
Po
st

Sc
ri

pt
〉  p

ro
ce

ss
ed

 b
y 

th
e 

SL
A

C
/D

E
SY

 L
ib

ra
ri

es
 o

n 
24

 M
ay

 1
99

5.
H

E
P-

L
A

T
-9

50
50

15
CERN-TH/95-123

INTERPOLATED LATTICE GAUGE FIELDS AND

CHIRAL FERMIONS IN THE SCHWINGER MODEL

I. Montvay1

Theoretical Physics Division, CERN

CH-1211 Geneva 23, Switzerland

and

Deutsches Elektronen-Synchrotron DESY,

Notkestr. 85, D-22603 Hamburg, Germany

ABSTRACT

The e�ective action induced by fermions in the chiral Schwinger model with charges (3,4,5) is

investigated. Pauli-Villars regularization is combined with momentumcut-o� for the evaluation

of the fermion determinants on continuum gauge �elds interpolated between lattice points. The

convergence and gauge variance are studied numerically on gauge con�gurations taken from

quenched updating.
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1 Introduction

The non-perturbative de�nition of chiral gauge theories is a long-standing problem of quantum

�eld theory on the lattice (for reviews see, for instance, [1]{[4]). Recently there have been

several interesting new proposals trying to circumvent the obstacles represented by the Nielsen-

Ninomiya theorem [5] in di�erent ways [6]{[9] (for further references see these papers).

In the present letter the idea put forward by 't Hooft [8] is applied to the simple test case

of the two-dimensional chiral Schwinger model. It is based on the interpolation of the lattice

gauge �eld and the de�nition of the chiral fermion determinant on the obtained continuum

gauge �eld, by exploiting the knowledge accumulated in continuum approaches (for a review

see [10]). Similar ways of de�ning chiral gauge theories on the lattice were discussed for some

time [11, 12], and have been recently further developed in refs. [13, 14].

The aim of the present paper is to study numerically the de�nition of the e�ective action

induced by chiral fermions on the interpolated lattice gauge �eld. As a �rst step, the two-

dimensional massless chiral Schwinger model is considered here. Since this model is well known

and exacly soluble (in the extensive literature see, for instance, the papers in ref. [15]), the

questions are mainly oriented towards the qualitative behaviour of the calculation of the e�ec-

tive action along the line of refs. [8, 13, 14]. The methods used will be such that they can be

extended to four dimensions in a straightforward way. In the next section the interpolation of

the U(1) gauge �eld is discussed. This is followed by a short discussion of some useful numer-

ical algorithms. In section 4 the convergence of the chiral fermion determinant is considered

by removing the momentum cut-o�. The variation with respect to gauge transformations is

numerically investigated and discussed.

2 Gauge �eld interpolation

The lattice gauge �eld is de�ned by the parallel transporters on the discrete links of the lattice,

which is chosen in the present paper, for simplicity, to be hypercubic with periodic boundary

conditions. To extend the gauge �eld connection into the meshes of the lattice is highly ar-

bitrary. In order to reduce this arbitrariness some guiding principles must be respected, such

as smoothness and some minimality principle which chooses among the di�erent possibilities.

Since in chiral gauge theories the anomaly plays an important rôle, one can also connect the

gauge �eld interpolation to the geometrical de�nition of the topological charge [16, 17]. Both

this interpolation and the piece-wise linear one minimizing the Euclidean action, which has

been proposed in [8], have the important property that in momentum space the support of

the Fourier transform is concentrated near the momenta allowed for the gauge �eld on the

lattice. This has to be required as a condition for any reasonable interpolation: the momentum

cut-o� imposed on the gauge �eld by the lattice has to be approximately maintained by the

interpolated gauge �eld too.

Let us denote the U(1) gauge link variables on the lattice by

Ux� = exp(igAx�) : (1)
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Here x denotes lattice points: x = (x1; x2) with integer x� satisfying 0 � x� � L��1; (� = 1; 2).

The lattice extensions are denoted by L�, g is the bare gauge coupling and the number of lattice

points will be denoted by 
 = L1L2. Note that throughout this paper the lattice spacing of

the lattice for the gauge �eld is set to be a = 1. In other words, every dimensional quantity,

as for instance the gauge �eld Ax�, is measured in lattice units of the gauge �eld lattice. The

Fourier transformation to momentum space is de�ned, as usual, by

~Ak� �
X
x

e�ik�x�
i
2
k�Ax� : (2)

The inverse relation is

Ax� =
1




X
k

eik�x ~Ak� ; (3)

where the sum is running, of course, on the points of the Brillouin zone

k� =
2�

L�
�� ; �� = �int(L�=2);�int(L�=2) + 1; : : : ;+int(L�=2) : (4)

The above discussed condition on the interpolation means that, if the Fourier transformation

of the interpolated gauge �eld is performed on the continuous torus, the Fourier coe�cients are

approximately the same as in (2). This suggests the introduction of eq. (3) as the de�nition

of the interpolation by simply extending its validity to continuous x. This means that the

interpolated gauge �eld on the continuum is, as a function of the continuous xc:

A�(xc) �
X
x

D�(xc � x)Ax� (5)

with the interpolation kernel

D�(xc � x) �
1




X
k

eik�(xc�x)�
i
2
k� : (6)

This is a very smooth interpolation indeed, since the result is in�nitely many times di�erentiable

(an entire function for complex xc) satisfying, for integer x:

A�(x+ �̂=2) = Ax� : (7)

Here, as usual, �̂ denotes the unit vector in direction �.

Before going further, let us make a short technical remark. The Fourier coe�cients in eq. (2)

have the periodicity properties

~Ak+2��̂;� = � ~Ak;� ; ~Ak+2��̂;� = ~Ak;� ; (8)

where � = 3��. This allows us, for instance, to choose the symmetric interval for momenta in

(4). Of course, for the summation in the de�nition of D� in (6) one has to specify the interval.

In fact, for even L� it is advantageous to stick to an exactly symmetric de�nition by dividing

the Fourier coe�cient at �� = L�=2 into equal halfs at �� = L�=2 and �� = �L�=2. (For an

odd L� the points in (4) are automatically symmetric.) In the numerical study discussed in

section 4 this symmetric de�nition was always taken.
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It must be emphasized that the interpolation de�ned by eqs. (5) and (6) is only one example

among many others. It satis�es the important condition that the momentum cut-o� for the

gauge �eld be transferred from the lattice to the continuum. This is the only condition which

will be exploited in what follows. This implies that the conclusions from the numerical study

in section 4 will be qualitatively valid also for the interpolations de�ned in refs. [17, 8].

In fact, from the point of view of gauge covariance the above de�nition satisfying (7) is not

optimal. Instead of it one can also require the alternative condition

Z x+�̂

x
dyA�(y) = Ax� : (9)

This can be achieved, as one easily sees, by changing the de�nition of the continuation kernel

in (6) to

D�(xc � x) �
1




X
k

k�

k̂�
eik�(xc�x)�

i
2
k� ; (10)

where k̂� � 2 sin(k�=2). The consequence of eq. (9) is gauge covariance. Performing the gauge

transformation on the lattice by the U(1) elements �x = exp(i�x) and continuing �x to a

function �(xc) on the continuum in such a way that, for integer xc = x,

�(x) = �x ; (11)

we obtain the relation for the gauge-transformed links

U (�)
x� = ��1

x+�̂Ux��x = exp

(
ig

Z x+�̂

x
dyA(�)

� (y)

)
: (12)

Here A(�)
� (x) is the gauge-transformed continuum �eld

A(�)
� (x) = A�(x)� g�1@��(x) : (13)

A convenient interpolation satisfying eq. (11) is given by

�(xc) �
X
x

D(xc � x)�x (14)

with the continuation kernel for scalar �elds, analogous to D� in (6) or (10),

D(xc � x) �
1




X
k

eik�(xc�x) : (15)

Even if the gauge covariance relation in (12) is satis�ed, the uniqueness of the gauge-�eld

interpolation is still not guaranteed until it is not speci�ed in which reference gauge the relation

in (5) holds. (The gauge transformation with respect to this gauge is then given by (13), (14).)

At this point maximal smoothness can be taken as a guiding principle, which suggests that

we take the Landau gauge to be the reference. This gauge can be de�ned on the lattice by

requiring

f2[U ] �
X
x

2X
�=1

A2
x� (16)
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to be minimal with respect to gauge transformations. For U(1) gauge �elds there are e�cient

algorithms to �nd this absolute minimum, for instance the one discussed in [18], which will be

used in the present paper.

The advantage of the gauge-�eld interpolation given by eqs. (5), (10) is its simplicity and the

direct relation to momentum space, which will be useful for the evaluation of the determinant

in momentum basis. Concerning topological charge, it de�nes a continuous gauge �eld on

the torus which has a total classical topological charge zero. On large volumes this is not a

serious constraint, because the parts of the volume can have any topological charge. In fact,

the interpolated gauge �eld can be used to de�ne a topological charge density operator with

the appropriate renormalization procedure for composite operators. (See [19] and references

therein.)

3 Computing the determinant

The Euclidean action for massless chiral fermions in the U(1) background gauge �eld A�(x) is

given in the continuum by

S =

Z
d2x

n
 (x)
�@� (x)� igA�(x) (x)
� (PRQR + PLQL) (x)

o
: (17)

Here PR � (1 + 
3)=2 and PL � (1 � 
3)=2 are the chiral projectors for right-handed and

left-handed fermions, respectively. We shall use the Pauli matrices for the 
-matrices in two

dimensions: 
� � ��; (� = 1; 2; 3). QR and QL are the charges of the chiral fermion compo-

nents. Note that in (17) we implicitly adopt the \doubling trick" [20, 21]: even if one of the

charges QR;L is zero, we use a Dirac fermion �eld. In this way the chiral fermion determinant

is always a determinant indeed.

The fermion matrix in momentum space corresponding to eq. (17) is

MQR;QL

k2k1
= 
�k2k1i
 � k1 � ig
� (PRQR + PLQL) ~Ak2�k1;� : (18)

After multiplication by the fermion propagator we obtain

N
QR;QL

k2k1
�M

QR;QL

k2k1

(�i
 � k1)


k21
� �k2k1 �K

QR;QL

k2k1
: (19)

This has the following matrix elements in spinor indices:

NQR;QL

k2k1
(1; 1) = �k2k1 �QL(ak2�k1;1 � iak2�k1;2)(k1;1 + ik1;2)=k

2
1 ;

N
QR;QL

k2k1
(1; 2) = 0 ;

NQR;QL

k2k1
(2; 1) = 0 ;

N
QR;QL

k2k1
(2; 2) = �k2k1 �QR(ak2�k1 ;1 + iak2�k1;2)(k1;1 � ik1;2)=k

2
1 : (20)

Here the explicit representation of the 
-matrices and the short notation a � g ~A=
 is used.

For a massive vector-like fermion with mass m and Q � QR = QL, which will be used for

Pauli-Villars �elds, the matrix elements corresponding to (20) are:

N
Q(m)
k2k1

(1; 1) = �k2k1 �Q(ak2�k1;1 � iak2�k1;2)(k1;1 + ik1;2)=(m
2 + k21) ;
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N
Q(m)
k2k1

(1; 2) = �imQ(ak2�k1;1 � iak2�k1;2)=(m
2 + k21) ;

N
Q(m)
k2k1

(2; 1) = �imQ(ak2�k1;1 + iak2�k1;2)=(m
2 + k21) ;

N
Q(m)
k2k1

(2; 2) = �k2k1 �Q(ak2�k1;1 + iak2�k1;2)(k1;1 � ik1;2)=(m
2 + k21) : (21)

For the computation of the determinants of these matrices in momentum basis an appro-

priate algorithm is the LU (lower-upper triangular) decomposition (see, for instance, [22]). It

turned out to be both robust and su�ciently fast on the lattices considered. It can also be used

for the computation of the full inverse matrix, and the algorithm can be organized in such a

way that the matrix has to be stored only once. Of course, storing these large matrices even

only once is the main limiting factor of the computation. For very large matrices also the time

requirement is growing dangerously: it behaves as the third power of the matrix extension.

In order to extend the range of feasible lattice sizes one can exploit some additional iterative

procedures. Before describing them let us discuss the momentum cut-o� scheme used. Since,

according to the previous section, the Fourier components of the gauge �eld are constrained to

the points (4) of the Brillouin zone belonging to the gauge �eld lattice, it is natural to use a

momentum cut-o� for the calculation of the determinants of the in�nite-dimensional matrices

in (19){(21). One can imagine to make the lattice �ner for the fermions by adding more points

to the gauge �eld lattice. In this case, however, the periodicity in momentum components is

maintained, which introduces some non-zero elements also near the upper right and lower left

corner, besides the ones near the main diagonal, for which ak2�k1;� 6= 0. This makes the e�ect

of the cut-o� stronger, therefore it is more advantageous to abandon periodicity and drop the

extra non-zero elements. In this way, for momentum cut-o�s much larger than � (in gauge �eld

lattice units), the matrix has a band structure.

As a consequence of this band structure, one can e�ectively apply the iterative algorithm

previously used for the numerical hopping parameter expansion in QCD [23]. For this one

determines the traces of the powers of the hopping matrix K (here in momentum space).

Having these traces one can use either the usual in�nite expansion

det(1�K) = exp

8<
:�

1X
j=1

TrKj

j

9=
; ; (22)

or the �nite polymer representation [24]

det(1�K) = 1 +
nX

�=1

�X
r=1

(�1)r

r!

��r+1X
�1=1

: : :
��r+1X
�r=1

��;�1+:::+�r
TrK�1

�1

TrK�2

�2
: : :

TrK�r

�r
: (23)

This latter is always convergent because it is a sum of a �nite number of terms. In practical

calculations one can go without any problems to jmax ' 100 in eq. (22) or to nmax ' 40 in

eq. (23). As a consequence of the band structure of the matrices K in (19){(21), the storing of

the full matrices is not necessary, and the computational load is growing as the second power

of the matrix extensions times j2max or n
2
max.

Inspection of the matrices in (19){(21) shows that only the traces of even powers are non-

zero. One can also easily see thath
Tr
�
KQR;QL

��i�
= Tr

�
KQL;QR

��
: (24)
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This corresponds to the relation

h
detNQR;QL

i
�

= detNQL;QR : (25)

Therefore the determinant of the vector-like fermion detNQ(m) is real. (One can also easily

prove that it is non-negative.)

Concerning the practical convergence of the trace expansions in (22) and/or (23) in the

chiral Schwinger model with charges (3,4,5) the experience is negative. Typically neither of

them converges, because in the calculated range the contributions rapidly increase. This is

mainly the consequence of the large value of the charges (see next section). One can, however,

easily save their advantages by calculating the determinant and inverse of the matrices N

truncated to a smaller sublattice (typically of the same size as the lattice for the gauge �eld),

and then use

detN = detNsmall det[N
�1
small(1�K)] = detNsmall det(1�Knew) ; (26)

with

Knew � 1�N�1
small(1�K) : (27)

It turns out that the expansions in the traces of the powers of Knew converge rapidly. The

omitted higher-order terms could always be kept smaller than 10�8, relative to the result.

4 Convergence and gauge variance

The commonly considered example of an anomaly-free chiral Schwinger model has fermion

charges (QR = 3; QL = 0), (QR = 4; QL = 0) and (QR = 0; QL = 5). (The anomaly is

cancelled if the sum of squared charges of the right-handed fermions is equal to those of the

left-handed ones.) In order to regulate the ultraviolet divergence of the two-point function in

a gauge-invariant way, one can introduce a Pauli-Villars vector-like fermion �eld with charge

Q = 5 [25]. In this way the e�ective action Se� induced by the fermions is given by

expf�Se�(MPV )g � Ee�(MPV ) = detN3;0 detN4;0 detN0;5=detN5(MPV ) : (28)

HereMPV is the mass of the Pauli-Villars regulator �eld in units of the gauge �eld lattice. As

argued in ref. [14], in the continuum limit MPV should be kept �nite, for instance of order 1.

This is necessary in order to maintain the possibility of a simple renormalization.

Some insight into the behaviour of the e�ective action de�ned by eq. (28) can be obtained

by numerically evaluating the determinants on some typical gauge con�gurations taken from

Monte Carlo updating. For this I took quenched updating by the usual compact U(1) gauge

�eld Wilson action. The gauge coupling has been �xed by � � g�2 = 8, which is a quite strong

coupling for these fermions. Namely, the interaction strength is given by Qg, therefore weak

couplings are beyond � ' 25. The gauge con�gurations were transformed to Landau gauge

by the algorithm described in [18]. The gauge �eld lattices were either 4 
 4 or 10 
 10. The

lattices de�ning the momentum cut-o� for the evaluation of the determinants always had an

odd number of points (see discussion after eq. (8)), and they went up to 61 
 61. This means
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that the momentum cut-o�s went up roughly to 15� (in units of the gauge �eld lattice). For

the Pauli-Villars mass values between MPV = 1
2
and MPV = � were tried.

A �rst important question is how fast the in�nite cut-o� limit is reached by the e�ective

action. It turned out that for every considered gauge con�guration, taken randomly from the

updating and transformed to Landau gauge, a good convergence could be achieved with the

above cut-o�s, provided that MPV was not too large. For an illustration on 4 
 4 lattice see

�g. 1. The numerical results for nine con�gurations on 10 
 10 are shown in table 1.

It is interesting to investigate the gauge dependence of the determinants. The gauge trans-

formation of the in�nite-dimensional fermion matrix M in (18) is given by �yM�, where in

momentum space

�k2k1 =
1




Z
d2xeix�(k1�k2)+i�(x) = �k2k1 +

i



~�k2�k1 +

i2


2

X
k

~�k ~�k2�k1�k + : : : ; (29)

with ~�k denoting the Fourier components of �(x). This in�nite-dimensional unitary matrix is

truncated by the momentum cut-o�. Therefore, gauge invariance of the fermion determinant

is lost even for vector-like fermions, which were gauge-invariant without truncation. The chiral

fermion determinants remain gauge non-invariant also for in�nite momentum cut-o�.

Figure 1: The values of Ee�(1) in the complex plane on a 4
4 gauge �eld with momentum

cut-o� on 11 
 11 (triangle), 21 
 21 (quadrangle), etc., up to 61 
 61 (eight-angle).

The variation with gauge transformations is displayed in �gure 2 for ten � = 8 gauge

con�gurations on 10
10 lattice. The con�gurations were �rst transformed to Landau gauge and
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Figure 2: The residual gauge variance of the e�ective action shown by the (complex)

ratios of Ee�(
1
2
) atfer and before gauge transformation. The numbers are labeling di�erent

con�gurations. The circle with radius 1
2
around the point (1,0) is drawn to guide the eyes.

then random gauge transformations were performed with parameters satisfying on the lattice

points ��=20 < �x < �=20. The gauge transformations were interpolated in the continuum

as described in section 2. The determinants were calculated on 31 
 31 (momentum cut-o�

= 3:1�). As is shown in the �gure, the gauge variation is not very strong. In fact, both

numerator and denominator of Ee�(
1
2
) in (28) always change by 4{5 orders of magnitude, but

the ratio remains close to 1. Performing random gauge transformations with larger magnitude

(up to �� < �x < �) shows an ever-increasing change in numerators and denominators, such

that it becomes di�cult to keep the numbers in the computer, but the overwhelming part of

the variation is cancelled in the ratio. The cancellation can be further improved by taking more

Pauli-Villars �elds with appropriately chosen larger masses.

There are two possibilities for dealing with this residual gauge variation of the e�ective

action. First, one can try to tolerate it, keeping the momentum cut-o� �nite in gauge �eld

lattice units. Second, more radically, one can enforce exact gauge invariance by de�ning the

e�ective action to be equal to its value in Landau gauge along the whole gauge transformation

orbit. The hope is that at the end, in the continuum limit, both these procedures lead to the

same well de�ned theory.

The gauge-�eld interpolation combined with momentum cut-o� for the evaluation of the

Pauli-Villars regulated determinants seems to work reasonably well in the (3,4,5) chiral Schwing-
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er model. It can be expected that the e�ective action de�ned in this way leads to a well de�ned

continuum limit. Of course, momentum cut-o� is not the only possibility. Examples of other

possibilities are, for instance, to take a �ner lattice (in coordinate space) for fermions and to

use the formalism of ref. [21] for the imaginary part of the e�ective action as suggested in [12],

or to take on the �ner fermion lattice the SLAC derivative, as proposed by ref. [7]. One has

to see which one of these (or some other) approaches has the most conceptual and practical

advantages.

Table 1: The values of the determinants on 10 
 10 gauge �eld con�gurations

with momentum cut-o� 5:1�. The �rst line for a given con�guration label is

the value on the \small" subspace detNsmall, the second line the correction

factor obtained by trace expansion. For the con�gurations above the double

line Nsmall is with momentum cut-o� 2:1�, below it with 3:1�. The complex

numbers are given by pairs in parentheses.

detN3;0 detN4;0 detN0;5 detN5( 1
2
)

1 (2:1481;�0:8303) (0:3880; 0:5783) (�68:1036;�40:6948) 3:5545 � 1010

(1:0216;�0:0055) (1:0364;�0:0288) (1:0541; 0:0308) 1.3258

2 (0:4173;�0:2723) (0:2104;�0:2211) (�0:0557;�0:1826) 5:5351 � 108

(1:0374;�0:0053) (1:0672;�0:0148) (1:1058; 0:0367) 1.4123

3 (0:0987; 0:0139) (0:0169; 0:0081) (0:0020;�0:0020) 5:6234 � 104

(1:0482;�0:0000) (1:0892;�0:0040) (1:1457; 0:0155) 1.4466

4 (0:6872; 0:2887) (1:2979; 0:1028) (1:2729; 0:0435) 9:3387 � 104

(1:0303; 0:0009) (1:0561; 0:0052) (1:0929;�0:0166) 1.3091

5 (0:3724; 0:0593) (0:1504;�0:0241) (0:0073; 0:0931) 1:3400 � 104

(1:0268;�0:0073) (1:0458;�0:0117) (1:0673; 0:0132) 1.2518

6 (0:2303; 0:0165) (0:0764; 0:0111) (0:0156;�0:0025) 2:4780 � 101

(1:0271;�0:0008) (1:0482;�0:0004) (1:0751;�0:0007) 1.2412

7 (1:3350;�0:3054) (2:0516; 0:3677) (�1:1129;�17:2413) 3:6316 � 1010

(1:0474; 0:0084) (1:0884; 0:0262) (1:1481;�0:0658) 1.5387

8 (0:00956;�0:00109) (0:000327;�0:000086) (0:0000037; 0:0000019) 5:920 � 108

(1:0402;�0:0048) (1:0322;�0:6017) (0:8859;�0:1220) 1.3736

9 (0:00945; 0:00077) (0:000336; 0:000054) (0:0000042;�0:0000024) 1:600 � 108

(1:0404;�0:0009) (1:0257;�0:0070) (0:7122; 0:2096) 1.3379
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