalized Gaussian sum [17]:

F4(a, b; c, c
′; x, y) =

∑

n,m≥0

(a)n+m(b)n+m

(1)n(1)m(c)n(c′)m
xnym . (6.2)

This sum converges only for |√x| + |√y| < 1. For values outside this region, one

can define F4 by suitable analytic continuation. Unfortunately, formulas for analytic

continuation and transformations of F4 do not seem to be thoroughly discussed in the

literature. However, for some purposes we can use the formula

F4(a, b; c, c
′; x, y) =

∞∑

k=0

(a)m(b)m

(c)m(1)m
2F1(a+m, b+m, c′; y) xm (6.3)
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to analytically continue to arbitrary y, when x is sufficiently small. (There exists a

similar formula given by exchanging x with y and c with c′ in (6.3)).

Matching asymptotically a1, a2 to the Casimirs u, v (which fixes the normalization

of λ), we then obtain the following identification (up to Weyl conjugation) between ~π

and the solutions of F4:

aD1 = − i

4π
(ΩP3

1 + 3ΩP3
2 ) − 1

π
(α1ω

P3
1 − α2ω

P3
2 )

∼ − 1

π
(
i

2
+ 2α1)

√
u− 1

π

(3
4
i− α2

) v
u
− i

2π

(√
u+

3

2

v

u

)
log
[27Λ6

4u3

]
+ ...

aD2 = − i

4π
(ΩP3

1 − 3ΩP3
2 ) − 1

π
(α1ω

P3
1 + α2ω

P3
2 )

∼ − 1

π
(
i

2
+ 2α1)

√
u+

1

π

(3
4
i− α2

) v
u
− i

2π

(√
u− 3

2

v

u

)
log
[27Λ6

4u3

]
+ ...

a1 =
1

2
ωP3

1 +
1

2
ωP3

2 ∼
√
u+

1

2

v

u
+ ...

a2 =
1

2
ωP3

1 − 1

2
ωP3

2 ∼
√
u− 1

2

v

u
+ ...

(6.4)

Here, α1, α2 are parameters that cannot determined by the Picard-Fuchs equations.

Their values can only be found by comparison with the asymptotic expansion of the

period integrals. This is done in Appendix A with the result: α1 = 5
4 i−i log 2− 3

4 i log 3,

α2 = 3
4 i + 9

4 i log 3. For a loop around u = ∞, (6.4) indeed gives back precisely the

semi-classical monodromy M
(r3)
∞,u in (3.22).

We can treat the semi-classical coordinate patch P2 in a similar way, and find

that for a loop around v = ∞ the semi-classical Coxeter monodromy M
(rcox)
∞,v in (3.22)

is reproduced.

To obtain the prepotential F , we need to invert the series ai(u, v), ensuring good

convergence in terms of the Cartan sub-algebra variables a1, a2. We can start with

either patch P2 or P3, but we will choose P3 for convenience. Since in the patch P3 the

classical Casimir u0 ≡ a1
2 +a2

2−a1a2 is large and v0 ≡ a1a2(a1−a2) is small, we can

expand, for example, around (a2/a1), (
√

3Λ/a1) ∼ 0. Note that we have, essentially,

a double expansion in one dimensionful and one dimensionless parameter. Though

− 37 −



the inversion of the double infinite series ai(u, v) in (6.4) in a closed form appears is

quite hard, we can explicitly compute the quantum corrected Casimirs

u(a1, a2) = u0(a1, a2) + 27Λ6
{ 1

72 a1
4

+
a2

36 a1
5

+
31 a2

2

288 a1
6

+ . . .
}

+ O(Λ12,
a2

a1
)

v(a1, a2) = v0(a1, a2) − 27Λ6
{ a2

24 a1
4

+
a2

2

12 a1
5

+
9 a2

3

32 a1
6

+ . . .
}

+ O(Λ12,
a2

a1
)

(6.5)

to any given order. Inserting this into aD1(u, v), aD2(u, v) and integrating
∫
aDi dai,

we obtain the prepotential in the form

F(a1, a2) =
i

2π
6u0

(
log
[ a1√

3Λ

]
−

∞∑

k=0

F6k(a1, a2) Λ6k
)
. (6.6)

We find that the logarithmic term together with F0 gives indeed precisely the small-

(a2/a1)-expansion of the semi-classical prepotential (3.16), ie.,

i

2π
6u0

(
log
[ a1√

3 Λ

]
−F0(a1, a2)

)
=

1

6

( 3∑

i=1

Zi
2
)
τ0 +

i

4π

3∑

i=1

Zi
2 log [Zi

2/Λ2] , (6.7)

where Zi = Zi(a1, a2) are the classical central charges (3.9), and where

τ0 =
i

2π

(
log
[ 4

27

]
− 9
)

≡ θ0
π

+
8πi

g02
(6.8)

is the “bare” coupling constant. It is a priori defined up to even integers, which

is a reflection of the quantum monodromy T 2 (3.19) induced by 2π rotations of Λ3

(actually, since the curve (4.4) is unchanged even under 2π rotations of Λ6, we have an

ambiguity in τ0 up to adding integers.) Of course, other semi-classical monodromies

may induce additional integral matrix shifts for the θ-angle.

In fact, τ0 can be tuned to an arbitrary complex number by appropriately rescal-

ing Λ. This is why we took some effort to obtain this coupling (by evaluating the

integrals in order to fix all undetermined parameters in (6.4)), since its imaginary

part needs to be fixed if one eventually wants to relate the present quantum scale Λ

(defined by the curve (4.4)) to the scale used in some other physical computation.

We see from (6.7) that by writing F in terms of the variables Z, we effectively sum

up the series in the dimensionless variable (a2/a1). The remaining series in (
√

3Λ/a1)
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can then be interpreted in terms of non-perturbative quantum corrections. In total,

we find for the asymptotic Λ-expansion of the exact quantum prepotential:

F(a1, a2) = Fclass(a1, a2) + F1 loop(a1, a2) + Fnon pert(a1, a2) , (6.9)

with

Fclass =
1

2
τ0 (~at · C · ~a)

F1 loop(a1, a2) =
i

4π

3∑

i=1

Zi
2 log [Zi

2/Λ2]

Fnon pert = − i

2π

( 3∑

i=1

Zi
2
) ∞∑

k=1

F6k(Z)Λ6k .

(6.10)

The leading “instanton coefficients” are given in terms of symmetric Laurent polyno-

mials in the Zi as follows:
†

F6(Z) =
1

4

1

Z1
2Z2

2Z3
2 ≡ 1

4

1

∆0

F12(Z) = − 1

26

[
57

1

Z1
4Z2

4Z3
4 − 5

( 1

Z1
6Z2

6 + cycl.
)]

≡ 3

25

1

∆0
3 (17u0

3 + 189v0
2)

F18(Z) = − 3

47 26

[
1265

( 1

Z1
8Z2

10 +
1

Z1
10Z2

8 + cycl.
)

− 1492
( 1

Z1
6Z2

12 +
1

Z1
12Z2

6 + cycl.
)

+ 746
( 1

Z1
4Z2

14 +
1

Z1
14Z2

4 + cycl.
)

− 1492
( 1

Z1
2Z2

2Z3
14 + cycl.

)
− 76701

1

Z1
6Z2

6Z3
6

]

≡ 9

25

1

∆0
5

(
3080u0

6 + 119529u0
3v0

2 + 248589v0
4
)
, etc. ,

(6.11)

where ∆0 is the classical discriminant (3.10), ∆0 = 4u0
3 − 27v0

2. As expected, the

non-perturbative corrections get arbitrarily suppressed in the weak coupling limit,

where ∆0 → ∞.

Note that the prepotential (6.9) is manifestly Weyl group invariant, in contrast

to the Weyl non-covariant expansions in a1,2. This confirms that we have correctly

† The higher F6k have no unique form when written in terms of the Z’s, since some combinations

vanish, but they are unique when written in terms of the ai.
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resummed the infinite series in the dimensionless variable. One can check that when

starting from a different expansion that is adapted to the patch P2, one obtains the

same effective prepotential in terms of the variables Z. Thus, the Weyl invariant

resummation in terms of the variables Z simultaneously covers both patches at “in-

finity” in MΛ.

6.2. Dual magnetic semi-classical regime

We can compute in a similar fashion the effective action FD in the dual semi-

classical, magnetic regime, ie., in the patch Q1 where two monopoles become simul-

taneously massless. To lowest order, this has been done for all SU(n) in ref. [5]. In

contrast, though our techniques are not practical for computations for general n, they

allow an easy determination of the corrections to FD for any given SU(n) group (here

G = SU(3)) to arbitrary order.

Since the Appell functions in (6.4) cannot easily expanded or resummed in the

variables δ± near the nodes (and appropriate transformation formulas for F4 do not

seem to be known), we prefer to resort to the explicit series solutions (5.19) to make

the following identifications:

1√
3 Λ




aD1

aD2

a1

a2


 = α0




iωQ1

2 ∼ iδ−(1 + ...)

iωQ1

1 ∼ iδ+(1 + ...)
1
2π

(ΩQ1

2 +
∑
α2jω

Q1

j ) ∼ 1
2π
δ−log [δ−] + ...

1
2π (ΩQ1

1 +
∑
α1jω

Q1

j ) ∼ 1
2π δ+log [δ+] + ...


 . (6.12)

As before, the undetermined parameters αij , as well as the overall normalization

α0, can be fixed by asymptotically evaluating the period integrals. This is done in

Appendix A, with the result: α0 = −2−1/3

3
, α11 = α22 = −2 log 2 − 3 log 3, α12 =

α21 = −2 − 2 log 2.

Note that even though the solutions in δ± ∼
∏3

i<j(e
±
i − e±j )2 are symmetric

in e±i − e±j , the identification (6.12) is valid only for one given intersection, where

e+i − e+j = 0 and e−k − e−l = 0 for some given i, j, k, l. To be specific, we have chosen

the node at u = ( 27
4 )1/3Λ2, v = 0, where the lines #2 (where e−1 − e−2 = 0) and #3

(where e+1 − e+3 = 0) of Fig.4 intersect. Encircling the lines δ± = 0, (6.12) clearly

reproduces the correct strong coupling monodromies, given by the matrices M(1,0,0,0)

and M(0,1,0,0) in (4.20). Note that even though (6.12) represents a good solution at

the remaining other two nodes, it does not represent the correct identification with

the period integrals there. One rather has to conjugate the above basis with the cyclic
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transformation U (3.21) to obtain the proper identifications with the period integrals

at the other nodes. Of course, since all nodes are equivalent under this ZZ3 symmetry,

it suffices to study the situation only at one node.

Just like in the semi-classical region, we can easily invert the series solutions ωQ1

1

and ωQ1

2 and integrate
∫

aDi
ai to obtain for the dual effective prepotential the following

result:

FD(a1, a2) = FD,0(a1, a2) + FD,1 loop(a1, a2) + FD,thresh.(a1, a2) , (6.13)

where

FD,0 = 18
i

π
β0Λ(aD1 + aD2)

+
i

π

(3
8

+
1

2
log 2 +

3

4
log 3

)
(aD1

2 + aD2
2) + aD1aD2

i

π
log 2

FD,1 loop =
1

4πi

2∑

i=1

(
aDi

2 log
[ aDi

β0Λ

])

FD,thresh. =
1

2πi

∞∑

k=1

FD,k(aDi)(432 β0Λ)−k .

(6.14)

with β0 = i√
3
2−1/3. Information about the massive spectrum is encoded in the

threshold corrections

FD,1 = − (aD1 + aD2)
(
4 aD1

2 − 13 aD1 aD2 + 4 aD2
2
)

FD,2 =
(
44 aD1

4 − 207 aD1
3 aD2 − 189 aD1

2 aD2
2 − 207 aD1 aD2

3 + 44 aD2
4
)

FD,3 = − (aD1 + aD2)
(
896 aD1

4 − 7475 aD1
3 aD2 + 2399 aD1

2 aD2
2

− 7475 aD1 aD2
3 + 896 aD2

4
)
, etc. .

(6.15)

FD(aD1, aD2) indeed represents an effective action for two U(1) gauge fields, and is

manifestly symmetric under exchange of aD1 and aD2. Observe also that the corre-

sponding β-functions are asymptotically non-free, and reflect the coupling to funda-

mental matter fields with charges (1, 0) and (0, 1). These correspond to pure magnetic

monopoles in the original variables.
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6.3. Properties of the period matrix, and various dualities

Analogous to G = SU(2), there exist for SU(3) certain types of dualities that

relate the electric semi-classical regime near infinity in MΛ with the dual magnetic

semi-classical regime near the nodes. To see this, let us first study the physical gauge

and dual gauge couplings, τij ≡ ∂2

∂ai
∂aj

F(a) and τD,ij ≡ ∂2

∂aDi
∂aDj

FD(aD) ≡ −(τij)
−1,

when expressed in terms of α ≡ 4u3/27Λ6, β ≡ v2/Λ6.

From our identifications (6.4), we can easily compute the period matrix τ , which

is the exact quantum gauge coupling constant:

Π =

(
∂ua1

∂va1

∂ua2

∂va2
;
∂uaD1

∂vaD1

∂uaD2

∂vaD2

)
≡
(
A ; B

)
, τ(u, v) = A−1B , (6.16)

Explicit expressions for the periods are collected in Appendix B. Of course, to make

sense of τ(u, v) over the whole moduli space, we must suitably analytically continue

the Appell functions. For sufficiently small v, we can resort to (6.3) in order to

continue to all u. (One may also use the dual formula to continue to all v for small

u. This might be useful to study the behavior at the cusps.)

In particular, we may continue τ to the origin of moduli space. This serves as a

useful consistency check, since τ(0, 0) is completely fixed by the ZZ6 symmetry of the

curve. That is, we require that A ≡
(

a b
c d

)
in (4.21) leaves the period matrix invariant:

τ = (a τ + b)(c τ + d)−1. In addition, we know that the ZZ6 symmetry acts on the

abelian differentials as follows: A : dx
y → −ξ dx

y ,
xdx
y → −ξ2 xdx

y , where ξ = e2πi/6.

This transformation has determinant equal to −1, and this must be the same as the

determinant of (c τ+d). These conditions, as well as the positivity of Im τ , completely

determine the period matrix at the origin as follows:

τ(0, 0) =

(
1 0
0 −1

)
+

i√
3
C , (6.17)

where C ≡
(

2 −1
−1 2

)
is the Cartan matrix.

Note that the identifications (6.4) were based on the comparison with the period

integrals of Appendix A. For these integrals, a basis of cycles was chosen that cor-

responds to Im v = 0, Re v > 1, in order to match the basis given in Fig.6 and to

reproduce the semi-classical monodromy (3.22). If we want to analytically continue

to (u, v) = 0, we need to take into account that for −1 < Re v < 1 the identifications

between ai, aDi and the solutions of the PF equations change. This change of basis is
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the one that relates the monodromy M
(r3)
∞,u (3.22) (defined by a loop around infinity

in the u-plane at Re v > 1) with the monodromy M̃
(r3)
∞,u (4.23) (defined by a loop

around infinity in the u-plane at Re v = 0). Taking this change of basis into account,

we indeed find (6.17) to hold, by evaluating the period matrix (6.16) at the origin.

Since non-trivial transformation properties of F4 do not appear to be known, it is

quite hard to find all possible duality symmetries that may act on the moduli space.

What we can do is to consider transformations that act solely on α ≡ 4u3/27Λ6 when

β ≡ v2/Λ6 = 0. For this, it is helpful to rewrite the periods for β = 0 in the following

form:

∂ua1 = ∂ua2 = (
√

3Λ)−1(−1)1/62−2/3(1 − α)−1/6
2F1

(1
6
,
1

6
, 1;

1

1 − α

)

∂va1 = −∂va2 = (3Λ2)−1(−1)1/32−1/3(1 − α)−1/3
2F1

(1
3
,
1

3
, 1;

1

1 − α

)

∂uaD1 = ∂uaD2 = i(
√

3Λ)−1 2−2/3
2F1

(1
6
,
1

6
, 1; 1− α

)

∂vaD1 = −∂vaD2 = −i(3Λ2)−1 2−1/3
√

3 2F1

(1
3
,
1

3
, 1; 1− α

)
.

(6.18)

From these expressions one can then infer that under

I : α −→ α̃ =
α

α− 1
, (6.19)

(which just exchanges the arguments of the hypergeometric functions), the period

matrix transforms as follows,

τ(α, β = 0) = C · τD(α̃, β̃ = 0) , (6.20)

provided that (1 − α) ∈ IR−. The presence of the Cartan matrix reflects that the

bases of the electric and magnetic degrees of freedom are given by the Dynkin and

the simple root bases, respectively, as explained in section 4.2. This electric-magnetic

duality obviously generalizes the isogeny transformation (2.15),(2.13) for G = SU(2).

Though we did not succeed to find an extension of (6.19) to non-zero β, we believe that

such an extension does exist, and reflects a transformation property of F4. If true, it

would be very likely that analogously to G = SU(2), there exist dual, isogenous forms

of the hyperelliptic curve (4.1), for which electric and magnetic degrees of freedom

are exchanged. This is also suggested by the form of the monodromies, as mentioned

in section 4.2 and section 4.3.
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In addition, analogous toG = SU(2) there exists (at least for β = 0) an S-duality,

which acts like

τ(α, β = 0) = τD(α̂, β̂ = 0) , (6.21)

with α̂ = I(S̃(I(α))), where I is the isogeny map (6.20) and

S̃ : α −→ 1

(α1/3 − 1)3

{
8 + α+ 12(−1)2/3α1/3 − 6(−1)1/3α2/3

}
. (6.22)

Probably there exist other dualities as well, for example, a transformation that relates

the cusp patches Q2 and Q3.

7. Conclusions and Outlook

The main result of the present paper are the explicit expressions (6.10) and (6.14)

for the quantum effective prepotential, whose expansion can easily be determined to

any given order in Λ. It would be very interesting to compare the instanton corrections

with expressions obtained by some other kind of computation.

There are, of course, many aspects that were not touched upon in the present

paper. Some of the aspects that we neglected were recently discussed, eg., in [8,9],

and need not be repeated here. We just like comment on a few things.

First, it is clear that similar to SU(2) (where u(τ) is given by a modular function

of Γ0(4) or Γ(2)), the variables uk(τ) should be given by certain higher genus modular

functions (whose modular properties include the S-duality transformation (6.22)).

Such functions are intrinsically defined via lattice sums of type
∑

(m + nτ)l, with

period lattices given here by root lattices. (For SU(3), these functions could be found

by inverting the expressions given in Appendix B.) One question that arises would be

what the physical interpretation of such lattice sums is. Certainly one would like to

think in terms of partition functions involving massive excitations, but the counting

of states, of which many are unstable, would probably be subtle. Also, in contrast to

N =4 supersymmetric theories, |m+ nτ |2 does not give the mass of a state, so that

these lattice functions do not give the mass spectrum but rather count electric and

magnetic charges.

Among the open points is also the generalization to other groups (G = SO(2n+

1) was recently treated in [7]). Actually, our classical considerations in section 3.1

directly generalize to other Lie algebras. General formulae for the discriminants (3.10)
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are discussed in the literature on arrangements of hyperplanes [20]. In particular,

for the remaining simply laced Lie algebras of type D and E, the following simple

singularities [11] are relevant:

WDn
(x1, x2, u) = x1

n−1 + 1
2x1 x2

2 −
n−1∑

l=1

u2l x1
n−l−1 − ũnx2

WE6
(x1, x2, u) = x1

3 + x2
4 − u2x1x

2
2 − u5x1x2 − u6x

2
2 − u8x1 − u9x2 − u12

WE7
(x1, x2, u) = x1

3 + x2
4 − u2x

2
1x2 − u6x

2
1 − u8x1x2 − u10x

2
2

− u12x1 − u14x2 − u18

WE8
(x1, x2, u) = x1

3 + x2
5 − u2x1x

3
2 − u8x1x

2
2 − u12x

3
2 − u14x1x2

− u18x
2
2 − u24x2 − u30 ,

(7.1)

where uk are one-to-one to the Casimirs of the corresponding algebra. The associated

discriminants characterize classical Yang-Mills theories based on the simply laced Lie

algebras of type D and E. As for the quantum theories, we expect the underlying

curves to be of the form

p(xi)
(
WADE(xi)

)2 − q(xi)Λ
2h = 0 , (7.2)

where h is the corresponding dual Coxeter number, and p(x), q(x) are suitable poly-

nomials. The key point is the quadratic appearance of the simple singularity, which

ensures that any singular branch of the classical singularity in M0 (describing an un-

broken SU(2)) splits into two quantum branches (describing massless SU(2) Seiberg-

Witten monopoles). However, the genus of the curves (7.2) does not seem to easily

come out correctly, although this criticism may be too naive in view of the SO(2n+1)

curves of [7].

We also remark that most of our considerations in section 4.2 about properties of

BPS states in relation with vanishing cycles directly apply or generalize to situations

involving “level” surfaces other than Riemann surfaces. In particular, they apply to

classical SU(n) N = 2 Yang-Mills theory, as was already pointed out in section 3.1.

They also apply to BPS states of extended supersymmetric string compactifications,

where the relevant surfaces are K3 [21] and Calabi-Yau [22] manifolds. We think it

would be interesting and important to develop a coherent and systematic picture of

BPS states related to vanishing cycles, especially in view of the type II – heterotic

string duality [23,24].
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Appendix A. Asymptotic evaluation of period integrals

The hyperelliptic period integrals
∫

γi
λ provide a definite basis for the solutions

of the Picard-Fuchs equations everywhere in the moduli space. In order to relate them

to the various local expansion that one gets by solving the Picard-Fuchs equations, we

have to compute some low order terms of the asymptotic expansions in terms of those

variables by which we parametrize the vicinity of ’infinity’ and the node, respectively.

In this appendix we will provide some of the details of those calculations, which enable

us to fix the physical relevant quadratic terms in the prepotential and constitute a

check of our monodromy considerations.

The integrals to be computed are of the form

wij =
i

2π

∫ ej

ei

λ =
i

2π

∫ ej

ei

x(3x2 − u)dx

y

where ei are the roots of the polynomial y2 = p(x) = 0.

The first step is to find approximate expressions for the roots ei and then to

expand the integrals such as to reduce them to elementary integrals. We will do this

for the semi-classical infinity at P3 and the node at v = 0, u = ( 27
4 )1/3Λ2 in turn.

(i) Period integrals at infinity: Here we introduce variables α = v
u3/2 , β = Λ3

u3/2 s.t.

infinity is at the origin (α, β) = (0, 0) and the roots of y are approximately ei ≡
√
uẽi,

with:

ẽ1 ≃ −1 +
1

2
(α− β) +

3

8
(α− β)2 , ẽ3 ≃ −α− β ,

ẽ5 ≃ 1 +
1

2
(α− β) − 3

8
(α− β)2

ẽ2 ≃ −1 +
1

2
(α+ β) +

3

8
(α+ β)2 , ẽ4 ≃ −α+ β ,

ẽ6 ≃ 1 +
1

2
(α+ β) − 3

8
(α+ β)2

with e2i−1 = e2i, i = 1, 2, 3 at semi-classical infinity. These roots are ordered in an

obvious fashion. Their relation to the branch points and cycles of Fig.6 is ambiguous
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and depends on the path used in the analytic continuation. This ambiguity is physi-

cally irrelevant, and corresponds to a Weyl conjugation. By choosing a specific path,

we can make the following associations: e1 → e−3 , e2 → e+3 , e3 → e+1 , e4 → e−1 , e5 →
e−2 , e6 → e+2 . Thus, the integrals w2i−1,2i are related to the a-type periods and will

be given by pure power series, whereas w2i,2i+1, which are related to the aD-type

periods, will have logarithms.

To compute w̃12, we introduce the variable w = x − 1
2
(e2 − e1) and get, after

expanding the integrand in powers of small quantities:

2w12 = −a2 ≃
√
u

π

∫ β/2

−β/2

dw√
1
4β

2 − w2
(−1 +

1

2
α) = −(

√
u− 1

2

v

u
)

Likewise we get 2w34 ≃ − v
u

and 2w56 = a1 ≃ (
√
u+ 1

2
v
u
).

The logarithmic periods are more involved. In order to compute e.g., w23, we

split the range of integration into two pieces, namely
∫ e3

e2
λ =

∫ ξ

e2
λ +

∫ e3

ξ
λ, where

ξ−e2 ∼ e3−ξ. Both integrands can then be expanded leading to elementary integrals

of the form
∫ p(w)√

w2−a2 (x+b)n
with p a polynomial. We find

2w23 = aD2 ≃ − i

π

{√
u
(
3 +

1

2
log(

Λ6

64u3
)
)
− v

u

(3

4
log(

Λ6

4u3
)
)}

and

2w45 = aD1 ≃ − i

π

{√
u
(
3 +

1

2
log(

Λ6

64u3
)
)

+
v

u

(3

4
log(

Λ6

4u3
)
)}

(ii) Period integrals at the nodes: parametrized by δ± = 1 − α + β ± 2
√
β , α =

4u3

27Λ6 , β = v2

Λ6 the roots are approximately (ei ≡ 2−1/3Λẽi):

ẽ1 = −2(1 − δ+
12

− δ−
36

), ẽ2 = −(1 − i

√
δ+
3

− δ+
36

− δ−
12

),

ẽ3 = −(1 + i

√
δ+
3

− δ+
36

− δ−
12

)

ẽ6 = 2(1 − δ+
36

− δ−
12

), ẽ4 = (1 + i

√
δ−
3

− δ+
12

− δ−
36

),

ẽ5 = (1 − i

√
δ−
3

− δ+
12

− δ−
36

)

We now consider the node v = v0 = 0, u = u0 = ( 27
4 )1/3Λ2.
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Close to the node we have v = v0 + δv = Λ3

4 (δ+ − δ−) and u = u0 + δu ≃
−1

6 ( 27
4 )1/3Λ2(δ+ + δ−), or δ± ≃ −22/3

Λ2 (u − u0) ± 2
Λ3 v. The computation of the aD-

type periods is straightforward. Expanding the integrand in powers of δ± leads to

elementary integrals, and we find

2w23 = aD2 ≃ − iΛ

31/221/3
δ+ =

iΛ

31/221/3

(22/3

Λ2
(u− 3Λ2

22/3
) − 2

v

Λ3

)
,

and likewise

2w45 = aD1 ≃ − iΛ

31/221/3
δ− =

iΛ

31/221/3

(22/3

Λ2
(u− 3Λ2

22/3
) + 2

v

Λ3

)
.

The computation of the logarithmic solutions is more cumbersome. We again split

the integral into two pieces in order to be able to deal with the singularities of the

integrand separately; e.g. for w34 :
∫ e4

e3
λ =

∫ ξ

e3
λ+

∫ e4

ξ
λ such that e2,3 < ξ < e45 and

|ξ − e3|/|e3 − e2|, |ξ − e4|/|e5 − e4| ≫ 1. Independence of the choice of ξ serves as a

check. Expanding the integrand and the limits of integration in powers of δ
1/2
± leads

to elementary and elliptic integrals. For instance, taking the lowest order terms for

the roots ei, i 6= 2, 3 and u we are led to the integral
∫ ξ

e3

x(x+1)√
(x−e2)(x−e3)

√
4−x2

. To do

the integral we introduce the variable w = −1− x+ 1
36
δ+ + 1

12
δ−, expand 1/

√
4 − x2

in a power series in x and then expand xn to order ǫ2±. The remaining integrals can

now be performed keeping only terms to order ǫ2 and ǫ2 log(ǫ). The resulting series

can then be resummed. After some work, we finally get:

2w12 = −a2 ≃ − Λ√
3

22/33

π

{
− 3 − 1

12
δ+

(
log(δ+) − 2 log 2 − 3 log 3 − 1

)
+

1

6
δ− log 2

}

and

2w56 = a1 ≃ Λ√
3

22/33

π

{
− 3 − 1

12
δ−
(
log(δ−) − 2 log 2 − 3 log 3 − 1

)
+

1

6
δ+ log 2

}
.
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Appendix B. Explicit expression for the period matrix

The period matrix, which represents the exact SU(3) quantum gauge coupling

constant, is given by τ(u, v) = A−1B, where

A =

(
∂ua1

∂va1

∂ua2

∂va2

)
, B =

(
∂uaD1

∂vaD1

∂uaD2

∂vaD2

)
.

The periods are, in terms of multi-valued Appell functions F4 (6.2) of α ≡ 4u3/27Λ6

and β ≡ v2Λ6, as follows:

(√
3Λ
)
∂ua1 = 2−2/3α−1/6 F4

(1
6
,
5

6
,
1

2
, 1;

β

α
,
1

α

)

− 21/3 1

3

√
β

3
α−2/3F4

(2
3
,
4

3
,
3

2
, 1;

β

α
,
1

α

)

(√
3Λ
)
∂ua2 = 2−2/3α−1/6 F4

(1
6
,
5

6
,
1

2
, 1;

β

α
,
1

α

)

+ 21/3 1

3

√
β

3
α−2/3F4

(2
3
,
4

3
,
3

2
, 1;

β

α
,
1

α

)

(
3Λ2

)
∂va1 = 2−1/3α−1/3 F4

(1
3
,
2

3
,
1

2
, 1;

β

α
,
1

α

)

− 2−1/3

√
β

3
α−5/6F4

(5
6
,
7

6
,
3

2
, 1;

β

α
,
1

α

)

(
3Λ2

)
∂va2 = −2−1/3α−1/3 F4

(1
3
,
2

3
,
1

2
, 1;

β

α
,
1

α

)

− 2−1/3

√
β

3
α−5/6F4

(5
6
,
7

6
,
3

2
, 1;

β

α
,
1

α

)

(√
3Λ
)
∂uaD1 = (−1)−1/32−2/3α−1/6F4

(1
6
,
5

6
,
1

2
, 1;

β

α
,
1

α

)

− 2

3
(−1)1/62−2/3

√
βα−2/3F4

(2
3
,
4

3
,
3

2
, 1;

β

α
,
1

α

)

− (−1)1/6π24/3Γ(1/3)−3

√
β

3
F4

(2
3
,
2

3
,
3

2
,
1

3
; β, α

)

+ (−1)2/32−5/3 Γ(1/6)2

πΓ(1/3)
F4

(1
6
,
1

6
,
1

2
,
1

3
; β, α

)
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(√
3Λ
)
∂uaD2 = (−1)−1/32−2/3α−1/6F4

(1
6
,
5

6
,
1

2
, 1;

β

α
,
1

α

)

+
2

3
(−1)1/62−2/3

√
βα−2/3F4

(2
3
,
4

3
,
3

2
, 1;

β

α
,
1

α

)

+ (−1)1/6π24/3Γ(1/3)−3

√
β

3
F4

(2
3
,
2

3
,
3

2
,
1

3
; β, α

)

+ (−1)2/32−5/3 Γ(1/6)2

πΓ(1/3)
F4

(1
6
,
1

6
,
1

2
,
1

3
; β, α

)

(
3Λ2

)
∂vaD1 =

√
3(−1)−1/62−1/3α−1/3F4

(1
3
,
2

3
,
1

2
, 1;

β

α
,
1

α

)

− (−1)1/32−1/3α−5/6

√
β

3
F4

(5
6
,
7

6
,
3

2
, 1;

β

α
,
1

α

)

− 3(−1)1/322/3 Γ(1/3)

Γ(1/6)2

√
β F4

(5
6
,
5

6
,
3

2
,
2

3
; β, α

)

+
3

4
(−1)5/62−1/3

√
3

π2
Γ(1/3)3 F4

(1
3
,
1

3
,
1

2
,
2

3
; β, α

)

(
3Λ2

)
∂vaD2 = −

√
3(−1)−1/62−1/3α−1/3F4

(1
3
,
2

3
,
1

2
, 1;

β

α
,
1

α

)

− (−1)1/32−1/3α−5/6

√
β

3
F4

(5
6
,
7

6
,
3

2
, 1;

β

α
,
1

α

)

− 3(−1)1/322/3 Γ(1/3)

Γ(1/6)2

√
β F4

(5
6
,
5

6
,
3

2
,
2

3
; β, α

)

− 3

4
(−1)5/62−1/3

√
3

π2
Γ(1/3)3 F4

(1
3
,
1

3
,
1

2
,
2

3
; β, α

)
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